
Machine Learning Methods to Analyze Migration

Parameters in Parallel Genetic Algorithms

S.Muelas, J.M.Peña, V.Robles, A. LaTorre, P. de Miguel

CeSViMa, Computer Architecture Department, Universidad Politécnica de Madrid

smuelas@cesvima.upm.es, {jmpena,vrobles,atorre,pmiguel}@fi.upm.es

Abstract. Parallel genetic algorithms (PGA) are a powerful tool to deal with

complex optimization problems. Nevertheless, additional parameters are

required to configure properly their performance. The task to select these

parameters accurately is an optimization problem by itself. Any additional help

or hints to adjust the configuration parameters will lead both towards a more

efficient PGA application and to a better comprehension on how these

parameters affect optimization behavior and performance. This contribution

offers a preliminary analysis on some of the PGA parameters, like migration

frequency, topology, connectivity and number of islands and population sizes.

The study has been carried out after an intensive set of experiments to collect

PGA performance on several representative problems. The results have been

analyzed using machine learning methods to identify behavioral patterns that

are labeled as “good” PGA configurations. This study is a first approach to

generalize extracted patterns from different problems into a configuration hints

and suggested parameters.

Keywords: parallel genetic algorithms, migration parameters, migration

topologies, optimization problem hardness.

1. Introduction

Parallel genetic algorithms (PGA) are powerful optimizations tools for complex

real-world scenarios. Besides the straightforward parallel implementation of genetic

algorithms (master/slave models), PGA have been a subject of research by

themselves. Superlineal speed-ups reached by the most sophisticated PGA models

(cellular and island models) have opened interesting questions about their particular

behavior. Theoretical analysis [1] has been carried out to explain this behavior, but

these studies consider simplified models that are not used in practice when their

application is proposed for a complex optimization problem.

Genetic algorithm application requires many parameters to be configured; the

number of these parameters is greater in the case of PGA. This work presents a

preliminary study on the relationship between these parameters and the algorithm

performance. This study does not come from the theoretical point of view rather than

a more analytical perspective from the results generated by many experimental runs.

The methodology proposed on this contribution is the following: (i) identify

several PGA parameters to be analyzed, (ii) select a significant number of

2 S.Muelas, J.M.Peña, V.Robles, A. LaTorre, P. de Miguel

optimization problems, (iii) execute several times each experiment for every

combination of the selected parameters, (iv) compare the results obtained on each

optimization problem and label “good” performing configurations, and (v) analyze

each problem data separately to identify efficient configuration patterns and, then try

to combine the experimental data to extract general patterns common for different

optimization problems.

The work performed on this study answers interesting questions but opens even

more new questions to be analyzed in further detail.

The outline of this paper is as follows. Section 2 presents an introduction of PGA

taxonomy. In section 3, the experimental scenario is described in detail. Finally,

section 4, presents the obtained results together with the discussion and the most

relevant facts extracted from this analysis.

2. Parallel Genetic Algorithms

When tackling big optimization problems through genetic algorithms, the first

alternative that arises is the parallelization of the algorithms. This idea has been the

subject of many pages of literature about the so-called parallel genetic algorithms [1]

(or PGA).

There are different ways of carrying out this parallelization task, and there are all

included in taxonomy of different parallel approaches [2]:

 Master-slave models (also called centralized) are a more intuitive action line. It

consists on the parallel execution of the evaluation stage of the objective functions.

A central node executes the evolutionary algorithm, per se, including the necessary

operators, but subsequently divides the work of each evaluation to slave nodes.

 Island models (also called coarse-grain); do represent a differentiated algorithmic

structure. In this case, each node, with its own population, executes a different

evolutionary algorithm. The evolving independent populations interact with each

other through migration strategies that make the genetic information exchange

among populations possible. These strategies are subject to certain frequencies and

figures that represent the migration rates, and are also subject to a migration

topology that indicates which population (island) are individuals migrating from,

and to which other.

 Cellular models (also called fine-grain), can be considered as an extreme variant of

the previous ones: nodes populations have only one individual. In these cases, in

order to create new individuals genetic recombination need to select (from the

nearest nodes) the best individual to perform mating.

2.1 Migration in Island-Model Parallel Genetic Algorithms

An important parameter on the performance of PGA (specifically in

multipopulation models based on islands) is the migration strategy. This is configured

through different parameters [1]:

1. Migration frequency: How often (generations) are individuals sent?

Machine Learning Methods to Analyze Migration Parameters in Parallel Genetic

Algorithms 3

2. Migration rate: How many individuals migrate each time?

3. Immigrants’ selection: How is it decided the individuals which migrate?

4. Replacement policy: How is the combination among immigrants and the original

population made?

5. Migration topology: Where do individuals migrate to, which island sends

individuals to which other?

Upon studying these parameters [3] has proved that, even though subpopulations

with a smaller size risk of falling into local optimum, an appropriate migration

strategy can stop a suboptimum solution from dominating all populations. This

appropriate strategy must be adjusted in between the limits of a low interaction

(which would practically imply the execution of N independent algorithms) and an

excessive interaction (that would lead to the predominance of only one solution). A

correct configuration can help us obtain better results with fewer evaluations [4].

2.2 Connection Topologies

For this study, several dynamic topologies have been selected. These topologies

are a sample of the possible connection schemas in PGA, but in general covers both

static and dynamic approaches.

1. Static Hypercube Topology: In static topologies, the neighbors for each island are

fixed and cannot change during the generations. Among the different alternatives

for static configurations, the hypercube configuration has been selected.

Hypercubes can be modified according to the desired dimensionality, allowing

multiple connectivity (2, 3, … n connections per node). Ring, double ring, mesh

and other connection topologies are equivalent, at least in terms of structural

connectivity, although hypercube keeps minimal diameter.

2. Dynamic Random Topology: Dynamic topologies reconfigure their neighborhood

relationships at each migration step. The simplest strategy to figure out the

appropriate neighborhood is to select connection nodes based on randomness. This

topology has been selected as a reference point to compare other dynamic

topologies.

3. Dynamic Nearest Neighbor Topology: Before the migration of individuals, each

island determines the medoid of its population and broadcasts it to all other islands.

In order to determine the neighbor relationships, each island uses the medoids and

Gabriel relationship criterium. Grabriel neighborship is proposed in [5] and in

contrast with Delaunay neighbors, with high-dimension problems, the neighbors

can be computed efficiently. Two points i,j are Gabriel neighbors if there is no

other point in the hypersphere with diameter:

 (1)

Each island selects then the nearest Gabriel neighbors until the topology degree is

reached. In case there were not enough Gabriel neighbors to reach the degree, the rest

of the neighbors are completed with the nearest (not neighbors) islands.

4. Dynamic Furthest Neighbor Topology: This topology is similar to the previous

one. Each island calculates its medoid and broadcasts it to the rest of the system so

that each one can compute its Gabriel neighbors. The difference in this case, is that

4 S.Muelas, J.M.Peña, V.Robles, A. LaTorre, P. de Miguel

the selected neighbors from the set of all Gabriel neighbors, are the furthest ones.

Also, when not enough Gabriel neighbors are available, the completion of

neighbors is based on the furthest not-neighbors ones.

5. Hybrid Topology: This topology is composed from a static hypercube topology

and a dynamic nearest neighbor topology both with half of the degree of the hybrid

one. If the topology is not a multiple of two, the integer part of the division by two

is assigned to the dynamic part and the rest to the static part. For example with a

degree of 3, the hybrid topology will have a static topology of degree two and a

dynamic nearest neighbor topology of degree one. This implementation will allow

us to analyze the beneficial effects of combining both static and dynamic

topological approaches.

3. Experimental Scenario

Studies on the correct configuration of PGA have been made by different authors.

In [6], the performance of synchronous and asynchronous PGAs is studied, for the

case of given problem, studying the results for the algorithm model (steady-

state/generational), fine/coarse grain and the number of processors. Nevertheless, this

study was carried out with for single problem.

[7] presents an interesting analysis of the migration frequency, considering also

different migration sizes (number of individuals), but keeping the same topology and

connectivity. The experiments have been repeated several times for statistical

significance. The authors used specially created functions as well as standard test

functions (Rosenbrock, Schwefel, Rastrigin, and Griewank).

Relevant parameters have been selected, based on [2] their reported influence in

PGA performance, and we have run several tests on a set of problems varying only

these parameters between a representative collection of values:

1. Topology: Static Hypercube (dimensions=2, 3, and 4), Dynamic Random,

Dynamic Nearest Neighbor, Dynamic Furthest Neighbor, and Hybrid Topology.

2. Number of islands: 4, 8 and 16 (keeping the same overall population).

3. Migration frequency: Migrations happen on every 5 or 10 generations.

3.1 Algorithm

The algorithm tested in this study is based on the canonical PGA [1] and for the

running of these tests we have fixed some of its parameters:

1. Initialization: Random uniform initialization of the population.

2. Selection: Tournament-based.

3. Crossover probability: 1.0 / Mutation probability: 0.01

4. Full elitism: The best set of individuals of the next generation is composed from

both the parents and the children of the actual generation.

5. Migration rate: Top 10% / Replacement policy: Replace the worst individuals of

the host population only if the immigrants have better scores.

6. Convergence: Fixed number of generations, estimated as 80% of the required

generations in an average configuration combination.

Machine Learning Methods to Analyze Migration Parameters in Parallel Genetic

Algorithms 5

3.2 Problems

Problems have been selected with the idea to represent different optimization

difficulties in both real-valued and binary representations. The problems range from

simple scenarios to multimodal, epistatic and deceptive features. For this study, the

following problems have been proposed: Griewank, Rastrigin, Sphere, Deceptive,

Two-peaks, Holland’s Royal-Road, Maxbit and Travelling Salesman Problem (TSP).

1. Griewank: It is a classical minimization multimodal problem with a local

optimum at (0…0) and several local optima that makes traditional search

algorithms converge in the wrong direction.

2. Rastrigin: Similar to the problem above, this function is a minimization

multimodal problem with a local optimum at (0…0) and several concentrated

local optima. This function is a fairly difficult problem due to its large search

space and its large number of local minima.

3. Sphere: The simplest real problem analyzed, the sphere problem, is a relative

easy optimization case, but it is useful to develop performance comparisons.

4. Deceptive: This deceptive maximization problem [8] has 2
n/2 -1

 local optima and

only 1 global optimum. One important feature that makes deceptive functions

hard to solve is that the attractor around the global optimum is small. Deceptive

functions cannot be efficiently solved by mutation only; however, an arbitrary

recombination operator will not work in this case either. Here it is necessary that

we learn the linkage between pairs of variables that contribute to the fitness

through the same basis function.

5. Two-peaks: The n-dimensional two-peaks function [8] is also a maximization

problem which haves one global optimum at (0.1,…,0.1) and several 2
n
 local

optima for an n-dimensional function. Two-peak functions are practically

unsolvable by mutation only, because the chances of hitting the attractor around

the global optimum decrease exponentially with the size of the problem. On the

other hand, recombination allows fast and reliable solution of two-peak functions

by exploiting their decomposition and processing many partial solutions

simultaneously.

6. Holland’s Royal-Road: The Royal Road functions were designed by Holland

and coworkers to highlight the building block approach the GA was thought to

take in problem solving. We have used the Holland’s 1993 ICGA version of the

Royal Road Problem [9].

7. Maxbit problem: It is a classical easy binary problem for GA where the

objective function tries to maximize the number of 1’s.

8. Travelling Salesman Problem (TSP): it is typical combinatorial problem used

in the optimization literature. Given a finite number of 'cities', the objective is to

find the shortest way of visiting all the cities in a Hamiltonian graph. There are

different representations to deal with optimization problems using GAs [10], we

have selected order representation (also called ranking representation. This

coding assigns one (real) value to each of the cities. The cities are then sorted by

this value (from lowest to highest value). This ordered list of cities defines the

tour. The main advantage of this representation is that traditional crossover and

mutation operators can be used, in our case we restrict the analysis to real-valued

and binary representations.

6 S.Muelas, J.M.Peña, V.Robles, A. LaTorre, P. de Miguel

In order to do the tests in the same conditions, we have fixed the following

parameters. The objective of this study is not to optimize these parameters, they have

been proposed as feasible ones, considering only the influence of the abovementioned

parameters.

Table 1. Dimension, overall population size and problem-specific parameters.

Problem Dimension Generations Pop. Size Cross. Op. Mut. Op.

Griewank 100 400 512 Blend Gaussian

Rastrigin 100 400 512 Blend Gaussian

Sphere 100 400 512 Blend Gaussian

Deceptive 15 400 512 Blend Gaussian

Two-Peaks 25 400 512 Blend Gaussian

Royal-Road 209 400 512 Two Points Bit Flip

Maxbit 700 400 512 Two Points Bit Flip

TSP 48 400 512 Blend Gaussian

3.3 Experiments Procedure

For each of the proposed problems the following experimental procedure is

performed: (i) all the combinations of the input parameters are considered (60

different combinations), (ii) for each combination, 50 independent executions have

been ran and the we record the fitness obtained when the maximum number of

iterations is reached, (iii) the fitness results obtained for each one of the combinations

of parameters is compared pair wise, using a Wilcoxon non parametric t-test with

p<0.001. If one combination of parameters happens to be better than another

(according to the t-test) the winning combination is granted with +1 wins and the

losing combination penalized with -1 wins. As all the combinations are compared

against each other, they are ranked (depending on how many other combinations are

better/worse that it is).

Once all the combination of parameters are ranked, we label them as “high

performance configurations” if wins>=10 and as “low performance

configurations” if wins<=-10.

4. Analyzing the Results

Once experimental results have been labeled, each individual problem has been

analyzed using a C5.0 rule-induction algorithm (ten fold cross-validation). The results

on table 2 show the rules that classify high and low performance configurations,

including rule support and accuracy. Most of the rules are based on migration

frequency and the number of islands (it should be mentioned that as the global

population is fixed, the higher the number of islands is the smaller the population per

island becomes). Topology and connectivity paremeters are not considered in most of

the rules and they only appear in low support rules.

Another relevant aspect comes from the existence of contradictory rules that identify

either HIGH or LOW performance configurations depending on the problem (E.g

Machine Learning Methods to Analyze Migration Parameters in Parallel Genetic

Algorithms 7

Royal Road and TSP High performance rule #1 vs. Griewank low performance rule

#2).

Table 2. Induced rules from individual problems (support, accuracy)

Problems High Performance Low Performance

Griewank 1. #islands=4 (27%,1.0)

2. frequency=5 and #islands<=8
(32%,0.842)

1. #islands=16 (37%,0.818)

2. frequency=10 and #islands>4 (37%,0.72)

Rastrigin 1. frequency=5 and connectivity>2

(32%,1.0)
2. frequency=5 and #islands<8

(32%, 0.947)

1.frequency=10 (50%,1.0)

Sphere 1. frequency=5 (50%,0.80) 1. #islands=16 and frequency=10 (18%,1.0)
2. connectivity=2 and frequency=10 (18%, 1.0)

3. #islands>4 and frequency=10 and
connectivity<=3 (23%, 0.929)

Deceptive 1. #islands=16 (37%,1.0) 1.#islands=4 (27%,0.875)

2.#islands<=8 and topology=random (17%, 0.8)

Two-peaks 1. frequency=5 (50%, 0.73) 1.frequency=10 (50%, 0.767)

Royal

Road

1. frequency=10 and #islands>4

(37%,0.72)

1. frequency=5 and #islands<=8 (32%,0.73)

Maxbit 1. frequency=10 and #islands<=8

(32%,1.0)

2. #islands=4 and connectivity=2 (17%,
0.9)

1. frequency=5 and connectivity>2 (32%,1.0)

2. #islands>8 (37%, 0.818)

TSP 1. frequency=10 and #islands>4

(37%,0.636)

1. #islands=4 (27%,1.0)

2. frequency=5 (50%,0.667)

4.1 Problem Characterization

PGAs show different behavior patterns on each different problem. The results

extracted before are a clear example of difficulties to figure out a general rule on the

problem characterization.

The proposal that we are tabling is the following: with measures traditionally used

to evaluate genetic algorithm hardness, it is now possible to label problems (with their

parameters) to have extra information extend the inducted analysis performed before.

Studies carried out by [11] on the difficulty of different optimization problems,

measure the complexity of the problem as the correlation between fitness values and

the distance in the solutions space (fitness-distance correlation, or FDC). In the case

of real-value problems Manhattan distance has been used, and binary encodings are

measured using Hamming.

FDC requires information about the global optimum and its value. [12] has proved

that the correlation metric between distance and fitness can also be applied on the

individuals of a population without knowing the global optimum. This approach uses

the best fitness value in the population as a reference. This approach is called local

FDC (or LFDC). This approximation has been considered as an evaluation tool for

the initialization processes quality. There is a lot of literature on algorithms that

calculate the difficulty of a problem for an evolutionary algorithm. One interesting

8 S.Muelas, J.M.Peña, V.Robles, A. LaTorre, P. de Miguel

example of this is [13]'s study; as it uses the FDC and other metrics (e.g. epistasis

variance) for the purpose of generating problem equivalence classes. This work

presents the measures used to characterize problem difficulty types.

Recently, [14] compares predictive and posterior measures of problem difficulty.

The results show that there are cases in which predictive measures are limited in their

accuracy, but they are a helpful tool to guess problem hardness.

On this contribution, we propose an additional difficulty measure. We have named

this measure fitness increment. It scales the fitness of a given population from 0 to 1.

Then, the difference between the fitness of the best children minus the fitness of the

best parent is calculated. The fitness of the best children is also scaled according to

the same mechanism used with its parents (it could make scaled fitness values greater

than 1 if the offspring is better than the overall best value of its parents’ generation).

This measure does not consider landscape difficulties, directly. It takes into account

selection, crossover and mutation operators as well as their respective parameters.

4.2 General Discussion

In order to include difficulty measures, to characterize each of the problems, a

random uniform population of 3000 individuals has been created. With all these

individuals, FDC, LFDC and fitness_increment has been computed.

Table 3. Difficulty measures obtained for a random sample of 3000 individuals.

 FDC LFDC Fitness increment

Royal road -0.133 0.006 -0.00376

Maxbit 1 0.18 0.00469

TSP 0.002 -0.009 -0.027

Griewank 0.96 0.46 0.15

Sphere 1.0 0.44 0.148

Rastrigin 0.72 0.32 0.08

Deceptive -0.42 -0.01 -0.0042

Two-Peaks 0.19 0.21 0.007

A correlation analysis has been performed between the three metrics, resulting a

higher correlation rate that validates Kallel’s hypothesis [12] (FDC and LFDC),

unexpectedly the only exception is Maxbit, but LFDC using 700-bit maxbit problem

with uniform initialization would generate initial individuals with an average of 700/2

1’s (really poor performance after initialization). There exists also a higher correlation

result between FDC and fitness_increment. This is considerably interesting because

FDC measures fitness landscape properties, while fitness_increment deals with the

combination of the selection, crossover and mutation operators.

Then all the 60 parameters combinations taken from each problem are appended on

a single table, including the columns that represent the 3 difficulty measures (FDC,

LFDC, fitness increment).

This new data table is analyzed using also C5.0 (10 fold cross-validation). The

following induced rules are extracted:

Machine Learning Methods to Analyze Migration Parameters in Parallel Genetic

Algorithms 9

Table 4. General rules with support and accuracy (Sup./Acc.).

Conditions Perf. Sup./Acc.

fitness_increment>0.00468 and frequency=5 and #islands<=8 High 16%/0.934

fitness_increment in (0.00468,0.148] and frequency=5 and connectivity>2 High 12%/0.877

fitness_increment<=0.00468 and frequency=10 High 25%/0.55

fitness_increment in (0.00468,0.148] and frequency=10 Low 19%/0.844

fitness_ increment>0.00468 and frequency=10 and #islands>4 Low 18%/0.818

fitness_increment<=0.00468 and frequency=5 Low 25%/0.542

Fitness incremented is selected as the best measure to characterize the problem.

According to this measure, Royal Road, TSP and Deceptive are considered difficult

problems (fitness_increment<=0.00468), and the rest of problems are easy problems

(or, at least, their genetic operators are more appropriate to improve the results). For

the easier problems, good configurations should have frequent migration rates and

either not too many islands or good connectivity. Difficult problems, instead, require

less frequent migrations (although, this rule is not very accurate).

The presence of the number of islands in the extracted rules should be interpreted

under two possible perspectives, the obvious number of different populations

(dwelling the islands), and also the population size in each of them. The experiments

performed in this study have always used a fixed population size divided among the

islands. In this sense fewer islands means also more individuals for each of them.

Complementarily, another analysis has been performed using neural networks (1

hidden layer with 20 neurons, alpha 0.9, eta range [0.01, 0.1]). This analysis shows

that the parameters with the highest relative significance are: frequency, #islands and

the three difficulty measures (leaded by fitness_increment).

It is remarkable to realize that topologies have really minimal influence in the

algorithm performance. This validates the results presented by Cantú-Paz [1], in

which mention than topology could be generalized as the connectivity and diameter of

the proposed island connections. Nevertheless, connectivity has only a marginal

influence in the performance, compared with the number of islands and the migration

frequency.

The general results presented by [7] also indicate that moderate migration intervals

with a small migration size are better than large number of individuals migrated after

more generations. In our work we proof that this rule is not valid in general, and only

with simple problems it would effective. The two problems in common in both [7]

and our study, Griewank and Rastrigin, have been considered “easy” by the

fitness_increment measure and the intervals induced by the machine learning

algorithm.

The conclusions derived from this preliminary study have shown relevant patterns

that identify better configurations in PGAs. Although this early results are quite

promising further analysis should be carried out including more parameters

(migration rate, overall population size, more topologies and selection and

replacement policies). Additionally, more values from the already considered

parameters could be included. The sample of the selected problems could be also

extended with more real world and synthetic problems. The results achieved by this

study have required 24000 executions ran on Magerit System belonging to the

CeSViMa Supercomputing Center; future work would require much more executions

and also considerable computational requirements.

10 S.Muelas, J.M.Peña, V.Robles, A. LaTorre, P. de Miguel

References

1. Cantú-Paz, E. (1999). Designing Efficient and Accurate Parallel Genetic Algorithms. PhD

thesis. University of Illinois at Urbana-Champaign.

2. M. Nowostawski and R. Poli. Parallel genetic algorithm taxonomy. In L. C. Jain, editor,

Proceedings of the Third International conference on knowledge-based intelligent

information engineering systems (KES'99), pages 88-92, Adelaide, August 1999

3. Chrisila C. Petty and Michael R. Leuze. A theoretical investigation of a parallel genetic

algorithm. In Proceedings of the third international conference on Genetic algorithms,

pages 398-405, 1989

4. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On

separability, population size and convergence. Journal of Computing and Information

Technology 7 33-47. 1999

5. Jaromczyk, J.W. and Toussaint, G.T: Relative Neighborhood Graphs And Their Relatives.

Proceedings IEEE Vol 80, pages 1502-1517, 1992

6. E. Alba, J.M. Troya, An Analysis of Synchronous and Asynchronous Parallel Distributed

Genetic Algorithms with Structured and Panmictic Islands, Parallel and Distributed

Processing, J. Rolim et al. (eds.), Lecture Notes in Computer Science 1586, pp. 248-256.

Springer-Verlag, 1999

7. Zbigniew Skolicki and Kenneth De Jong. The influence of migration sizes and intervals on

island models. In GECCO ’05: Proceedings of the 2005 conference on Genetic and

evolutionary computation, pages 1295–1302, 2005.

8. Pelikan, M., Goldberg, D. E., and Tsutsui, S. 2003. Getting the best of both worlds:

discrete and continuous genetic and evolutionary algorithms in concert. Inf. Sci. 156, 3-4

(Nov. 2003), 147-171.

9. J.H. Holland. Royal Road Functions. Internet Genetic Algorithms Digest, 7(22), 1993.

10. P. Larrañaga, C. Kuijpers, R. Murga, I. Inza, S. Dizdarevich. Genetic algorithms for the

travelling salesman problem: A review of representations and operators. Artificial

Intelligence Review 13, pages 129-170. 1999

11. T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty for

genetic algorithms. In Larry Eshelman, editor, Proceedings of the Sixth International

Conference on Genetic Algorithms, pages 184–192, San Francisco, CA, 1995. Morgan

Kaufmann.

12. Leila Kallel, Marc Schoenauer. Alternative Random Initialization in Genetic Algorithms.

ICGA 1997: 268-275

13. Bart Naudts, Leila Kallel. Comparison of Summary Statistics of Fitness Landscapes. IEEE

Trans. Evol. Comp. V.4.1:1--15, 2000

14. J. He, C. Reeves, and X. Yao. A Discussion on posterior and prior measures of problem

difficulties. In PPSN IX Workshop on Evolutionary Algorithms - Bridging Theory and

Practice, 2006.

