
vBattle: A new Framework to Simulate Medium-Scale Battles in
Individual-per-Individual Basis

Luis Peña, Sascha Ossowski and José-Marı́a Peña

Abstract—Strategy games such as WarcraftTMor
UFOTMfranchises or RPG games like Never Winter
NightsTMor Baldur GateTMare successful blockbusters in
video game industry. These games are based on battles
simulated individual per individual. These type of games is
a very interesting scenario to develop multilevel strategies or
emergent behavior in multiagent systems.

This paper presents a new computational intelligence frame-
work, named VBATTLE, for the evaluation of learning strategies
in video games. The framework simulates a battle game in
which two or more contenders are fighting in units with a
high-detail individual-per-individual resolution. This simulation
considers aspects of (1) actions parameters (action time, ex-
haustion consumption), (2) non-deterministic action resolution,
(3) hierarchical intelligence (individual vs. unit strategies), and
(4) scenario interaction.

The VBATTLE framework is designed to have both a 3D visual
representation of executions (either on-line or post-mortem
visualization) as well as a server-based engine to perform learn-
ing tasks. This contribution presents the design principles of
VBATTLE framework, its objectives, the possible applications for
developing computational intelligence algorithms. In addition,
preliminary results using a limited version of the framework
are also presented.

I. INTRODUCTION

The game industry has been working, since the cre-
ation of games such as Romance of the Three Kingdoms
seriesTM(early 80s) or Wizard’s CrownTM, in the adaptation
of different levels of strategy and tactical confrontations.
These, and other, games clearly show the evolution of
artificial intelligence mechanisms to solve combat simula-
tions. The principles in combat simulation are based on the
statement that assumes that every actor (playing characters,
enemies, etc.) has a set of actions that triggers according
to the current state of the game or scenario, in the most
simple schema the actors have only the attack and the defense
actions.

Usually, there are two levels of combat simulation: (1) the
strategic combat which computes the result of a combat
summarizing the strengths of the sides involved in the combat
and applying some factors such as the terrains or so, for
example Civilization SeriesTMand Age of EmpiresTM, and
(2) the tactical combat represented as a deployment of troops
across a battlefield which take more detailed decisions about
their movement in combat, and use some specialized action

L. Peña and S. Ossowski are with the Centro para las Tecnologı́as
Inteligentes de la Información y sus Aplicaciones (CETINIA), Universidad
Rey Juan Carlos, Móstoles, Spain (email:luis.pena,sascha.ossowski@urjc.es)

J.M. Peña is with the Departamento de Arquitectura y Tecnologı́a de
Sistemas Informáticos (DATSI), Universidad Politécnica de Madrid, Madrid,
Spain(email: jmpena@fi.upm.es)

such as fire projectile weapons, for example in the Total War
SeriesTMor even the UFOTMfranchise. Between these two
levels, there are only few games (e.g., Dominions SeriesTM)
applying the possibility of simulate the tactical combat in
order to solve large-scale strategic combat. This circumstance
avoids the use of more detailed actions to a group of
actors (a unit) based on the individual characteristics that
make their strategy more appropriate to face a given enemy.
From the perspective of computer-controled characters, this
would represent a more adaptative behavior that makes game
experience more atractive for users.

The strict deadlines of the game industry many times
leads to a sort time for the investigation in new techniques,
mainly in artificial intelligence, and only step by step the
new algorithms and methods appear in commercial games.
Usually, the game developers are more interested on design-
ing a superb graphical engine and reuse some of the old
tailored algorithms for the decision making. To overcome
this, in the last few years, the industry provides the game
engines with the modding and scripting tools to affiliate
permanent gamers and to expand the capabilities of the game;
the results, sometimes, are some new implementations of
algorithms and techniques which increase the performance
of the intelligence engines.

These modding utilities are applied to the research in
artificial intelligence [1], [2], in some cases the script pro-
gramming of the industrial game engine can be a good visual
appeal workbench, providing qualitative and, sometimes,
quantitative results for the experiment. But, usually, this
type of engine: (1) does not provide a complete set of
result analysis toolkits, (2) it presents a heavy-weight engine
that does not support massive training needed for some
algorithms and techniques, being evolutionary algorithms or
reinforcement learning clear examples, and (3) the modding
tools are limited in terms of customization or flexibility.
These restrictions sometimes leads to the development of
hand-made engines such as RoboSoccer1 or MiniGate2 that
are motivated by the specific purpose of research in artificial
intelligence, enabling the analysis of results and ad-hoc
implementations for different research purposes. Supporting
these ideas, and with the intention of providing a new
framework for the research of applied artificial intelligence
techniques, the VBATTLE Framework is born, a new environ-
ment to work in AI methods that need some specific setting
such as massive execution, multilayered decision making,

1http://www.robocup.org/
2http://ticc.uvt.nl/ pspronck/minigate.html

978-1-4244-4815-9/09/$25.00 ©2009 IEEE 61

emergent behaviors, etc.
The document is organized as follows: Section II analyzes

some of the existing current frameworks, suitables for AI
testing, Section III introduces the VBATTLE framework,
the objectives and features that it has and the architecture
of the solution. In section IV, some of the computational
applications on the artificial intelligence experimentation are
presented. Section V briefly explains a set of experiments
already done using the preliminary implementation of the
framework. Finally, section VI concludes with the open
issues and the future work.

II. CURRENT FRAMEWORKS

Looking at some of the current frameworks available on
the computer games world we obtain some features desirable
for the creation of our new framework, at the same time we
realized that the current frameworks do not meet all of our
specifications for the further researches that we want to carry
out.

The features that current frameworks have, and we want
to mantain are:

• the bulk of the AI code as a separate library to be
engine-independent.

• use console-based controls of the application for inde-
pendent tests.

• integrate working features into whichever engine you
feel most comfortable with.

The idea is that we do not want to be too dependent on any
engine, we need a flexible engine that works with different
technologies in order to test a set of algorithms and we want
to have a control over the game variable to analyze the results
and the progress of the different techniques.

A. NERO 2.0
The NERO [3] is a computer game that recreate a tactical

combat of adapting intelligent agents, evolving a robot army
by tuning their artificial brains for challenging tasks. The
learning agents in NERO are simulated robots that are trained
as a team of these agents for combat. The agents begin the
game with no skills and only the ability to learn. In order
to prepare for combat, the player must design a sequence
of training exercises and goals. At the training phase AI
agents evolve in real time while the game is being played,
the player’s role is to train the AI for competition.

The core technology of NERO is a special real-time ver-
sion of NeuroEvolution of Augmenting Topologies (NEAT),
providing to the AI agents a real neural networks that are
continually growing more complex as the game is played.
It allows the AI agents not to be prepackaged or scripted;
rather, their behavior emerges in reaction to how the game
is played.

1) Pros:
• NERO has a great appeal and can be an excellent vehicle

for demystifying AI and demonstrating its value to the
public.

• NERO presents the level of the agent decision and the
unit decision as an emergent behavior of the agent.

• NERO has two different phases, training and competi-
tion.

2) Cons:

• NERO needs that the user interacts with the system in
the training phase.

• NERO only uses neural networks for the learning, it
does not provide a way to insert another algorithms.

• NERO is not open-source to analyze the code.

B. ORTS

ORTS [4] is a programming environment for studying
real-time AI problems such as path finding, dealing with
imperfect information, scheduling, and planning in the do-
main of Real-Time Strategy (RTS) games. Commercial RTS
games are non-open-source software which not facilitates
researchers to connect remote AI modules to them.

These games are fast-paced and very popular. Furthermore,
the current state of RTS game AI is bleak which is mainly
caused by the lack of planning and learning - areas in which
humans are currently much better than machines. Therefore,
RTS games make an ideal test-bed for real-time AI research.

Commercial RTS games are based on peer-to-peer tech-
nology - which in a nutshell runs the entire simulation on all
player machines and just hides part of the game state from
the players.

The ORTS project creates a free software system that lets
people and machines play RTS games. The communication
protocol is public and all source code and artwork is freely
available. Users can connect whatever client software they
like. This is made possible by a client/server architecture
in which only the currently visible parts of the game state
are sent to the players. This openness leads to new and
interesting possibilities ranging from on-line tournaments of
autonomous AI players to gauge their playing strength to
hybrid systems in which human players use sophisticated
GUIs which allow them to delegate tasks to AI helper
modules of increasing performance.

The ORTS server is responsible for simulating unit actions
and determining what each player is allowed to know about
the current state of the world. ORTS has a built-in tournament
manager, which significantly reduces time for the design of
experiments and analysis of results

1) Pros:

• ORTS use a client/server architecture that leads to
decouped systems that enable unattended executions or
personalized clients.

• ORTS has a simple scripting language for game speci-
fications and GUI customization.

• ORTS players can connect whatever client software they
like to and can issue commands to all of their units in
each game tick.

• ORTS has a AI-components pluggable system to dele-
gate some AI task via messages to the client which can
implement modules to perform these actions.

62 2009 IEEE Symposium on Computational Intelligence and Games62 2009 IEEE Symposium on Computational Intelligence and Games

2) Cons:
• ORTS plays in real-time, which is not suitable for

training process of some interesting algorithms that
require some offline tuning.

C. Lux Delux

Lux Delux is a game of strategy and domination inspired
by the board game Risk. Control armies to conquer and hold
strategic countries on the map. Lux Delux provides a SDK
with which programmers can create AIs and random map
generators. It includes API documentation as well as the
source code to all the AIs that are shiped with Lux, and
some map generators. The programming language used is
Java, but the map generator interface can be used in other
languages, as Perl.

1) Pros:
• Lux use a client/server architecture that leads to decoupe

systems that enable unattended executions or personal-
ized clients.

• Lux has an unattended play mechanism that can me run
in a fast pace, enabling training.

• Lux has a Java SDK API for AI programming.
2) Cons:
• Lux is commercial, and not open-source.
• Lux presents a very simple units without a customiza-

tion mechanism.
• Lux has an unique display mechanism.

D. Neverwinter NightsTMSeries

Neverwinter Nights TMSeries is a commercial hit of
Bioware, now it is a classic, a reference of Computer Role
Playing Games (CRPG), it supports Dungeons & Dragons
pen-and-paper rule set. NWN has a high modularity, enabling
the public expansion of its campaigns and games.

NWN gives programers all the tools needed to build
customized modules, campaigns, and adventures - create
buildings, terrain, script encounters, write dialogues, create
quests and items - with its Aurora Toolkit .

1) Pros:
• NWN Series can use a client/server architecture that

enable unattended executions, controlled by AI.
• NWN Series has a robust, well tested, engine, supported

by a large company.
• NWN Series has scripting language, very similar to

C++, suitable for AI programming.
• NWN Series is an actual commercial games.
2) Cons:
• NWN Series is commercial, and not open-source.
• NWN Series has no extensibility outside of the Aurora

Toolkit, not allowing the development of trace or display
plugins.

• NWN Series runs in real-time, not supporting long
training algorithms.

III. VBATTLE FRAMEWORK

VBATTLE is a video game framework based on the Java
game engine designed as an independent light-weight event-
driven simulator with a decoupled visualization tool.

A. Objectives and Features

The VBATTLE framework has been designed following
several principles and objectives:

1) Discrete event simulator: The VBATTLE framework
are based on a discrete event simulator (DES) (as
opposite to turn-based or real-time simulations). DES
simulates sequences of events based on execution time,
in the case of VBATTLE, the different actions require a
given amount of time to be performed. Once an action
is selected for execution, a new event is created and
issued when the action will be finished (when its effects
are applied).

2) Parameters, actions and actors: Combatants in
VBATTLE have different status counters (life, exhaus-
tion, stunning time), and a set of possible actions
(that can be different from one actor to another). The
actions are also parametrized based on their effects,
the execution time, the chance of success, exhaustion
points, or other parameters (amount of damage or
defence factor).

3) Non-deterministic action system: Actions are not
deterministic, thus the execution of an attacking ac-
tion has a probability of success. Defensive actions
performed by the target also modify this chance of
success or indicate different results and effects.

4) Scenario interaction: The scenario is divided into
hexagonal cells. The actors are fighting on this in-
teractive scenario that modifies different factors, such
as mobility rates, penalties for action executions and
exhaustion modifiers. Scenarios may also include re-
stricted movement areas and dangerous or hazardous
cells.

5) Multilevel intelligence: The VBATTLE framework al-
lows the definition of two level of strategic game,
(1) one is individual-centered intelligence, controlling
the actions performed by a single combatant, based on
the information it receives, and (2) the other is unit-
based controllers, in which a number of combatants
are managed by a single intelligent mechanism that
decides movement of troops and coordination issues,
delegating fine-grain action selection to the previous
level.

6) Decoupled Interface: VBATTLE presents a clear divi-
sion between the simulation engine and the graphical
interface, this feature provides off-line simulation of
a large amount of combats, i.e. for learning in some
algorithms, and a visualization interface that enable the
possibility of view the combat execution or even the
further combat analysis.

2009 IEEE Symposium on Computational Intelligence and Games 63

Fig. 1. General Architecture.

Fig. 2. Engine Decomposition.

B. VBATTLE Architecture

The VBATTLE framework is organized as a light-weight
event-driven simulator, designed to run in an independent
server for a large number of combat simulations (Fig. 1).
The engine of the framework receives the configuration
loaded from the setup sources, that describes the charac-
ter’s parameters and actions (Warrior Definition), combat
setup (Combat Configuration) and the type of combat and
minds (controllers) which we want to use. Once the engine
starts, retrieving the relevant information that it needs from
the database, such as previous learned statistics, it runs a
complete battle, uploading the results to the database (Fig. 2).

The GUI can be executed from a client whenever it is
needed, with the option of viewing the current execution
running on the engine or loading a previous combat stored in
the database. It displays an hexagonal grid with the positions,
movements and actions that the combatants do (or did).

Once the GUI is connected, it controls the simulation
speed, in order to be able to visualize the combat properly.

The components of VBATTLE in some detail are:
1) Combat Configuration and Warrior Definition are

presented as a set of configuration files that provide
information about the type of combat we want, the
character’s description and the information about the
group of characters. These files could also be extended
to support new algorithms. In the current version the
configuration files are property files, the future versions
could include a XML configuration schema.

2) VBATTLE Engine supports the combat simulation, it
runs the DES sequence treating all the configured

controllers evenly. It applies the rules of the tournament
and the stop criteria.

3) Database stores: (1) the results of the combats, (2) the
evolution of the warrior state and (3) the learning
parameters of the agents. The database storage runs in
parallel to the engine executing the queries in a batch
process. The VBATTLE framework supports different
database managers such as MySQL o SQLite.

4) Graphic Interface and analysis tools are support
modules that provides graphical representation of the
combat execution. Preliminary versions of VBATTLE
include a simple GUI and basic reporting and statistical
tools. Nevertheless, this set of tools are open to the
plugging of new modules with more sophisticated
analysis (data mining, for example).

C. Combatants and Action Description

A key element in the simulation is the combatant’s profiles
(characteristics, actions and controller). A combatant is each
character that has to interact with the environment and other
characters performing actions. A combatant is basically a
software agent parametrized by some particular information,
included in its description.

1) Combatants Description: Every character has two state
counters, Hit Points (HPs) that represent the remaining life
for this character and the Exhaustion Points (EPs) counter
that shows the fatigue level of the character. If HPs reach 0
the character is dead and thus it is defeated. On the other
hand, if EPs are below 0 the character cannot do anything
but rest until it is recovered.

In addition to these characteristics, the combatants have
information about their movement, long-range attacks and
further modifications to the actions and maneuvers that will
affect to the maps and group interactions.

The combatants are described by separate documents
which contain the characteristics and actions. This descrip-
tion is independent of the mind that controls the character,
allowing the user to create tournaments based on the same
warrior description which only differs on the way to choose
the actions along the combat (the controllers/minds). This ap-
proach is an appropriate test-bed for different computational
intelligence algorithms.

A character can perform three types of actions: Offensive,
Defensive and Miscellaneous Actions.

• Offensive Actions take a fixed amount of time to be
executed, named Action Points (APs), which represent
the time that the action takes to be triggered after it
is called. In addition, Offensive Actions consume some
EPs when they are triggered. Once an Offensive Action
is fired it has a probability of hitting the target and
inflicting some damage. The damage of an action can
be of three types: (1) HPs damage, (2) EPs damage and
(3) Stun damage. The first two damage types represent a
direct amount to be substracted to the respective counter
of the enemy. The stun damage works in a different
way: this type of damage makes the target to cancel his

64 2009 IEEE Symposium on Computational Intelligence and Games64 2009 IEEE Symposium on Computational Intelligence and Games

present declared action and makes that the target cannot
declare any other action until he gets recovered from the
stun.

• APs of Defensive Actions represent the time the defense
is active when it is declared, consuming the EPs when
it finishes. If a character is hit and he has a Defensive
Action declared, he has a probability of blocking the
attack. If the Defensive Action blocks the attack, the
damage taken by the character is reduced by a factor
applied to the HPs and EPs damages and, if the Defen-
sive Action specifies it, to the stun damage.

• Miscellaneous Actions are a group of possible actions
that provide modifiers or perform scenario-specific ef-
fects. An example of a miscellaneous action is to draw a
weapon or to load a range weapon. As in the example of
offensive actions, the APs indicate the amount of time
required to perform the action.

When an action is triggered, it is solved depending on its
type, and then the character choices another action if he has
any remaining EPs. If he has none, the character must rest
for a fixed amount of time to recover some EPs.

D. Engine Description

The Combat Engine runs the combats with a continuous
round mechanism, every time an event occurs the engine
evaluates it, resolving the attacks, deciding a new action,
recovering EPs, etc.

As it is said, there are three main action types, attacks,
defenses, and miscellaneous. The first difference (skipping
the obvious) is that the attack and miscellaneous actions
are declared and take a fixed APs to occur and when the
activation time reaches the action is executed; and the defense
actions last from the declaration instant and during the APs
they have.

The attack simulation considers the attacker and the target
and the action performed, evaluating if the attack hits the
target and computing the damage done, as well as any side
effects (such as stunning), it is reduced if the target had a
defense declared and it works.

When a combatant has no action selected to be executed,
because he has just finished to do something or he has
recovered from stunning damage, the mind that controls
the character must provide a new action to the engine.
The decision from this controller is scheduled based on a
continuous round schema. The mechanism to deal with action
decisions is supported by the Minds Interface that receives
the current combat state for its analysis.

As the Combat Engine includes the mechanisms required
by the learning algorithms, it provides the combat state
information to the minds at the end of every action that it is
involved.

Also, as the Combat Engine works it stores data of the
combat into the database for the further information analysis
and the representation by the GUI.

E. Mind Interface

The character controller, named mind in VBATTLE, selects
actions on behalf of the actual character. In order to select the
action the mind can take into account the state of the combat.
Once the action is executed, and every time the state of
the combat changes, the controller gets a feedback from the
engine updating combat information. Minds are designed as
flexible implementations, based on messages, that support the
inclusion of different techniques implemented on different
languages.

Moreover, the mind could also request the engine to
include some information in the database as result of the
operations taken on the mind to recover it on future instants.
This operation is supported by particular engine services
for information persistence. This service also considers the
appropriate identification of this stored information to be
properly retrieved by the mind when requested.

The desired interaction between minds and the engine is
accomplished through the services offered by the message
broker system of ActiveMQ from Apache.org that enables the
interconnection of different elements implemented on wide
range of languages.

This plug-in system to design minds support the creation
of different implementations of control algorithms to decide
the action in this game framework. This is the main goal
for the creation of this framework, the possibility of testing
different decision algorithms in a “more realistic” computer
game (at least with the flavor of a computer war game).

F. Technological Issues

The technology used for this project is centered on the
Java programming language. First, the Combat Engine and
the structure of the code is modeled with Java classes. The
communication between the engine and the minds, (or even
the interface) is treated as events, these events are added
to the round flow controller, logging it on the database if
necessary.

The use of the ActiveMQ message broker provides
loosely-coupled interaction between the pluggable elements
such as minds or even the GUI and analysis tools. When
the engine is running it could process the requests received
through the broker and send the desired result back to the
sender.

Although the message schema is not optimal for real-time
interaction, the main objective of the VBATTLE framework is
not the human interaction. Thus, this drawback is acceptable
compared with the flexibility of creation of independent tools
or controllers for the engine.

The logging is made both on the database and using log
files (if the database schema is not flexible enough). The
creation of new logging file format by the classes provided
by the framework encourages the inclusion of personalized
analysis mechanisms.

The realization of the GUI could be implemented, using
the message schema, in nearly any platform, for instance:
following the specifications of the jMonkey game engine

2009 IEEE Symposium on Computational Intelligence and Games 65

Fig. 3. Hard Boild Screenshot.

and presenting the appearance of a 3D hexagonal map
displaying the character on the game board and it will have
the capabilities of small interaction with the elements and
visual logging elements. A preliminary design uses the ideas
of Hard Boild3 (see Figure 3); or using SDL library and
working with a C++ hexagonal GUI or even Blender and
Phyton engine.

The analysis of the results can be done accessing to the
result database or logging files and it is completely decouple
from the game engine providing the capability of creations
of different analysis mechanism.

IV. COMPUTATIONAL INTELLIGENCE APPLICATION

The main goal of VBATTLE framework is to provide
a solid infrastructure to research and validate intelligence
algorithms for controlling both combatants and group of
combatants.

Every single simulation is called a battle, and it represents
a sequence of events (derived from the actions selected by
the characters’ controllers) which last up to a given condition
is met. In most of the cases this condition is when one of
the sides is defeated, but it could be extended to support
other alternatives: (1) simulated time limit, (2) wall-clock
execution limit, or (3) a given circumstance, such as a
particular combatant reaches a given position or performs
a specific action.

The group of combatants participating in a battle as a
same group is called a faction. The combatants include
the character parameters (also the actions) as well as the
controller schema (combatant minds).

A tournament is a set of factions that fight along a series
of battles. On each of these battles, all or part of the factions
are involved.

The tournaments are the mechanisms to explore com-
putational intelligence algorithms. The tournaments can be
restricted in order to reduce and focus the aspects under
consideration:

3http://code.google.com/p/hardboild/

• one on one without scenario: The combatants are
already engaged in combat and the algorithms have
to decide the best sequence of actions depending on
the internal counter (HPs and EP) as well as opponent
counters and the event sequence.

• one on one with scenario: Similar to previous one, but
in this case the combatants are not engaged in combat,
and they have to move across the scenario, chasing
the opponent. The characters have to deal with path
identification, scenario modifiers and the characteristics
of its own actions.

• group combat (kill’em all mode): Variants of the two
previous cases but factions include multiple combatants
or there could be more than two factions. Alliance
and coordination aspects are important in this case,
encouraging the construction or group-based tactics.

• group combat (take the flag): Multiple factions with
multiple combatants per faction with an objective differ-
ent from killing the rest of the factions. In some cases,
it is to reach and maintain a particular position (“take
the flag”) but can be expressed as different conditions.
This tournament is a good testbed to consider charater’s
personalities (giving different reward functions depend-
ing on the specific interest of each combatant, such as
protect the leader or survive).

Together with these general tournament scheme other
aspects are considered:

• Pool of Combatants: In order to generalize strategies
and to avoid overfitting in the construction of these
strategies.

• Learning process: Controllers learn during tournament,
storing intermediate information and improving their ex-
pected performance. VBATTLE provides the mechanism
to record controller variables along different battles.

V. PRELIMINARY EXPERIMENTS AND RESULTS

As an example of the use of VBATTLE framework to study
different computational intelligence techniques, the following
scenario has been proposed:

• The objective is to compare the performance of different
reinforcement learning algorithms for stochastic games,
applying them to control characters in a fighting game.

• A one-to-one single character combat mode has been
selected. In this mode, both combatants are engaged in
meleé combat, with no modifiers or effects from the
scenario. The objective of each character to defeat the
opponent is to reduce its HPs to zero with a maximum
limit of simulated time (simulations ticks).

• Three different reinforcement learning algorithms have
been considered: PHC, WoLF and TERSQ [5].

• The scenario considers two different character profiles,
thus six different contenders are configured (2 character
types times 3 control algorithms).

A. Reinforcement Learning Algorithms
Three reinforcement learning algorithms have bee pro-

posed for this study: PHC, WoLF and TERSQ

66 2009 IEEE Symposium on Computational Intelligence and Games66 2009 IEEE Symposium on Computational Intelligence and Games

1) Policy Hill Climbing (PHC): Policy Hill Climbing
(PHC) was proposed in [6] as an extension to the Q-
learning algorithm. Q-values are maintained as usually but,
in addition, the algorithm also maintains the current mixed
policy. This policy controls the probability to select a given
action during the learning phase. It is updated by increasing
the probability to select the best performing action according
to a given learning rate.

2) Win or Learn Fast (WoLF): Win or Learn Fast (WoLF)
policy was proposed also by [6] as an extension of the PHC
policy reviewed in the previous section. The basic idea is
to dynamically modify the learning rate used to encourage
convergence without sacrificing rationality. Intuitively, the
algorithm tries to learn quickly when it is losing and more
slowly when it is winning. To determine if the algorithm is
winning or losing, the current policy’s payoff is compared
with that of the average policy over time. For this purpose,
the algorithm requires two learning rate parameters, one that
will be used when the algorithm is losing, and a second that
will be used when the algorithm is winning. This second
learning rate is actually smaller than the previous one, in
order to force learning when losing.

3) Tentative Exploration by Restricted Stochastic Quota
(TERSQ): In [5] the Tentative Exploration by Restricted
Stochastic Quota (TERSQ) algorithm was introduced. The
main idea of this algorithm is to use a global stochastic
quota in order to select the action to be executed. A bi-
nomial decision process is performed in such a way that
actions with best Q-values are selected with the probability
assigned by this quota, otherwise the rest of the actions are
stochastically selected with a probability according to their
Q-value ranking. The quota value is selected for each round
based on three different criteria. From these criteria, three
phases can be established: (1) Tentative Phase in which the
algorithm tries all the possible quota values (from a finite
set of values, named) to get an initial estimation of the
performance of every possible quota, (2) Adjustment Phase
where quota values are proportionally chosen according to
their average performance (which is updated at the end of
each round), and (3) Optimal Quota Phase where the quota
value with highest average performance is selected for the
rest of the learning process. The usual Q-learning technique
is applied during all the process, learning while quota value
is also computed.

B. Experimental Results
To evaluate these learning algorithms on this environment,

two different character profiles, A and B, have been created.
Each profile defines specific HPs, EPs and action character-
istics. For each of these profiles, the three RL algorithms
are used (TERSQ, PHC and WoLF) resulting six different
characters (each of the two profiles and each of the three
RL algorithms). The experiment consists of 10 series of
200000 battles. For each battle, two characters are randomly
selected from the six available characters. The Q-values and
the learning rates are reseted when each completed series
begins.

TABLE I
RATIO OF WINS VERSUS OTHER CHARACTERS

Wins
TERSQA PHCA WoLFA TERSQB PHCB WoLFB

TERSQA 50,56% 50,44% 44,61% 39,32% 38,38%
PHCA 49,44% 50,18% 36,49% 34,91% 33,32%
WoLFA 49,56% 49,82% 35,87% 34,57% 33,13%
TERSQB 55,39% 63,51% 64,13% 53,94% 53,02%
PHCB 60,68% 65,09% 65,43% 46,06% 49,42%
WoLFB 61,62% 66,68% 66,87% 46,98% 50,58%
Wins 55,33% 59,19% 59,45% 41,96% 42,55% 41,34%

Fig. 4. Winig ratio evolution of PHC, WoLF and TERSQ.

Table I presents the wining percentage for each pair of
characters averaged for the 10 executions. These results show
a better performance of PHC or WoLF for each of the
character profiles.

Table II shows the wining ratios restricted to the last
combats of every experiment, once quota value has been
selected. These last results emphasize a significative better
performance of the two characters controlled by TERSQ
algorithm. The two character profiles are different: B is worse
than A, but despite of this B-TERSQ character profile beats
nearly half of times against A-profiles, outperforming others
B-profiles.

The figure 4 shows the evolution of the winnig ratio along
the combats with the inflexion points that marks the different
phases at 2000 (end of Tentative) and 120000 (end of Quota
Adjustment).

TABLE II
RESULTS ON FIXED σ STAGE

Wins
TERSQA PHCA WoLFA TERSQB PHCB WoLFB

TERSQA 37,38% 36,52% 52,23% 33,96% 33,05%
PHCA 62,62% 49,47% 49,07% 41,62% 40,52%
WoLFA 63,48% 50,53% 49,91% 42,93% 41,58%
TERSQB 47,77% 50,93% 50,09% 51,71% 48,71%
PHCB 66,04% 58,38% 57,07% 48,29% 48,98%
WoLFB 66,95% 59,48% 58,42% 51,29% 51,02%
Wins 61,56% 51,53% 50,47% 50,13% 44,27% 42,61%

VI. FUTURE WORK AND CONCLUSIONS

VBATTLE is currently under development and it is in-
tended to be available on the next year, but the initial result
are promising and it could provide an interesting workbench
for further researches.

2009 IEEE Symposium on Computational Intelligence and Games 67

The evaluation of different learning algorithms validates
this framework as an interesting environment for the artificial
intelligence in game programming. The use of different level
of detail in the same engine enables the research of multi
layered techiniques in a fully controllable game engine. The
possibility of off-line simulations creates a perfect frame for
the use of techniques more complex and computationally
massive. The future development of VBATTLE could create a
new competition framework for techniques with a good mod-
ularity for the interaction in different types of tournaments.

VBATTLE framework is under development and only basic
features are fully integrated right now. A first public use
release is planned for the second half of the next year.

ACKNOWLEDGMENTS

The authors would like to thank the Spanish Ministry
of Science (TIN2007- 67148 and TIN2006-14630-C03-02).
And also with the Madrid Regional Education Ministry IV
PRICT

REFERENCES

[1] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma, “Online adaptation
of game opponent ai in simulation and in practice,” in 4th International
Conference on Intelligent Games and Simulation (GAME-ON 2003),
2003, pp. 93–100.

[2] V. Corruble, C. Madeira, and G. Ramalho, “Steps toward building a
good ai for complex wargame-type simulation games,” in Proceedings
of The 3rd International Conference on Intelligent Games and Simula-
tion, London, United Kingdom, 2002.

[3] M. Buro and T. Furtak, “On the development of a free rts game engine,”
in GameOn’NA Conference, 2005.

[4] K. O. Stanley, I. Karpov, R. Miikkulainen, and A. Gold, “Real-time
interactive learning in the nero video game,” in AAAI. AAAI Press,
2006.

[5] L. Peña, A. LaTorre, J.-M. Peña, and S. Ossowski, “Tentative explo-
ration on reinforcement learning algorithms for stochastic rewards,” in
HAIS, 2009, pp. 336–343.

[6] M. Bowling and M. Veloso, “Rational and convergent learning in
stochastic games,” in Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI), August 2001, pp. 1021–
1026.

68 2009 IEEE Symposium on Computational Intelligence and Games68 2009 IEEE Symposium on Computational Intelligence and Games

