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Abstract. Parallel genetic algorithms (PGA) are a powerful tool to deal with 

complex optimization problems. Nevertheless, additional parameters are 

required to configure properly their performance. The task to select these 

parameters accurately is an optimization problem by itself. Any additional help 

or hints to adjust the configuration parameters will lead both towards a more 

efficient PGA application and to a better comprehension on how these 

parameters affect optimization behavior and performance. This contribution 

offers a preliminary analysis on some of the PGA parameters, like migration 

frequency, topology, connectivity and number of islands and population sizes. 

The study has been carried out after an intensive set of experiments to collect 

PGA performance on several representative problems. The results have been 

analyzed using machine learning methods to identify behavioral patterns that 

are labeled as “good” PGA configurations. This study is a first approach to 

generalize extracted patterns from different problems into a configuration hints 

and suggested parameters.  

Keywords: parallel genetic algorithms, migration parameters, migration 

topologies, optimization problem hardness. 

1. Introduction 

Parallel genetic algorithms (PGA) are powerful optimizations tools for complex 

real-world scenarios. Besides the straightforward parallel implementation of genetic 

algorithms (master/slave models), PGA have been a subject of research by 

themselves. Superlineal speed-ups reached by the most sophisticated PGA models 

(cellular and island models) have opened interesting questions about their particular 

behavior. Theoretical analysis [1] has been carried out to explain this behavior, but 

these studies consider simplified models that are not used in practice when their 

application is proposed for a complex optimization problem. 

Genetic algorithm application requires many parameters to be configured; the 

number of these parameters is greater in the case of PGA. This work presents a 

preliminary study on the relationship between these parameters and the algorithm 

performance. This study does not come from the theoretical point of view rather than 

a more analytical perspective from the results generated by many experimental runs.   

The methodology proposed on this contribution is the following: (i) identify 

several PGA parameters to be analyzed, (ii) select a significant number of 
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optimization problems, (iii) execute several times each experiment for every 

combination of the selected parameters, (iv) compare the results obtained on each 

optimization problem and label “good” performing configurations, and (v) analyze 

each problem data separately to identify efficient configuration patterns and, then try 

to combine the experimental data to extract general patterns common for different 

optimization problems.  

The work performed on this study answers interesting questions but opens even 

more new questions to be analyzed in further detail.     

The outline of this paper is as follows. Section 2 presents an introduction of PGA 

taxonomy. In section 3, the experimental scenario is described in detail. Finally, 

section 4, presents the obtained results together with the discussion and the most 

relevant facts extracted from this analysis. 

2. Parallel Genetic Algorithms 

When tackling big optimization problems through genetic algorithms, the first 

alternative that arises is the parallelization of the algorithms. This idea has been the 

subject of many pages of literature about the so-called parallel genetic algorithms [1] 

(or PGA).  

There are different ways of carrying out this parallelization task, and there are all 

included in taxonomy of different parallel approaches [2]: 

 Master-slave models (also called centralized) are a more intuitive action line. It 

consists on the parallel execution of the evaluation stage of the objective functions. 

A central node executes the evolutionary algorithm, per se, including the necessary 

operators, but subsequently divides the work of each evaluation to slave nodes. 

 Island models (also called coarse-grain); do represent a differentiated algorithmic 

structure. In this case, each node, with its own population, executes a different 

evolutionary algorithm. The evolving independent populations interact with each 

other through migration strategies that make the genetic information exchange 

among populations possible. These strategies are subject to certain frequencies and 

figures that represent the migration rates, and are also subject to a migration 

topology that indicates which population (island) are individuals migrating from, 

and to which other. 

 Cellular models (also called fine-grain), can be considered as an extreme variant of 

the previous ones: nodes populations have only one individual. In these cases, in 

order to create new individuals genetic recombination need to select (from the 

nearest nodes) the best individual to perform mating. 

2.1 Migration in Island-Model Parallel Genetic Algorithms 

An important parameter on the performance of PGA (specifically in 

multipopulation models based on islands) is the migration strategy. This is configured 

through different parameters [1]: 

1. Migration frequency: How often (generations) are individuals sent? 
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2. Migration rate: How many individuals migrate each time? 

3. Immigrants’ selection: How is it decided the individuals which migrate? 

4. Replacement policy: How is the combination among immigrants and the original 

population made? 

5. Migration topology: Where do individuals migrate to, which island sends 

individuals to which other? 

Upon studying these parameters [3] has proved that, even though subpopulations 

with a smaller size risk of falling into local optimum, an appropriate migration 

strategy can stop a suboptimum solution from dominating all populations. This 

appropriate strategy must be adjusted in between the limits of a low interaction 

(which would practically imply the execution of N independent algorithms) and an 

excessive interaction (that would lead to the predominance of only one solution). A 

correct configuration can help us obtain better results with fewer evaluations [4]. 

2.2 Connection Topologies 

For this study, several dynamic topologies have been selected. These topologies 

are a sample of the possible connection schemas in PGA, but in general covers both 

static and dynamic approaches. 

1. Static Hypercube Topology: In static topologies, the neighbors for each island are 

fixed and cannot change during the generations. Among the different alternatives 

for static configurations, the hypercube configuration has been selected. 

Hypercubes can be modified according to the desired dimensionality, allowing 

multiple connectivity (2, 3, … n connections per node). Ring, double ring, mesh 

and other connection topologies are equivalent, at least in terms of structural 

connectivity, although hypercube keeps minimal diameter. 

2. Dynamic Random Topology: Dynamic topologies reconfigure their neighborhood 

relationships at each migration step. The simplest strategy to figure out the 

appropriate neighborhood is to select connection nodes based on randomness. This 

topology has been selected as a reference point to compare other dynamic 

topologies. 

3. Dynamic Nearest Neighbor Topology: Before the migration of individuals, each 

island determines the medoid of its population and broadcasts it to all other islands. 

In order to determine the neighbor relationships, each island uses the medoids and 

Gabriel relationship criterium. Grabriel neighborship is proposed in [5] and in 

contrast with Delaunay neighbors, with high-dimension problems, the neighbors 

can be computed efficiently. Two points i,j are Gabriel neighbors if there is no 

other point in the hypersphere with diameter: 

 (1) 

Each island selects then the nearest Gabriel neighbors until the topology degree is 

reached. In case there were not enough Gabriel neighbors to reach the degree, the rest 

of the neighbors are completed with the nearest (not neighbors) islands. 

4. Dynamic Furthest Neighbor Topology: This topology is similar to the previous 

one. Each island calculates its medoid and broadcasts it to the rest of the system so 

that each one can compute its Gabriel neighbors. The difference in this case, is that 
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the selected neighbors from the set of all Gabriel neighbors, are the furthest ones. 

Also, when not enough Gabriel neighbors are available, the completion of 

neighbors is based on the furthest not-neighbors ones. 

5. Hybrid Topology: This topology is composed from a static hypercube topology 

and a dynamic nearest neighbor topology both with half of the degree of the hybrid 

one. If the topology is not a multiple of two, the integer part of the division by two 

is assigned to the dynamic part and the rest to the static part. For example with a 

degree of 3, the hybrid topology will have a static topology of degree two and a 

dynamic nearest neighbor topology of degree one. This implementation will allow 

us to analyze the beneficial effects of combining both static and dynamic 

topological approaches. 

3. Experimental Scenario 

Studies on the correct configuration of PGA have been made by different authors. 

In [6], the performance of synchronous and asynchronous PGAs is studied, for the 

case of given problem, studying the results for the algorithm model (steady-

state/generational), fine/coarse grain and the number of processors. Nevertheless, this 

study was carried out with for single problem. 

[7] presents an interesting analysis of the migration frequency, considering also 

different migration sizes (number of individuals), but keeping the same topology and 

connectivity. The experiments have been repeated several times for statistical 

significance. The authors used specially created functions as well as standard test 

functions (Rosenbrock, Schwefel, Rastrigin, and Griewank). 

Relevant parameters have been selected, based on [2] their reported influence in 

PGA performance, and we have run several tests on a set of problems varying only 

these parameters between a representative collection of values: 

1. Topology: Static Hypercube (dimensions=2, 3, and 4), Dynamic Random, 

Dynamic Nearest Neighbor, Dynamic Furthest Neighbor, and Hybrid Topology. 

2. Number of islands: 4, 8 and 16 (keeping the same overall population). 

3. Migration frequency: Migrations happen on every 5 or 10 generations.  

3.1 Algorithm 

The algorithm tested in this study is based on the canonical PGA [1] and for the 

running of these tests we have fixed some of its parameters: 

1. Initialization: Random uniform initialization of the population. 

2. Selection: Tournament-based. 

3. Crossover probability: 1.0 / Mutation probability: 0.01 

4. Full elitism: The best set of individuals of the next generation is composed from 

both the parents and the children of the actual generation. 

5. Migration rate: Top 10% / Replacement policy: Replace the worst individuals of 

the host population only if the immigrants have better scores. 

6. Convergence: Fixed number of generations, estimated as 80% of the required 

generations in an average configuration combination. 
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3.2 Problems 

Problems have been selected with the idea to represent different optimization 

difficulties in both real-valued and binary representations. The problems range from 

simple scenarios to multimodal, epistatic and deceptive features. For this study, the 

following problems have been proposed: Griewank, Rastrigin, Sphere, Deceptive, 

Two-peaks, Holland’s Royal-Road, Maxbit and Travelling Salesman Problem (TSP).  

1. Griewank: It is a classical minimization multimodal problem with a local 

optimum at (0…0) and several local optima that makes traditional search 

algorithms converge in the wrong direction. 

2. Rastrigin: Similar to the problem above, this function is a minimization 

multimodal problem with a local optimum at (0…0) and several concentrated 

local optima. This function is a fairly difficult problem due to its large search 

space and its large number of local minima. 

3. Sphere: The simplest real problem analyzed, the sphere problem, is a relative 

easy optimization case, but it is useful to develop performance comparisons. 

4. Deceptive: This deceptive maximization problem [8] has 2
n/2 -1

 local optima and 

only 1 global optimum. One important feature that makes deceptive functions 

hard to solve is that the attractor around the global optimum is small. Deceptive 

functions cannot be efficiently solved by mutation only; however, an arbitrary 

recombination operator will not work in this case either. Here it is necessary that 

we learn the linkage between pairs of variables that contribute to the fitness 

through the same basis function.  

5. Two-peaks: The n-dimensional two-peaks function [8] is also a maximization 

problem which haves one global optimum at (0.1,…,0.1) and several 2
n
 local 

optima for an n-dimensional function. Two-peak functions are practically 

unsolvable by mutation only, because the chances of hitting the attractor around 

the global optimum decrease exponentially with the size of the problem. On the 

other hand, recombination allows fast and reliable solution of two-peak functions 

by exploiting their decomposition and processing many partial solutions 

simultaneously. 

6. Holland’s Royal-Road: The Royal Road functions were designed by Holland 

and coworkers to highlight the building block approach the GA was thought to 

take in problem solving. We have used the Holland’s 1993 ICGA version of the 

Royal Road Problem [9]. 

7. Maxbit problem: It is a classical easy binary problem for GA where the 

objective function tries to maximize the number of 1’s.   

8. Travelling Salesman Problem (TSP): it is typical combinatorial problem used 

in the optimization literature. Given a finite number of 'cities', the objective is to 

find the shortest way of visiting all the cities in a Hamiltonian graph. There are 

different representations to deal with optimization problems using GAs [10], we 

have selected order representation (also called ranking representation. This 

coding assigns one (real) value to each of the cities. The cities are then sorted by 

this value (from lowest to highest value). This ordered list of cities defines the 

tour. The main advantage of this representation is that traditional crossover and 

mutation operators can be used, in our case we restrict the analysis to real-valued 

and binary representations. 
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In order to do the tests in the same conditions, we have fixed the following 

parameters. The objective of this study is not to optimize these parameters, they have 

been proposed as feasible ones, considering only the influence of the abovementioned 

parameters. 

Table 1. Dimension, overall population size and problem-specific parameters. 

Problem Dimension Generations Pop. Size Cross. Op. Mut. Op. 

Griewank 100 400 512 Blend  Gaussian 

Rastrigin 100 400 512 Blend  Gaussian 

Sphere 100 400 512 Blend  Gaussian 

Deceptive 15 400 512 Blend  Gaussian 

Two-Peaks 25 400 512 Blend  Gaussian 

Royal-Road 209 400 512 Two Points Bit Flip 

Maxbit 700 400 512 Two Points Bit Flip 

TSP 48 400 512 Blend  Gaussian 

3.3 Experiments Procedure 

For each of the proposed problems the following experimental procedure is 

performed: (i) all the combinations of the input parameters are considered (60 

different combinations), (ii) for each combination, 50 independent executions have 

been ran and the we record the fitness obtained when the maximum number of 

iterations is reached, (iii) the fitness results obtained for each one of the combinations 

of parameters is compared pair wise, using a Wilcoxon non parametric t-test with 

p<0.001. If one combination of parameters happens to be better than another 

(according to the t-test) the winning combination is granted with +1 wins and the 

losing combination penalized with -1 wins. As all the combinations are compared 

against each other, they are ranked (depending on how many other combinations are 

better/worse that it is).  

Once all the combination of parameters are ranked, we label them as “high 

performance configurations” if wins>=10 and as “low performance 

configurations” if wins<=-10.  

4. Analyzing the Results 

Once experimental results have been labeled, each individual problem has been 

analyzed using a C5.0 rule-induction algorithm (ten fold cross-validation). The results 

on table 2 show the rules that classify high and low performance configurations, 

including rule support and accuracy. Most of the rules are based on migration 

frequency and the number of islands (it should be mentioned that as the global 

population is fixed, the higher the number of islands is the smaller the population per 

island becomes). Topology and connectivity paremeters are not considered in most of 

the rules and they only appear in low support rules. 

Another relevant aspect comes from the existence of contradictory rules that identify 

either HIGH or LOW performance configurations depending on the problem (E.g 
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Royal Road and TSP High performance rule #1 vs. Griewank low performance rule 

#2).  

Table 2. Induced rules from individual problems (support, accuracy) 

Problems High Performance Low Performance 

Griewank 1. #islands=4 (27%,1.0) 

2. frequency=5 and #islands<=8 
(32%,0.842) 

1. #islands=16 (37%,0.818) 

2. frequency=10 and #islands>4 (37%,0.72) 

Rastrigin 1. frequency=5 and connectivity>2 

(32%,1.0 ) 
2. frequency=5 and #islands<8  

(32%, 0.947) 

1.frequency=10 (50%,1.0) 

Sphere 1. frequency=5 (50%,0.80) 1. #islands=16 and  frequency=10 (18%,1.0) 
2. connectivity=2 and frequency=10 (18%, 1.0) 

3. #islands>4 and frequency=10 and 
connectivity<=3 (23%, 0.929) 

Deceptive 1. #islands=16 (37%,1.0) 1.#islands=4 (27%,0.875) 

2.#islands<=8 and topology=random (17%, 0.8) 

Two-peaks 1. frequency=5 (50%, 0.73) 1.frequency=10 (50%, 0.767) 

Royal 

Road 

1. frequency=10 and #islands>4 

(37%,0.72) 

1. frequency=5 and  #islands<=8 (32%,0.73) 

Maxbit 1. frequency=10 and #islands<=8 

(32%,1.0) 

2. #islands=4 and connectivity=2 (17%, 
0.9) 

1. frequency=5 and connectivity>2 (32%,1.0) 

2. #islands>8 (37%, 0.818) 

TSP 1. frequency=10 and #islands>4 

(37%,0.636) 

1. #islands=4 (27%,1.0) 

2. frequency=5 (50%,0.667) 

4.1 Problem Characterization 

PGAs show different behavior patterns on each different problem. The results 

extracted before are a clear example of difficulties to figure out a general rule on the 

problem characterization.  

The proposal that we are tabling is the following: with measures traditionally used 

to evaluate genetic algorithm hardness, it is now possible to label problems (with their 

parameters) to have extra information extend the inducted analysis performed before. 

Studies carried out by [11] on the difficulty of different optimization problems, 

measure the complexity of the problem as the correlation between fitness values and 

the distance in the solutions space (fitness-distance correlation, or FDC). In the case 

of real-value problems Manhattan distance has been used, and binary encodings are 

measured using Hamming. 

FDC requires information about the global optimum and its value. [12] has proved 

that the correlation metric between distance and fitness can also be applied on the 

individuals of a population without knowing the global optimum. This approach uses 

the best fitness value in the population as a reference. This approach is called local 

FDC (or LFDC).  This approximation has been considered as an evaluation tool for 

the initialization processes quality. There is a lot of literature on algorithms that 

calculate the difficulty of a problem for an evolutionary algorithm. One interesting 
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example of this is [13]'s study; as it uses the FDC and other metrics (e.g. epistasis 

variance) for the purpose of generating problem equivalence classes. This work 

presents the measures used to characterize problem difficulty types. 

Recently, [14] compares predictive and posterior measures of problem difficulty. 

The results show that there are cases in which predictive measures are limited in their 

accuracy, but they are a helpful tool to guess problem hardness.  

On this contribution, we propose an additional difficulty measure. We have named 

this measure fitness increment. It scales the fitness of a given population from 0 to 1. 

Then, the difference between the fitness of the best children minus the fitness of the 

best parent is calculated. The fitness of the best children is also scaled according to 

the same mechanism used with its parents (it could make scaled fitness values greater 

than 1 if the offspring is better than the overall best value of its parents’ generation). 

This measure does not consider landscape difficulties, directly. It takes into account 

selection, crossover and mutation operators as well as their respective parameters.  

4.2 General Discussion 

In order to include difficulty measures, to characterize each of the problems, a 

random uniform population of 3000 individuals has been created. With all these 

individuals, FDC, LFDC and fitness_increment has been computed.  

Table 3. Difficulty measures obtained for a random sample of 3000 individuals. 

 FDC LFDC Fitness increment 

Royal road -0.133 0.006 -0.00376 

Maxbit 1 0.18 0.00469 

TSP 0.002 -0.009 -0.027 

Griewank 0.96 0.46 0.15 

Sphere 1.0 0.44 0.148 

Rastrigin 0.72 0.32 0.08 

Deceptive -0.42 -0.01 -0.0042 

Two-Peaks 0.19 0.21 0.007 

A correlation analysis has been performed between the three metrics, resulting a 

higher correlation rate that validates Kallel’s hypothesis [12] (FDC and LFDC), 

unexpectedly the only exception is Maxbit, but LFDC using 700-bit maxbit problem 

with uniform initialization would generate initial individuals with an average of 700/2 

1’s (really poor performance after initialization). There exists also a higher correlation 

result between FDC and fitness_increment. This is considerably interesting because 

FDC measures fitness landscape properties, while fitness_increment deals with the 

combination of the selection, crossover and mutation operators.   

Then all the 60 parameters combinations taken from each problem are appended on 

a single table, including the columns that represent the 3 difficulty measures (FDC, 

LFDC, fitness increment).  

This new data table is analyzed using also C5.0 (10 fold cross-validation). The 

following induced rules are extracted: 
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Table 4. General rules with support and accuracy (Sup./Acc.). 

Conditions Perf. Sup./Acc. 

fitness_increment>0.00468 and frequency=5 and #islands<=8 High 16%/0.934 

fitness_increment in (0.00468,0.148] and frequency=5 and connectivity>2 High 12%/0.877 

fitness_increment<=0.00468 and frequency=10 High 25%/0.55 

fitness_increment in (0.00468,0.148]  and frequency=10 Low 19%/0.844 

fitness_ increment>0.00468 and frequency=10 and #islands>4 Low 18%/0.818 

fitness_increment<=0.00468 and frequency=5 Low 25%/0.542 

Fitness incremented is selected as the best measure to characterize the problem. 

According to this measure, Royal Road, TSP and Deceptive are considered difficult 

problems (fitness_increment<=0.00468), and the rest of problems are easy problems 

(or, at least, their genetic operators are more appropriate to improve the results). For 

the easier problems, good configurations should have frequent migration rates and 

either not too many islands or good connectivity. Difficult problems, instead, require 

less frequent migrations (although, this rule is not very accurate).  

The presence of the number of islands in the extracted rules should be interpreted 

under two possible perspectives, the obvious number of different populations 

(dwelling the islands), and also the population size in each of them. The experiments 

performed in this study have always used a fixed population size divided among the 

islands. In this sense fewer islands means also more individuals for each of them. 

Complementarily, another analysis has been performed using neural networks (1 

hidden layer with 20 neurons, alpha 0.9, eta range [0.01, 0.1]). This analysis shows 

that the parameters with the highest relative significance are: frequency, #islands and 

the three difficulty measures (leaded by fitness_increment).     

It is remarkable to realize that topologies have really minimal influence in the 

algorithm performance. This validates the results presented by Cantú-Paz [1], in 

which mention than topology could be generalized as the connectivity and diameter of 

the proposed island connections. Nevertheless, connectivity has only a marginal 

influence in the performance, compared with the number of islands and the migration 

frequency. 

The general results presented by [7] also indicate that moderate migration intervals 

with a small migration size are better than large number of individuals migrated after 

more generations. In our work we proof that this rule is not valid in general, and only 

with simple problems it would effective. The two problems in common in both [7] 

and our study, Griewank and Rastrigin, have been considered “easy” by the 

fitness_increment measure and the intervals induced by the machine learning 

algorithm. 

The conclusions derived from this preliminary study have shown relevant patterns 

that identify better configurations in PGAs. Although this early results are quite 

promising further analysis should be carried out including more parameters 

(migration rate, overall population size, more topologies and selection and 

replacement policies). Additionally, more values from the already considered 

parameters could be included. The sample of the selected problems could be also 

extended with more real world and synthetic problems. The results achieved by this 

study have required 24000 executions ran on Magerit System belonging to the 

CeSViMa Supercomputing Center; future work would require much more executions 

and also considerable computational requirements. 
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