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Abstract. This paper presents application of Rough Sets algorithms to
prediction of component failures in aerospace domain. To achieve this
we first introduce a data preprocessing approach that consists of case
selection, data labeling and attribute reduction. We also introduce a
weight function to represent the importance of predictions as a function
of time before the actual failure. We then build several models using
rough set algorithms and reduce these models through a postprocessing
phase. End results for failure prediction of a specific aircraft component
are presented.

1 Introduction

Rough Sets theory was first defined by Pawlak [10,11]. During the last few years it
has been applied in Data Mining and Machine Learning environments to different
application areas [9,7]. As demonstrated by these previous applications and its
formalized mathematical support, Rough Sets are efficient and useful tools in
the field of knowledge discovery to generate discriminant and characteristic rules.
However, in some cases the use of this technique and its algorithms requires some
preprocessing of the data. In this paper, we explain the application of the Rough
Sets algorithms and the preprocessing involved in order to use these techniques
for prediction of component failures in the aerospace domain.

In today’s aerospace industry the operation and maintenance of complex
systems, such as commercial aircraft is a major challenge. There is a strong desire
to monitor the entire system of the aircraft and predict when there is a potential
for certain components to fail. This is specially true when in modern aircraft
there is access to complex sensors and on-board computers that collect huge
amounts of data at different stages of operation of the aircraft and transmit this
data to ground control center where it is available in real-time. This information
usually consists of both text and parametric (numeric/symbolic) data and it
exceeds 2-3 megabytes of data per month for each modern aircraft. In most
cases this data may not be used or even properly warehoused for future access.
Several reasons exist: (i) engineers and operators do not have sufficient time
to analyze huge amounts of data, unless there is an urgent requirement, (ii)
complexity of the data analysis process is in most cases beyond the ordinary
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tools that they have, and (iii) there is no well defined automated mechanism to
extract, preprocess and analyze the data and summarize the results so that the
engineers and technicians can use it.

Several benefits could be obtained from proper prediction of component fail-
ures. These are: (i) reducing the number of delays, (ii) reducing the overall
maintenance costs, (iii) potential increase in safety, and (iv) preventing addi-
tional damage to other components.

The data used in this research comes from automatically acquired sensor
measurements of the auxiliary power units (APU) of 34 Airbus A320 aircraft.
This data has been acquired between 1994-97 and it consists of two major parts:
(i) all repair actions taken on these aircraft, and (ii) all parametric data acquired
during the operation of these power units. Examples of problems with this data
were: missing attributes, out-of-range attributes and improper data types. Af-
ter cleaning the original data, a data set consisting of about 42000 cases was
prepared.

Our goal was to use this data to generate models (in the form of rules)
that explain failure of certain components. These rules would then be used in
a different system in order to monitor the data and generate alerts and inform
the user when there is a potential for certain components to fail. This paper
explains the process and the results of our research for the use of Rough Sets
in prediction of component failures. In Section 2 we provide an overview of the
approach. Section 3 includes the data preprocessing procedure and in Section 4
we explain the process of building a model. Section 5 contains the results and
Section 6 is conclusion and future work.

2 Overview of the Approach

The aim of the rule extraction process described in this paper is to generate
a valid set of prediction rules for aircraft component failures. These rules will
have to accurately recognize particular patterns in the data that indicate an
upcoming failure of a component.

The rule inference process starts by the selection of the data related to the
component of interest. This is done in two steps. First, we retrieve, from the
historical maintenance reports, the information about all occurrences of failure
of the given component. The information retained is the failure dates along with
the identifiers of the aircraft (or engine) on which the failures happened. Then we
use this information to retrieve all the sensor measurements observed during the
preceding days (or weeks) of each failure event. We also keep some data obtained
during the days following the replacement of the component. Two new attributes
are added to the initial raw measurements: the time between the observation is
collected and the actual failure event, and a tag identifying each observation to
a specific failure case. The data from all failures are finally combined to create
the dataset used to build the predictive model.

In order to use a supervised learning approach such as Rough Sets algorithms
as well as many others [13,12], we must add another attribute to the dataset
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just created. That is the CLASS (or LABEL) attribute. The algorithm used to
generate this new attribute is also called labeling algorithm.

In our case, the labeling algorithm creates a new attribute with two different
values (0 and 1). This new attribute is set to 1 for all cases obtained between
the time of the failure and the preceding n days (these n days define the win-
dow that we target for the failure predictions), and set to 0 for all other cases
observed outside that period of time. Following the labeling of the data, some
data preprocessing is performed which is explained in Section 3.

The next step is to build the models. This includes: selection of the relevant
attributes, execution of Rough Sets algorithms, and post-processing of the re-
sults. Finally, the end results are evaluated. The overall process is summarized
in Figure 1.
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Fig. 1. General rule extraction procedure.

3 Data Preprocessing

This section explains preprocessing steps required before the application of the
Rough Sets algorithms.

3.1 Discretization Algorithm

One of the requirements of all standard Rough Sets algorithms is that the at-
tributes in the input data table need to be discrete (also known as nominal
attributes). However, in the aerospace domain, the sensored data usually con-
sists of continuous attributes and therefore a discretization process is required.

Discretization algorithms can be classified by two different criterion. The
first division of these techniques is between local or global algorithms. Local al-
gorithms are considered as some form of an induction algorithm (like C4.5 [13]).
These algorithms perform partitions that are applied in some iterations of the
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induction process such as in a number of nodes during tree construction. Global
algorithms are used to transform continuous attributes into nominal attributes
in a preliminary preparation task and with no direct interaction with the sub-
sequent analysis processes. The second classification of discretization techniques
defines supervised and unsupervised methods. Supervised algorithms use label
(or class) information to guide discretization process and unsupervised methods
apply different kinds of discretization criteria (such as equal interval width or
equal frequency intervals).

In our experiments, we have discarded local methods because: (1) global algo-
rithms are less prone to variance in estimation from small data size (some exper-
iments [3] with C4.5 have been improved using preliminary global discretizations
before C4.5 induction with no local discretization) and (2) our rule extraction
process is performed by Rough Sets algorithms that require the previous dis-
cretization. We have chosen supervised techniques because using classification
information we can reduce the probability of grouping different classes in the
same interval [8]. Some typical global supervised algorithms are: ChiMerge [8],
StatDisc [14] (both of them use statistical operators as part of the discretiza-
tion function), D-2 (entropy-based discretization [2]), and MCC (find partition
boundaries using contrast functions [16]). But we have chosen InfoMerge [1], an
information-theoretic algorithm, that substitutes ChiMerge/StatDisc statistical
measures with an information loss function in a bottom-up iterative process.
This approach is similar to C4.5 local discretization process but in order to ap-
ply it into a global algorithm a correction factor need to be used. This factor
adjusts information function using interval weight (number of elements).

3.2 Weight Function

The second transformation operation is not so closely related to algorithm re-
quirements and its application is motivated by a better rule quality at the end
of the process. As described in Section 2, the labeling mechanism selects all the
records in the last 30 days before the failure as positive data (the rules generated
by the model will discriminate this time window from the data before and after
this period). But the importance of the detection of this situation is not the same
during all this period. For example, a component failure alert 20 days before the
possible failure is less important than 5 days before and alerts too close to the
failure do not allow any corrective actions. This domain characteristic can be
described as a weight function as shown in the Figure 2. This weight function
example defines three different values connected by a step function and it is
an example of the distribution of the importance of alerts for this component.
All algorithms of the procedure have been revised in order to use this weight
function.

4 Building a Model

In this section, the three main steps of the model building phase are described
in detail. These steps are: i) attribute reduction, ii) rules extraction, and iii)
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Fig. 2. Weight function example.

rules post-processing. In this research, Rough Sets algorithms have been used to
implement each of these phases.

4.1 Attribute Reduction

In this phase of the process, we select from an original set of attributes, provided
by the user, a subset of characteristics to use in the rest of the process. The
selection criteria are based on the reduct concept description, as defined by
[11]. The term REDUCT is defined as “the essential part of knowledge, which
suffices to define all basic concepts occurring in the considered knowledge”. In
this problem’s context we can define reduct as the reduced set of features that
are able to predict the component failure.

Many different algorithms have been developed in order to obtain this re-
duced set of attributes [15,6]. Not all of them are suitable for our domain. For
instance, the Discernibility Matrix algorithm [15] defines a triangular matrix
with a size equal to the number of records in both dimensions. This algorithm
would not be appropriate due to the size of the matrix it requires ( e.g. for a
problem of 20000 records it is necessary to handle a matrix of about 200 mil-
lion cells). Another traditional method to calculate this set is to generate all
combinations of attributes and then evaluate the classification power of each
combination. The usual way to perform this evaluation is to calculate the Lower
approximation [11]. Lower is a set of original records that belong to the concept
and they are selected by an equivalence relation described by some attributes.
These attributes are used to define this Lower region. If an element belongs to
this approximation then it surely belongs to the class (the set of records we want
to classify).

U : Universe (all the records). (1)

X : Elements that belong to the CLASS (concept). X ⊆ U (2)

R : Equivalence relation (defined by the attributes). (3)

Lower = {x ∈ U : [x]R ⊆ X} (4)
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In our experiments, we have used a simple reduct calculation algorithm. The
main goal was not to obtain the minimal attribute reduct, but to provide a good
result at a reasonable cost in terms of computation time and memory used. The
algorithm implemented also uses the Lower approximation calculation [11] to
evaluate the classification power of a set of attributes in each of the iterations.
This approximation represents the set of data records successfully classified by
a set of attributes. Therefore, the set of attributes is designed to preserve this
original Lower region. The algorithm pseudo code is shown in Figure 3.

1:AttributeSet Calculate_Reduct(Data data,AttrSet attr) 1:Float Lower_Approximation(Data data,AttributeSet attr)

2:{ 2:Pre: "’data’ must be sorted by ’attr’"

3: AttributeSet red={}; 3:{

4: Float acc,maxAcc=0.0,attrAcc[attr.size()]; 4: Float pos=0.0,neg=0.0; cls=0.0; tot=0.0;

5: Attribute at1,at2,a,b; 5: Tuple reference,current;

6: 6:

7: while(maxAcc<REQUIRED_ACCURACY) { 7: reference=data.first();

8: maxAcc=0.0; 8: for(current in data) {

9: for(a in attr) { 9: if(IsEqual(current,reference,attr)) {

10: attrAcc[a]=Lower_Approximation(data,red+{a}); 10: if(IsPositive(current)

11: for(b in attr) { 11: pos+=current.weight;

12: acc=Lower_Approximation(data,red+{a,b}); 12: else

13: if(acc>=maxAcc) { 13: neg+=current.weight;

14: maxAcc=acc; 14: else {

15: at1=a; 15: tot+=pos;

16: at2=b; 16: if(pos/(pos+neg)>VPRSM_THRESHOLD) {

17: } 17: cls+=pos;

18: } 18: Write_Rule(reference,pos,pos+neg);

19: attr=attr-{a}; 19: }

20: } 20: reference=current;

21: if(attrAcc[at1]>attrAcc[at2]) 21: if(IsPositive(current)

22: red=red+{at1}; 22: pos=current.weight; neg=0.0;

23: else 23: else

24: red=red+{at2}; 24: neg=current.weight; pos=0.0;

25: } 25: }

26: return(red); 26: }

27:} 27: return(cls/tot);

28:}

Fig. 3. Non-optimal reduct calculation / Lower approximation calculation algo-
rithms.

In each iteration, this algorithm first selects the best subset of two attributes
based on the classification power (calculated with Lower Approximation). It
then selects the best attribute from these two. This algorithm is very efficient
since it limits the search for the best subset of two attributes only. However,
that limitation may also have an impact on the results obtained. It might be
appropriate to run a modified version of this algorithm that can also search for
the best subset of 3 attributes, or even more.

In Figure 4 there is a comparison between the combinatorial calculation of
the reduct and the calculation using our approximative algorithm. The figure
pictures the number of times Lower Approximation function has to be executed.
For example, to calculate a 5-attribute reduct from 80 original attributes, with
the combinational approach over 30 millions Lower regions must be calculated,
but with the other algorithm there are only 13450 regions to calculate.
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4.2 Rule Extraction

At the core of the building model process we find the rule extraction step. The
algorithm to perform that step scans the training data and extracts discriminant
rules for the the target concept using the selected subset of attributes (obtained
from the attribute reduction algorithm, see section 4.1). In our experiments, we
have selected a fixed number of attributes for the reduct computation (the most
discriminant ones, according to the reduct criteria). In other words, we forced
the rule extraction algorithms to work with only a small subset of features. This
constraint was necessary to limit the size of the rules generated and helped in
keeping a good level of comprehensibility for domain experts that will have to
review the results.

In our experiments, we also used Lower approximation calculation to gener-
ate the rules that describe the concept (i.e. the situations for which we should
predict a specific component failure). Using this approach, each rule obtained
consists of a conjunction of attribute value conditions (one condition per input
attribute). As we will see in Section 4.3, this set of rules had to be processed
before being used to predict component failure.

The implementation developed in our research supports Variable Precision
Rough Set Model (VPRSM as defined by [17]) and the algorithm used is based
on the design proposed by [5]. VPRSM extends traditional rough sets theory
providing an inclusion threshold that allows more flexibility. With VPRSM an
element x belongs to Lower region if more than α% of elements in the same
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equivalence class ([x]R) belong to the concept. The only variation of this algo-
rithm is related to the use of the weight function and its effect on threshold
comparison process in VPRSM (see figure 3).

4.3 Rule Postprocessing

The number of rules obtained from the rule extraction process described above is
typically very high. This section first explains why so many rules are generated
and then, it explains an approach developed to transform the rule set obtained
into a smaller one.

First, one of the characteristics of rules extracted by the Lower approxima-
tion calculation is that all the rules are expressed in terms of all the attributes
provided to the algorithm. Each rule extracted using this technique is a conjunc-
tion of predicates. The format of these predicates is attribute = value, and all
the attributes appear in all the rules. Clearly, with such a representation, the
number of rules required to cover all possibilities is very large.

The quality of the discretization process may also have an impact on the total
number of rules generated. Because the discretization process is independent
of the rule extraction algorithm used, an attribute may be splitted into more
intervals than required to generate the rules. In these cases, two or more rules
are generated that only differ in the value of a discretized attribute and this two
or more values represent consecutive intervals. Such a non optimal splitting of
the attributes will contribute to enlarge the number of rules obtained.

In order to reduce the number of rules, a two-phase algorithm has been de-
veloped. In the first phase all the initial rules are combined to generate new
rules, these new rules are more general (include all the elements described by
both of the combined rules) than previous ones. This process is repeated until
no new rule can be generated. In each of the iterations any initial or previously
generated rules can be combined. In a second phase, all the rules that are de-
scribed by a more general rule (all of the elements represented by the rule are
also represented by another rule) are removed. The result of this second phase is
a final set of rules equivalent to the original one but smaller (or in the worst case
equal). This process cannot be achieved by a single combination/pruning phase
since some rules may be used to generate more than one new rule. An example
of execution of this algorithm is shown in Figure 5.

The final output of this algorithm is a smaller set of postprocessed more
general rules. These rules are finally sorted by their support. The support being
defined as the ratio between the number of cases in which this rule can be applied
and the total number of cases.

5 Performance and Results

In this section, we report the results obtained by our approach to learn models
to predict failure of the Auxiliary Power Unit (APU) starter motor. We also
study the relationship between two important parameters of the approach. The
process for our experiment is as follow:
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Fig. 5. Rule postprocessing example.

1. The data is splitted into batches. One batch being created for each failure
case. For the APU starter problem, we had data from 30 failure cases (30
batches were then created).

2. We execute our approach to learn the rules using data form 29 cases and
then use the data from the remaining case for validation. We repeat this
step until data from each case has been used for validation (which means 30
iterations for the current component).

3. We use the validation results from the different runs to compute: (i)the
number of cases for which we have at least one good alert generated during
the prediction window(see Section 2), and (ii)the number of cases for which
we have one ore more alerts generated outside the prediction window. In
Table 1, these two numbers are referred to as Good Alert and False Alert,
respectively.

We repeated the above process several times with different settings for two
important parameters in our approach: the VPRSM threshold and the maximal
number of intervals generated by the discretization algorithms. We experimented
with VPRSM thresholds of .99, .97, .95, .90, and .80. Similarly, we experimented
with values of 2, 3, 5, 7, and 10 for the maximal number of discretization intervals.
Table 1 presents the results from our experiments. The impact of these two
parameters on the final results is very significant. In the top left side of the table,
with high restrictive thresholds and a small number of intervals, the percentages
of correct failure predictions and false alerts are both very low. On the other
hand, low VPRSM thresholds and large number of intervals for discretization
(bottom left corner of the table) lead to a high percentage of correct failures
predictions along with an important ratio of false alerts. It is very interesting
to note the impact of the maximal number of intervals for discretization. For
instance, with a VPRSM threshold of .97, increasing the maximal number of
intervals from 5 to 7 lead to an increase of 20% in the number of failures predicted
and to a 26% decrease of the false alert ratio.

Finally, the most interesting result was obtained with a threshold of .97 and a
maximal of 7 intervals. This result shows a good ability of the model in predicting
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failures of the APU starter motor (70%) with a reasonable percentage of false
alerts (6.7%).

Table 1. VPRSM threshold vs maximun number of intervals

Threshold # Intervals 2 3 5 7 10

0.99 Good Alert: 3.3% 6.7% 20.0% 33.3% 26.7%
False Alert: 10.0% 6.7% 10.0% 6.7% 10.0%

0.97 Good Alert: 3.3% 20.0% 50.0% 70.0% 23.3%
False Alert: 10.0% 33.3% 33.3% 6.7% 10.0%

0.95 Good Alert: 6.7% 26.7% 40.0% 56.7% 40.0%
False Alert: 16.7% 23.3% 10.0% 93.3% 33.3%

0.90 Good Alert: 10.0% 23.3% 63.3% 83.3% 86.7%
False Alert: 16.7% 20.0% 43.3% 66.7% 96.7%

0.80 Good Alert: 10.0% 36.7% 70.0% 83.3% 93.3%
False Alert: 16.7% 30.0% 66.7% 96.7% 96.7%

The rules extracted by our model never have more than five attributes (pred-
icates). This rule size is close to the limit above which human comprehensibility
becomes difficult. This characteristic is quite important because the predictive
rules are processed by an automated monitoring tool that generates alerts with
these rules and for each of the alerts the associated rule needs to be shown to
an expert user who decides on corrective actions to be taken. An example of a
rule obtained is:

IF 50.000<=SMIN15<52.000 AND 713.000<=EMIN20 AND 522.000<=EMAX

THEN "APU starter motor will fail within 15 days"

Similar rules can be generated by other algorithms. We are experimenting
with other systems such as C4.5 and other algorithms accessible trough MLC++
[4]. Results obtained so far tend to show that the approach developed in this
paper is competitive with well known decision tree systems in both the execution
time and the accuracy of the results. For instance, the best model obtained so far
with C4.5 has been able to correctly predict 77% of the failures with a false alert
rate of about 9%. In terms of execution time, our Rough Sets implementation
and C4.5 are also quite similar; each experiment for the selected component
takes about 25 minutes with both systems.

6 Conclusions and Future Work

In this paper we present a new approach to the use of Rough Sets algorithm for
prediction of component failures. Our data came from a real world aerospace ap-
plication for which accurate predictions of component failures will be extremely
useful. The approach consists of an extensive data reduction process, use of a
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global supervised algorithm for discretization and a weight function to evaluate
the performance of our experiments. The experiments carried out in our research
revealed that the large number of rules generated by the algorithms had to be
reduced to a smaller set for human comprehensibility. This was done using a
novel approach that significantly reduces the number of rules without affecting
the accuracy of the results.

An extensive experiment has been run to verify the impact of two param-
eters: the VPRSM threshold and the maximal number of intervals generated
during discretization. The experiment has shown that the quality of the results
is heavily affected by the maximal number of discretization intervals chosen.
The experiment has also demonstrated that the overall approach is useful for
obtaining rules that can predict up to 70% of the APU starter motor failures
(prediction of the component targeted in this research) with a very reasonable
rate of false alerts (less than 7%). This kind of models could lead to important
savings for an airline.

The research framework described in this paper can be used as a basis for our
future research in this area. Different discretization algorithms, weight functions
and attribute reduction techniques along with other forms of rule postprocessing
strategies can be experimented.
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