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On-demand transportation is becoming a new necessary service for modern (public and private) mobility
and logistics providers. Large cities are demanding more and more share transportation services with
flexible routes, resulting from user dynamic demands. In this study a new algorithm is proposed for solv-
ing the problem of computing the best routes that a public transportation company could offer to satisfy a
number of customer requests. In this problem, known in the literature as the dial-a-ride problem, a num-
ber of passengers has to be transported between pickup and delivery locations trying to minimize the
routing costs while respecting a set of pre-specified constraints (maximum pickup time, maximum ride
duration and maximum load per vehicle). For optimizing this problem, a new variable neighborhood
search has been developed and tested on a set of 24 different scenarios of a large-scale dial-a-ride prob-
lem in the city of San Francisco. The results have been compared against two state-of-the-art algorithms
of the literature and validated by means of statistical procedures proving that the new algorithm has
obtained the best overall results.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of flexible transportation services has become a
hot topic in the design of modern city mobility. Traditional pub-
lic transportation has shown its limitations to satisfy the
changes in growing cities and particularly unable to adapt to
particular events that affects significantly to user’s transportation
demands. On the other hand, individual transportation services
(such as taxi or limo services) have higher economic costs not
affordable in many cases. Demand-responsive transport (DRT)
has recently appeared to provide a transport model with flexible
scheduling of routes, based on dynamic user’s demands using
medium size vehicles shared by several clients. DRT provides
solutions not only for passengers mobility demands but also in
the fields of logistics and medical (non-emergency) transporta-
tion services (Xu & Huang, 2009). Moreover, the adoption of
DRT transportation models has many beneficial side effects in
pollution reduction and traffic congestion.

The practical application of large scale DRT services has the
challenge to provide efficient solutions to large number of users
demands over large city areas. In the literature, a transportation
problem with these particular characteristics, the dial-a-ride prob-
lem (DARP) has previously been studied. The DARP is an example
of a transportation problem in which the objective is to determine
the best routing schedule for a set of vehicles in order to satisfy the
transportation requests for a number of customers. A request con-
sists of a specified pickup (origin) and delivery location (destina-
tion) along with a desired departure or arrival time as well as the
number of passengers to be transported. Each customer has to be
transported to his destination but not necessarily directly (they
can share a ride). Furthermore, the problem takes into account
the passenger satisfaction, expressed it in terms of additional con-
straints such as the maximum ride time of the users or the maxi-
mum waiting time at the pickup locations. In order to apply DRT
transportation solutions in a large city, it is required to be able to
solve large-scale DARP problems. However, the DARP can be pro-
ven to be NP-hard. The proof is based on the related NP-hard trav-
eling salesman problem with time windows, into which the DARP
can be transformed.

In the recent years, these DARP systems have become increas-
ingly popular (Cordeau, Laporte, Potvin, & Savelsbergh, 2007, chap.
7) due to a number of reasons; with the trend towards the devel-
opment of ambulatory health care services for aging people, more
and more people rely on door-to-door transportation systems
provided by local authorities. Shuttle services have also gained in
popularity between organizations and, recently, taxi companies
have started to offer a sharing service for their customers. Several
on-demand courier services and merchandise transportation have
equivalent requirements.
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This study presents the results of the work we developed for a
transport company interested in providing an on-demand trans-
portation service, taking passengers at their requested locations
and times while sharing the trip with passengers that have similar
demands. The objective of the company is to optimize the cost of
the proposed routes while preserving a reasonable quality in the
service offered to its customers.

For this task, a variable neighborhood search (VNS) algorithm
has been developed and adapted for the proposed problem. This
metaheuristic has been successfully used with similar problems,
obtaining competitive results in all the studies (Carrabs, Cordeau,
& Laporte, 2007; Parragh, Doerner, Hartl, & Gandibleux, 2009,
2010). For analyzing the results a benchmark containing several
real-life-based scenarios with underlying complex request pat-
terns has been developed, comparing the results of the proposed
algorithm against several state-of-the-art algorithms of the
literature.

The remainder of this article is organized as follows: Section 2
presents an overview of the literature with vehicle routing prob-
lems. Sections 3 and 4 define the problem and the evaluation func-
tion. Section 5 details the proposed algorithm. In Section 6 the
experimental scenario is described in depth. Section 7 presents
and comments on the results obtained and lists the most relevant
facts from this analysis. Finally, Section 8 contains the concluding
remarks obtained from this work.

2. Related work

The DARP belongs to a more general group of problems referred
to as vehicle routing problems with pickups and deliveries (VRPPD)
where goods are transported with a fleet of vehicles between pick-
up and delivery locations. This class is divided into two subclasses
depending on whether the pickup and delivery locations are paired
or not:

� If the pickup and delivery locations are unpaired, each picked
up item can be transported to any delivery location. Depending
on the number of vehicles used, two subclasses can be identi-
fied: pickup and delivery traveling salesman problem (PDTSP)
for the single vehicle case and pickup and delivery vehicle rout-
ing problem (PDVRP) for the multiple vehicles problem.
� In the opposite case, each pickup item at a specific location

must be delivered to its associated delivery destination. Here,
we can find the classical pickup and delivery problem (PDP)
and the DARP. Both problems deal with the optimization of a
number of requests in which each request specifies the number
of items that must be transported from an origin to a destina-
tion. The main difference between these two problems is that
the PDP is focused in transporting goods whereas the DARP
deals with the transportation of passengers. This difference is
usually expressed by the addition of constraints like the time
window, route duration and ride time violations.

Depending on the nature of the planning process each transpor-
tation problem can be identified as static or dynamic. In the static
DARP, the objective is to define the routes that are going to attend
the requests. In the dynamic problems, a solution of partial routes
has been previously constructed (for example by means of a static
algorithm) and new requests have to be inserted in real time. In
this article the static version of the DARP has been considered.

The DARP class has been extensively studied in the literature.
The first publications in this area were published in the late
1960s and early 1970s (Rebibo, 1974; Wilson & Weissberg, 1967;
Wilson, Wang, & Higonnet, 1971). Since then, several approaches
have been studied for solving this problem.
Regarding the exact methods, two of the most successful ap-
proaches can be found in Cordeau (2006) and Ropke, Cordeau,
and Laporte (2007). Both studies used a branch-and-cut algorithm
for solving a static DARP. In Cordeau (2006), an algorithm based on
a 3-index mixed-integer problem formulation was proposed for
solving to optimality a DARP of 36 requests. In Ropke et al.
(2007), two new 2-index based formulations and additional valid
inequalities were used for solving to optimality an instance of
194 nodes.

Due to the high computational demand of the exact methods, in
particular on large-scale problems, several heuristic methods have
been proposed for dealing with the DARP. One of the first ap-
proaches was analyzed in Cullen, Jarvis, and Ratliff (1981). This
study proposed an interactive algorithm based on a set partitioning
formulation solved by means of column generation although user-
related constraints were not explicitly considered. In Borndörfer,
Grötschel, Klostermeier, and Küttner (1997) a set partitioning ap-
proach consisting of two steps was proposed. The first clustering
step identifies segments of possible vehicle tours such that more
than one person is transported at a time. In the second step, the se-
lected orders are chained to yield possible routes respecting all
side constraints. The clustering step can be solved optimally
whereas the routing subproblem was solved approximately by a
branch and bound algorithm. Customer ride times were implicitly
considered by using time windows.

Metaheuristics are also a common approach when dealing with
the DARP (D’Souza, Omkar, & Senthilnath, 2012). In general, heu-
ristic methods tend to run faster whereas metaheuristics usually
outperform basic heuristic procedures in terms of solution quality.
Cordeau and Laporte proposed in Cordeau and Laporte (2003) a
data set of 20 instances with sizes between 24 and 144 requests.
For solving the instances, they proposed a tabu search (TS) algo-
rithm in which at each step, all the possible neighbors created by
moving one request to another route are considered. The solution
moves to the best neighbor unless the move itself is forbidden in
a Tabu memory that contains recents moves that lead to worse
solutions (used to avoid cycling). In this work, solutions were eval-
uated using an evaluation function that takes into account the total
cost of the routes and penalizes this value if one of the constraints
(maximum pickup time, maximum ride duration, maximum load
exceeded and maximum route duration) is not satisfied. In Jorgen-
sen, Larsen, and Bergvinsdottir (2006), a genetic algorithm (GA)
was presented for solving the DARP. The algorithm is based on
the classical cluster-first (assigning customers to vehicles), route-
second approach (solving independent routing problems using a
routing heuristic). A different evaluation function was selected,
namely a weighted combination of routing costs, total route dura-
tion, user ride time, user waiting time, and penalties for violations
of route duration, time window and ride time. The authors com-
pared their results to the TS of Cordeau and Laporte (2003) show-
ing that the TS obtained better results for route duration whereas
the GA improved the pickup time and ride duration. Finally, a
VNS aimed at minimizing the total routing costs while respecting
some constraints was presented in Parragh, Doerner, and Hartl
(2010) (VNSP from here on). Three classes of neighborhoods were
used by the algorithm: one based on swapping requests, a second
one that uses an ejection chain approach and the last one that
swaps natural sequences (sequences in which the vehicle load at
the end is zero). This algorithm compared itself against both the
TS and the GA previously described improving their results on
the selected benchmark.

In this Section we have offered a brief review of the main ap-
proaches used with the DARP. For a complete review of the litera-
ture we refer the reader to Cordeau et al. (2007) and Parragh,
Doerner, and Hartl (2008).
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3. Problem definition

For this work, the formulation of the problem has been based on
the studies conducted in Cordeau and Laporte (2003) and Parragh
et al. (2010) although some modifications have been added in or-
der to correctly represent the proposed scenario. Therefore, the
static DARP is defined on a complete directed graph G = (V,A)
where V = v0,v1, . . . ,v2n is the set of all the vertices and A the set
of all the arcs. For each arc (i,j) a non-negative travel time ti,j is con-
sidered. The transportation cost is supposed to be proportional to
the travel time. Therefore, for computing the total cost of the
routes, the travel times have been used. Each customer’s request
is made up of a pickup and a delivery vertex pair {i,i + n} that have
to be served by m vehicles with a capacity of Q. Since it is supposed
that the management of the vehicles is carried out by an external
company, there is no need to optimize the route from the central
depot to the first pickup vertex. Therefore, it is assumed that the
vehicles start the associated route at the location of the first vertex.
At each pickup vertex, a number of passengers (qi > 0) are carried in
the vehicle whereas, at the associated delivery vertex, the same
number of passengers leave the vehicle (qi+n = �qi). The vehicle
load when leaving a specific vertex is represented by yi.

Since this study is focused in optimizing the problems that
comes from for a public on-demand service company, all the mod-
eled requests fall into the inbound category, i.e., they all have a
Table 1
Problem notation.

ei Beginning of time window at vertex i
li End of time window at vertex i
m Number of vehicles
maxridetimec constant used for computing the maximum user ride time
n Number of requests
qi Number of passengers picked up at vertex i
ti,j Travel time from vertex i to vertex j
yi Load when leaving vertex i
Ai Arrival time at vertex i
Di Departure time from vertex i
Lmaxi Maximum user ride duration of vertices i,i + n
Li Ride duration of vertices {i,i + n}
P Maximum pickup waiting time
Pi Difference between the requested pickup time and the

departure time
Q Maximum capacity of the vehicles used
s A solution (routing plan)
Wi Vehicle waiting time at vertex i
c(s) The transportation cost of the solution s
w(s) The pickup time violation of the solution s
r(s) The ride duration violation of the solution s
q(s) The load violation of the solution s

i

request id

pickup vertex

ei li ejDi Aj

tij

Pi

Li

Fig. 1. Representation of t
tight time window on the origin [ei,li] where ei is requested by
the user and li = ei + P, being P the maximum pickup time that a
passenger should wait. This implies a minor modification to the
original model proposed in Cordeau and Laporte (2003) and Par-
ragh et al. (2010), where their objective was to model a transpor-
tation service for the disabled people who cannot use regular
public transportation systems and who need to be able to specify
either the pickup or the delivery time (depending if they are going
or coming from the hospital). The requests represented in our
problem are modeled according to the usual requests for a com-
mon public transportation system, like, for example, a typical taxi
or shuttle service, where the customers specify when they would
like to be picked up.

Leaving vertex i at its corresponding departure time (Di) results
in arriving at the subsequent vertex j at the arrival time Aj = Di + ti,j.
The beginning of the departure of the following vertex Dj cannot
start before the beginning of the respective time window, i.e., Dj = -
max{Aj,ej}. Therefore, a vehicle could have a waiting time at vertex j
of Wj = Dj � Aj. The difference between the requested pickup time
and the computed departure time at vertex i, i.e., the user waiting
time that should not exceed P, is defined by Pi = Di � ei.

The ride duration of a client, the time a client spends on board
the vehicle, corresponds to Li = Ai+n � Di. Similarly to the pickup
time constraint, there is a maximum user ride duration constraint
(Lmaxi) that has to be respected. However, instead of using an
absolute approach for computing the maximum ride time, we have
used a relative approach that computes the maximum ride time
value taking into account the ride time of the pickup and delivery
vertices of a request and multiplying this value by a constant
(Lmaxi = ti,i+n⁄ maxridetimec). This way, the constraint represents
better the possible dissatisfaction of the user. Finally, the time win-
dow at the destination can be automatically computed by the fol-
lowing equations ei+n = ei + ti,i+n and li+n = li + Lmaxi. This notation is
summarized in Table 1 and represented graphically in Fig. 1.

4. Evaluation function

As previously mentioned, for this work we have focused on
minimizing the total cost of the routes proposed to solve the solu-
tion, i.e., cðsÞ ¼

P
ði;jÞ2stij. The final evaluation function, described in

Eq. (1), takes into account this value as well as the total violations
of pickup time, ride duration and load. Pickup time violation is
computed as wðsÞ ¼

Pi¼n
i¼1ðDi � liÞþ where x+ = max{0,x}. Ride dura-

tion violation is computed as rðsÞ ¼
Pi¼n

i¼1ðLi � LmaxiÞþ and load vio-
lation as qðsÞ ¼

Pi¼2n
i¼1 ðyi � QÞþ. The penalty terms for these

violations are given by a,b and c.

f ðsÞ ¼ cðsÞ þ awðsÞ þ brðsÞ þ cqðsÞ ð1Þ
j

ljDj

Wj

i+n

ei+n li+nAi+n Di+n

tji+n

delivery vertex

he problem notation.
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From an implementation point of view, the aforementioned def-
inition of the evaluation function can be transformed to
f ðsÞ ¼

Pm
route¼1frouteðsÞ where froute(s) corresponds to the evaluation

function defined in Eq. (1) but considering only the vertices that
belong to a route.
4.1. Forward time slack and solution evaluation

For the optimal computation of the Ai,Wi and Di values we have
followed the evaluation scheme used in Parragh et al. (2010) and
Cordeau and Laporte (2003) and briefly described in Algorithm 1.
With this scheme, the route duration is minimum and ride time
limits are respected whenever is possible.

Consider a particular route k = (v1, . . . ,vi, . . . ,vq). It is clear that
setting Di = max{ei,Ai} for i = 1, . . . ,q is optimal because the vehicle
leaves the depot as early as possible. However, it must be taken
into account that a solution that is infeasible due to the ride dura-
tion constraints, can, in fact, be feasible (or reduce its violation val-
ues) if the departure at some vertices is properly delayed,
especially when the time window associated with a vertex is wide.
This idea was used by Savelsbergh (1992) to define the forward
time slack Fi of a vertex vi and was adapted to the static DARP by
Cordeau and Laporte (2003) in the evaluation scheme mentioned
before.

The forward time slack at a certain vertex vi is the minimum
slack of all the vertices that go from vertex vi to the last vertex of
the route. Having an ordered route k = (v1, . . . ,vi, . . . ,vq), the for-
ward time slack Fi of vertex vi is defined as

Fi ¼ min
i6j6q

lj � Di þ
X
i6p<j

tp;pþ1

 !( )
ð2Þ

Considering the fact that

Dj ¼ Di þ
X
i6p<j

tp;pþ1 þ
X
i<p6j

Wp ð3Þ

Eq. (2) can be rewritten as:

Fi ¼ min
i6j6q

lj � Dj �
X
i<p6j

Wp

 !( )
¼ min

i6j6q

X
i<p6j

Wp þ ðlj � DjÞ
( )

ð4Þ

Therefore, the forward time slack represents the largest in-
crease in the departure time at vertex vi that will not cause any
time window violation. As it will be seen later, the proposed
algorithm allows the existence of infeasible solutions. Conse-
quently, the term (lj � Dj) should be replaced with (lj � Dj)+ where
x+ = max{0,x} so that if a violation of the time window occurs, this
violation does not get incremented.

Moreover, when delaying the departure time at vertex vi, atten-
tion must be paid to avoid the possible ride time violation that
could happen for a request whose origin vertex is before vi and
whose destination vertex is at or after vi. As a result, Eq. (4)
becomes:

Fi ¼ min
i6j6q

X
i<p6j

Wp þminfðlj � DjÞþ; ðLmaxj � RjÞþg
( )

ð5Þ

where vq denotes the last vertex on the route and Rj the ride time of
the user whose destination is j 2 n + 1, . . . ,2n given that vj�n is vis-
ited before vi on the route and Rj = 0 for all other j.

Note that delaying the departure time from a vertex vi byP
i<p<qWp does not affect the arrival time Aq at the end of the route

whereas delaying it more would simply increase Aq by as much. As
a result, the departure from a node should only be delayed by at
most minfFi;

P
i<p<qWpg.

The forward time slack concept lead Cordeau and Laporte
(2003) and Parragh et al. (2010) to an evaluation scheme that
computes the Ai,Wi,Di values for each vertex on the route and
then, tries to delay the departure time at the first vertex in order
to reduce the ride time of the affected vertices (the first ones
and the subsequent ones that come before the associated deliv-
ery vertex v1+n). Then, if a violation of the ride duration of a re-
quest is detected, every vertex that is an origin is delayed until
the detected violation is resolved. The whole evaluation process
is described in Algorithm 1.

Algorithm 1. Evaluation scheme

1: Set D1 = e1

2: Compute Ai,Wi,Di and yi for each vertex i on the route.
3: if some Di > li or yi > Q then
4: GOTO step 15
5: end if
6: Compute F1

7: Set D1 ¼ e1 þmin F1;
P

1<p<qWp

n o
8: Update Ai,Wi and Di for each vertex vi on the route
9: Compute Li for each request on the route. If all Li 6 Lmaxi

GOTO step 15
10: For every vertex j that is an origin:
11: Compute Fj

12: Set Wj ¼Wj þminfFj;
P

j<p<qWpg and Dj = Aj + Wj

13: Update Ai,Wi and Di for each vertex i that comes after j in
the route

14: Update Li for each request i whose destination is after j. If
all Li 6 Lmaxi of requests whose destination lie after j GOTO
step 15

15: Compute changes in violations of vehicle load, duration,
time window and ride time constraints.
5. Description of the algorithm

As mentioned in Section 1, the proposed static DARP has been
solved by means of a VNS-based algorithm. The general idea of this
algorithm is to start with an initial solution (being it also the first
incumbent solution s). Then, in every iteration, a neighborhood
class (or shaker method) is used to generate a random solution s0

in the neighborhood defined by the method Nk(s) whose neighbor-
hood size is defined by k. In the next step, a local search (LS) algo-
rithm is applied to s0, yielding s00. If s00 is better than s, it replaces s
and k is set to the first possible neighborhood. If s00 is worse, s is not
replaced, incrementing k so that subsequent iterations use the next
possible neighborhood. Whenever the maximum number of neigh-
borhoods kmax is reached, the search continues with the first neigh-
borhood. This whole process is repeated until a stopping criterion
is satisfied.

In this work, we have implemented a generalized version of the
modifications proposed by Parragh et al. (2010) to the general VNS
scheme. Therefore, deteriorating solutions may be accepted as
incumbent with a certain probability. Moreover, intermediate
infeasible solutions can also become incumbent solutions. As a re-
sult, it is necessary to keep track of the best feasible solution sbest

found along the optimization process. Algorithm 2 presents the
main algorithm steps whereas each design element is described
in further detail in the following sections.
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Algorithm 2. VNS algorithm

1: generate sinit

2: s = sinit; k = 1
3: t = 0
4: d = random(mindelta,maxdelta)
5: a = b = c = initpenalization
6: while the stopping criterion is not satisfied do
7: //shaking
8: randomly compute s0 with Nk(s)
9: // local search
10: if c(s0) < lsvalue1 � c(s) or prand < lsprobvalue then
11: Use the local search method over s0 to create s00

12: else
13: s00 = s0

14: end if
15: // Move or not
16: if t is 0 and sbest is feasible then

17: t ¼ tinit ¼ tinitratio�f ðsbestÞ

ln 1
tinitprob

� �
18: tstepratio = t/#maxevals
19: end if

20: pSA ¼ e�
f ðs00 Þ�f ðsbest Þ

t

� �
21: if f(s00) < f(s) or prand < pSA then
22: if c(s00) P lsvalue2 � c(s) then
23: Use the local search method to s00

24: s = s00;k = 0
25: // Update penalty parameters
26: for each associated penalty term penterm in a,b and

c do
27: if s violates the corresponding constraint of

penterm (max pickup time, max ride duration or max load)
then

28: penterm = penterm⁄(1 + d)
29: else
30: penterm = penterm/(1 + d)
31: end if
32: d = random(mindelta,maxdelta)
33: end for
34: end if
35: end if
36: if s00 is feasible and better than sbest then
37: sbest = s00

38: end if
39: k = (k mod kmax) + 1
40: t = tinit � (tstepratio⁄#evalcalls)
41: end while
42: return sbest
5.1. Initialization

For the initialization, a different approach than those followed
in Cordeau and Laporte (2003) and Parragh et al. (2010) has been
used. As it will be seen in the following sections, due to the diffi-
culty of the proposed problems, it is crucial to start with a feasible
(or close to feasible) solution in the high dimensional problems in
order to be able to improve it along the optimization process.

The original initialization processes of Cordeau and Laporte
(2003) and Parragh et al. (2010) did not take into account any of
the possible violations and tried to exploit the information of the
spatial relationships (Parragh et al., 2010) or use a completely ran-
dom approach (Cordeau & Laporte, 2003). Here, we propose a
method that incrementally builds a solution by selecting, at each
step, the request that obtains the best evaluation function value.
To avoid the construction of solutions that do not satisfy the con-
straints, each infeasible insertion is heavily penalized. The whole
initialization process is described as follows:

� First, all the requests are sorted according to their pickup
requested times.
� Then, all routes are initialized with one request each, using the

first m requests of the list.
� The following request of the list is evaluated on all the routes,

inserting it in the route that obtains the best evaluation value
and that does not violate any constraint. If no route is found that
does not violate any constraint, the request is inserted in the
route that minimizes the violations values. Each request is
inserted as follows: First, the pickup vertex of the respective
request is inserted at its best position of all the possible posi-
tions that are compatible with the time window values. Then,
the delivery vertex is inserted at its best position in accordance
with the pickup one. This process is repeated in order until all
requests of the list have been inserted into one route.
� Once all the requests have been inserted, each route undergoes

the LS search procedure described in Section 5.3

5.2. Neighborhood classes

Seven different neighborhood classes (or shakers) have been
proposed for the algorithm. Two of them were previously defined
in Parragh et al. (2010) whereas the remaining five have been de-
fined specifically for this work. Most of the shakers can be param-
etrized by a size value which determines the maximum number of
requests (or routes) that can be modified at each application of the
shaker. They are detailed below:

Swap neighborhood (S): This shaker, proposed in Parragh et al.
(2010), exchanges a number of requests between two routes. First,
two different routes are chosen randomly. Then, on each route, a
sequence to be swapped is randomly selected: first, the starting
vertex for each sequence and then the length. The maximum se-
quence length is referred to as the size of this neighborhood. Note
that for each vertex within each selected sequence, the corre-
sponding origin or destination vertex has to be selected as well
even if it is not part of the sequence. Finally, all the requests form-
ing the respective sequences are deleted from their routes and in-
serted, one-by-one, into the other route. The insertion of each
vertex of the sequence follows the same procedure that was de-
scribed in the initialization process (Section 5.1).

Chain neighborhood (C): The second neighborhood class, also de-
fined in Parragh et al. (2010), applies the ejection chain idea. In this
shaker, first, a sequence of vertices, randomly selected as in the
swap neighborhood, is moved to a second route. Then, a random
length l value is selected (being the maximum value the size of
the shaker). From the second route, the sequence from all possible
sequences of the selected route (of length l) that improves the most
the evaluation function, is moved to a third route (also, randomly
selected). This step is repeated until the maximum number of
moved sequences (specified by the size of the shaker) is reached.
Therefore, the neighborhood size specifies both the maximum
number of sequences moved as well as the maximum length of a
sequence to be selected. All insertions are done one-by-one follow-
ing the same procedure described in the initialization process.

Greedy worst origin move neighborhood (GWOM): In this neigh-
borhood class, a sequence of vertices is moved from a random
route to a different one. The characteristic aspect of this shaker is
that it selects the worst possible sequence of vertices (according
to the evaluation function) of the size defined by the neighborhood
class, and moves it to the best possible route (for conducting the
insertion). For this task, it first computes all the possible sequences
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Fig. 2. An example of a natural sequence.

1 As it will be seen in the experimentation, several sequences have been actually
tested in this work.
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(from the selected route) and computes, one-by-one, the resulting
evaluation value of removing them from the route. Then, it selects
the sequence that reduces the most the evaluation value, and in-
serts it in the best possible route from the remaining ones, i.e., in
the route which obtains the best final value after conducting the
insertion. Similarly to the previous shakers, the insertions are con-
ducted following the same procedure described in the initialization
process.

Greedy best destination move neighborhood (GBDM): This neigh-
borhood class follows a similar strategy to the previous one but
uses an opposite approach for selecting the sequence to be
moved: instead of selecting (from all the possible sequences of
specific size), the worst sequence of a selected route, it selects
the sequence that obtains the best evaluation value when in-
serted in the destination route. For selecting the destination
route, a tournament roulette selection method (a well-known
selection method in GAs) has been applied. Thus, two candidate
routes are first selected with a roulette method that uses the in-
verse of the route evaluation function, i.e., 1

frouteðsÞ. From these
routes, the one with the best route evaluation value is finally se-
lected. This way, the routes with the best (or lower) route evalu-
ation values will have a higher probability of being selected for
the destination route. Similarly, an inverse selection process is ap-
plied for selecting the origin route, i.e., the routes with the worst
values will have a higher probability for being selected as origin
routes. The idea for this selection is to move the worst sequences
of the worst routes to the best routes where they could poten-
tially have more margin for carrying out the insertion.

Greedy origin swap (GOS): The fifth neighborhood class borrows
some of the ideas of the previous GWOM and GBDM shakers and
extends them for a swap operation. First, it selects two routes using
the same criterion of the GBDM shaker. Then, for each route, it se-
lects the best and worst sequence (of the size specified by the sha-
ker) to be removed. With these four sequences (two per route) it
tries all the four possible swaps of sequences, selecting, at the
end, the swap operation that obtains the best evaluation value.

Greedy destination swap (GDS): This neighborhood class extends
the previous shaker by changing the selection criterion for the best
and worst sequences: instead of selecting the best and worst se-
quences to be removed for each route, it selects the best and worst
sequences to be inserted in the other route. Similarly to the previ-
ous shaker, it tests all the four possible swaps, selecting the swap
operation that obtains the best result in terms of evaluation value.

All natural sequences combinations neighborhood (ANSC): The fi-
nal neighborhood class is based on the idea of natural sequences
developed for the Zero split neighborhood class described in Par-
ragh et al. (2010). A natural sequence is a sequence of vertices in
which the vehicle load at the end is zero. Without considering the
trivial sequence of the complete route, it was discovered that
routes quite often contain more than only one sequence of this
type. Fig. 2 represents this concept graphically. In the original
Zero split neighborhood class, a random natural sequence was re-
moved from a route and inserted (following the same insertion
procedure described in the initialization phase) into a different
randomly selected route. In this new shaker, each natural se-
quence is treated as a single unit in order to try all the possible
swaps of natural sequences between all combinations of pairs
of routes. For example, if route i and route j contains two natural
sequences respectively, the evaluation of the pair (i,j) would im-
ply the computation of the evaluation value of four possible
swaps of natural sequences. Since each natural sequence is trea-
ted as a block, the whole sequence is extracted and inserted (as
a unit) in the different route, reducing, considerably, the number
of evaluation function calls per swap. In our preliminary experi-
ments, this approach obtained significantly better results than
the Zero split neighborhood, requiring, for each call, a signifi-
cantly fewer number of evaluation function calls. Finally, contrary
to the other shakers, this shaker has no size parameter since it al-
ways conducts the same operations.

The aforementioned shakers can be applied in any order and
with different neighborhood sizes (except for the ANSC shaker).
Any sequence could be developed1 but, to follow the philosophy
of the VNS algorithm, the shakers that carry out less perturbations
should be applied first. For example, the sequence: S1-C1-S2 would
execute first the swap neighborhood class with a size of one unit, fol-
lowed by the chain neighborhood of size 1 and ending the sequence
with the swap neighborhood class of size 2.

5.3. Local search

Whereas the preceding neighborhood classes focus their efforts
in conducting inter-tour perturbations, the LS conducts a greedy
approach based on intra-tour modifications to obtain the best se-
quence of vertices for each route. This LS, based on the algorithm
proposed in Parragh et al. (2010), is applied to every route as fol-
lows: first, it removes the pickup vertex, and its corresponding
delivery vertex. Then, it inserts the pickup vertex at the first possi-
ble position (according to the time window values). Thereafter, the
delivery vertex is inserted at the first possible position with respect
to the recently inserted pickup vertex. If this insertion improves
the evaluation value, the LS continues with the following pickup
vertex on the route. Otherwise, the delivery vertex is inserted at
the next available position. This process is repeated until there is
either an improvement, or no other insertion position for the deliv-
ery vertex is found. In this case, the pickup vertex is moved to the
next position, repeating the last two steps. If no improvement is
found along this process, the pair of vertices is kept at its original
position and the whole process is repeated with the following pick-
up vertex of the route. Once a route has been optimized, the de-
scribed algorithm is applied to the next route until all the routes
have been adjusted.

5.3.1. Local search frequency
Since the LS consumes a considerable number of function eval-

uations, instead of conducting the LS step after every shaking step
(as the canonical VNS algorithm recommends), the LS is only used
with promising solutions. Note that most of the shakers use a gree-
dy insertion algorithm that includes in itself some kind of local
search so it seems reasonable to avoid unnecessary calls to this
function.

A promising solution is a solution that could potentially become
a new incumbent solution. Since the objective of our approach is to
minimize the total cost c(s), a promising solution has been charac-
terized by c(s0) < lsvalue1 � c(s), where lsvalue1 estimates the range
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of values for a solution to be considered promising. To introduce
another element of diversification, every solution has a lsprobvalue
probability chance to be subject to a LS improvement phase. More-
over, Parragh et al. (2010), introduced another point for using the
LS: every solution s00 which meets the acceptance criteria (de-
scribed in detail in Section 5.4), can undergo a LS process if its
c(s) value is only worse than a percentage (defined by lsvalue2)
of the current incumbent solution. Here, the idea is to promote
the diversification since a solution that has not been locally opti-
mized may, in some cases, provide better options regarding the re-
moval and reinsertion of a request in the subsequent iteration than
a locally optimized one.
5.4. Acceptance criterion

The algorithm proposes an acceptance criterion using a simu-
lated annealing type approach for deciding whether the incumbent
solution should move to the new solution s00 or not. In the begin-
ning, the new solution can only replace the actual solution if its
evaluation value is better. Once the first feasible solution is found,
deteriorating solutions may become incumbent solutions with
probability e�ððf ðs00 Þ�f ðsbestÞÞ=tÞ. t is linearly decreased at each step
based on the initial temperature (tinit) computed when the first fea-
sible solution is found. In Parragh et al. (2010), the initial temper-
ature was set such that if f(s00)/f(sbest) � 1 = 0.005, s00 is accepted
with a probability of 0.2. In this work, we have generalized these
values in order to conduct several tests with alternative values.
The variables tinitratio and tinitprob represent the 0.005 and 0.2 values
in Parragh et al. (2010) whereas #maxevals represents the maxi-
mum number of calls to the evaluation function and #evalcalls
the actual number of calls.
5.5. Update of the penalization terms

Finally, the penalization terms for the maximum pickup time,
maximum ride duration and maximum load violations (a, b and
c) are dynamically adjusted every time an incumbent solution is
identified. In case the incumbent solution violates a constraint,
its corresponding term is increased by the product factor (1 + d).
Otherwise, it is decremented by dividing it by (1 + d) as specified
in Algorithm 2. Moreover, in order to reduce cycling, every time
a new incumbent solution is found, this value is randomly chosen
between mindelta and maxdelta.
6. Experimental scenario

In this section, the selected problem instances are described in
detail. Then, the followed approach for selecting the values for the
parameters as well as the tuning method is analyzed. Finally, the
selection of the algorithms for the comparison of the results is
justified.
6.1. Problem instances

For analyzing the results of the proposed algorithm, four differ-
ent problems, having three instances per problem, have been pro-
posed. These problems represent different types of scenarios that
have been synthetically generated taking into account real distance
costs obtained for the city of San Francisco and believable user de-
mand patterns requested by the potential customers of the service
provided by this company.2
2 For obtaining the costs between a pair of points, a Geographic information system
(GIS) with the San Francisco cartography has been used.
For each instance, two different scenarios have been proposed:
a medium-scaled scenario consisting of 100 different requests and
a large-scaled scenario containing 1000 different requests. There-
fore, a total of 24 different instances have been optimized for this
study.3 The main characteristics of each of the proposed problems
are described below whereas Fig. 3 depicts these characteristics
graphically:

� Carnaval problem (C): This problem represents the demand that
could be generated during the San Francisco Carnaval Festival.
For this problem two types of demands have been simulated:
the requests that could arise from any address to several stops
around the Carnaval area and the requests that could demand a
transport from the Carnaval area stops to any other address. For
this task, two uniform distributions for each type of demand
have been used: one using the time range 10:30–17:00 for the
requests that go to the Carnaval stops and another one with
the time range 12:00–19:00 for the requests that return from
the Carnaval. To simulate the increase in the number of requests
that could arise due to the popularity of some performers, two
normal distributions centered at different times: 10:30 and
14:45 have been used. Moreover, a normal distribution cen-
tered at 18:00 has been used to represent the increase of
requests at the end of the Carnaval. The standard deviation
has been defined so that 99% of the requests are generated in
a half an hour range (centered around the aforementioned val-
ues). The distribution of the requests has been set so that 90% of
the requests are generated by the normal distributions whereas
the remaining 10% by the uniform distributions.
To represent the possible locations that could be demanded, a
discretization based on pickup points, similar to Raghavendra,
Krishnakumar, Muralidhar, Sarvanan, and Raghavendra (1992),
has been used. For this study, the set of transit stops available
from the San Francisco Municipal Transportation Agency
(SFMTA) has been used. This way, the city has been discretized
according to the real disposition of the stops used by the muni-
cipal transportation system. Eq. (6) presents the different distri-
butions used for generating the instances of this problem. In
this and in the following equations, the parameter values of
the distributions represent the minutes of the pickup values.
3 This
smuel
8

Carnaval �

Uð630;1020Þ Bus stops� Carnaval stopsð5%Þ
Nð630;5Þ Bus stops� Carnaval stopsð22:5%Þ
Uð720;1140Þ Carnaval stops� Bus stopsð5%Þ
Nð885;5Þ Bus stops� Carnaval stopsð22:5%Þ
Nð1080;5Þ Carnaval stops� Bus stopsð45%Þ

>>>>>><
>>>>>>:

ð6Þ

� Hospitals problem (HS): This problem represents the requests
that could arise from a set of hospitals located around the city
from both the patients and visitors to their homes addresses.
Since some patients could demand to be transported in a wheel-
chair, the vehicles should be specially adapted to perform this
task. Several well-known hospitals addresses around the city
have been used for representing the origin of the requests
whereas, for the destinations, the same discretized data used
in the first problem (i.e. the set of transit stops obtained from
the SFMTA) has been used. As presented in Eq. (7), a uniform
distribution set in the range 8:00–20:00 has been used to sim-
ulate the times of the requests.
Hospitals � Uð480;1259Þ Hospitals stops� Bus stops ð7Þ
� Hotels problem (HT): This problem simulates the requests that
could be generated from/to a set of hotels from different sets of
can be downloaded from the following URL: http://laurel.datsi.fi.upm.es/
as/research/benchmark/.
�

http://laurel.datsi.fi.upm.es/~smuelas/research/benchmark/
http://laurel.datsi.fi.upm.es/~smuelas/research/benchmark/


Fig. 3. Depiction of the proposed problems.
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customers. Three different types of request have been simulated
for this problem: (i) a large set of requests belonging to clients
attending a conference that could be located in any of the three
major convention centers of the city (70% of the total), (ii)
requests belonging to regular tourists that would like to visit
the most popular attractions of the city (20%) and (iii) a small
set of requests that would like to go to any possible location
of the city (10% of the total).
Two normal distributions have been used to simulate the
requests that could arise from the participants of the confer-
ences. The first one represents the distribution around the
start of the conferences per day and it has been set so that
99% of the requests fall into the range 08:15–08:45. The sec-
ond one, simulated also with a normal distribution, repre-
sents the requests of the return from the convention centers
to the hotel, where 99% of the requests fall into the range
18:45–19:15.
The second group has been simulated using a uniform distri-
bution to generate random values that belong to a different
time range depending on the direction of the route: 09:00–
20:00 if the clients go from the hotels to the attractions or
10:00–21:00 if the clients return from the attractions to the
hotels.
Finally, for the third group, two uniform distributions have
been used to represent both directions of the requests: from
the hotels to any location (8:00–22:00) and from any location
to the hotels (09:00–23:00). Similarly to the previous prob-
lems, to represent the set of possible origins (or destinations)
that demand to go to (or return from) the Carnaval, the tran-
sit stops from the SFMTA have been used. Eq. (8) briefly rep-
resents the generation of this problem
8

Hotels �

Uð480;1320Þ Hotels stops� Bus stopsð5%Þ
Nð510;5Þ Hotels stops� Convention centers stopsð35%Þ
Uð540;1200Þ Hotels stops� Attractions stopsð10%Þ
Uð540;1439Þ Bus stops� Hotels stopsð5%Þ
Uð600;1260Þ Attractions stops�Hotels stopsð10%Þ
Nð1140;5Þ Convention centers stops� Hotels stopsð35%Þ

>>>>>>>><
>>>>>>>>:

ð8Þ

� Music concert problem (M): In this problem, the demand that
could arise from the end of a music concert has been represented.
Therefore, and in contrast to the other problems, a large amount
of requests are going to collide in the same time frame, with the
same origin address and with a different destination (repre-
sented by the set of addresses of the transit stops obtained from
the SFMTA). This problem, as shown in Eq. (9), has been simu-
lated with a Gamma distribution with the parameters a = 2 and
k = 1 having its values being scaled by 60/9 and having an offset
of 22⁄60. The idea is to have the majority of the requests concen-
trated around the time frame 22:00–23:00 with a quick rise of the
demand in the first minutes of the interval and a continuous
decrease of the demand along the following minutes.
MusicConcert � 1320þ Cð2;1Þ � 60=9 Music concert stop
� Bus stops ð9Þ



Table 2
Number of available vehicles.

Problem #Requests Instance #Vehicles

Carnaval 100 i1 9
Carnaval 100 i2 9
Carnaval 100 i3 9
Hospitals 100 i1 8
Hospitals 100 i2 5
Hospitals 100 i3 5
Hotels 100 i1 10
Hotels 100 i2 11
Hotels 100 i3 10
Music 100 i1 11
Music 100 i2 11
Music 100 i3 12
Carnaval 1000 i1 65
Carnaval 1000 i2 65
Carnaval 1000 i3 64
Hospitals 1000 i1 42
Hospitals 1000 i2 42
Hospitals 1000 i3 42
Hotels 1000 i1 37
Hotels 1000 i2 35
Hotels 1000 i3 36
Music 1000 i1 87
Music 1000 i2 89
Music 1000 i3 87

Table 3
Overall results of the performance of the shakers.

Shaker #Improvements #Evals Improvements per
feval

Cum.
Value

C1 1.8680E + 03 7.6585E + 05 2.4397E � 03 0.43
C2 1.6650E + 03 2.5393E + 06 6.5568E � 03 0.54
S1 5.9900E + 02 1.4103E + 06 4.2473E � 04 0.62
GWOM2 9.5620E + 03 2.6543E + 07 3.6024E � 04 0.68
GBDM2 2.2410E + 03 7.8876E + 06 2.8411E � 04 0.73
S2 4.9500E + 02 2.0424E + 06 2.4236E � 04 0.78
GOS2 9.5600E + 02 5.1655E + 06 1.8507E � 04 0.81
S3 3.1000E + 02 1.6972E + 06 1.8265E � 04 0.84
ANSC 5.0760E + 03 2.8147E + 07 1.8033E � 04 0.87
S4 2.7300E + 02 2.0647E + 06 1.3222E � 04 0.90
C3 8.1000E + 02 7.0325E + 06 1.1151E � 04 0.92
S5 2.1600E + 02 2.0878E + 06 1.0345E � 04 0.93
S6 2.3200E + 02 2.3801E + 06 9.7473E � 05 0.95
GWOM4 2.8260E + 03 4.3062E + 07 6.5626E � 05 0.96
C4 6.5500E + 02 1.0311E + 07 6.3525E � 05 0.97
GDS2 9.9800E + 02 1.7390E + 07 5.7387E � 05 0.98
GOS4 3.1200E + 02 1.3553E + 07 2.3021E � 05 0.99
GWOM6 1.9200E + 03 1.0384E + 08 1.8489E � 05 0.99
C5 3.5800E + 02 4.9404E + 07 7.2464E � 06 0.99
GBDM4 6.9600E + 02 1.1360E + 08 6.1266E � 06 0.99
C6 2.1900E + 02 6.2820E + 07 3.4861E � 06 0.99
GOS6 1.7600E + 02 6.1836E + 07 2.8462E � 06 1.00
GDS4 1.8100E + 02 1.7243E + 08 1.0497E � 06 1.00
GBDM6 3.7700E + 02 1.3176E + 09 2.8612E � 07 1.00
GDS6 7.1000E + 01 1.5615E + 09 4.5469E � 08 1.00
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For all the problems, the maximum pickup time and the maxi-
mum ride duration constraints are represented by having to attend
each request in, at most, 15 min from the requested pickup time
with a maximum ride duration of the 300% of the time that would
take to travel directly from the origin to the destination of the
request.4 For each request its load, i.e., the number of passengers
that are picked up at a stop, has been generated randomly between
one and five passengers. All the vehicles have been set to a maxi-
mum capacity of 15 passengers and its number has been adjusted
based on the problem characteristics (Table 2 displays the selected
values). For the HS problem the capacity of the vehicles has been re-
duced to a maximum of 5 passengers since they need to be specially
adapted to transport patients in a wheelchair.

6.2. Parameter values

To properly tune the proposed algorithm, every constant that
appeared on the original description of the algorithm in Parragh
et al. (2010), has been parametrized and tested on a set of different
values. Since no knowledge of the suitable range of values could be
determined for each parameter, the selected criterion has analyzed
three values for each parameter: the original value proposed in
Parragh et al. (2010) as well as the corresponding half and double
values. For the maxdelta and mindelta parameters, the set of values
have been selected in order to avoid ranges of a single value when
using both parameters.

6.2.1. Shakers schemes
To select a good sequence of neighborhood classes, a VNS algo-

rithm containing all the shakers described in Section 5.2 with vary-
ing neighborhood sizes from one to six was executed in all the
proposed problems and #requests (25 executions per problem
and dimension). With the purpose of ranking the shakers the fol-
lowing performance measure was computed for each shaker: num-
ber of improvements to the solution divided by the number of
evaluations consumed (in all the proposed executions). Table 3
presents these results along with the cumulative proportion for
each position. It can be seen, for example, that the best results have
4 Which is far less than the absolute threshold of 90 minutes that was set in the
benchmark of Cordeau and Laporte (2003).
been obtained by the Chain neighborhood shaker of size 1 followed
by the same shaker of size two.

Based on these results, three different schemes were proposed:
(i) the complete set of shakers used in these experiments, (ii) the
subset of shakers that accumulate the 90% of the total value of
the proposed measure, i.e., S1-C1-S2-C2-GWOM2-GBDM2-GOS2-
S3-S4-ANSC and (iii) the same set of shakers of the previous case
but sorted according to the proposed measure instead of following
the VNS philosophy where the shakers are sorted according to its
neighborhood size, i.e., C1-C2-S1-GWOM2-GBDM2-S2-GOS2-S3-
ANSC-S4.

6.2.2. Stopping criterion
Each algorithm has been executed until a fixed number of route

evaluations is consumed. Since different algorithms have been
compared in the following sections, the selection of the number
of iterations as a stopping criterion would have created unfair com-
parisons. Furthermore, the number of calls to the evaluation func-
tion is also an inappropriate criterion due to the fact that some
perturbation methods (e.g. shakers) tend to modify more routes
per execution than others, having more routes to recompute their
window, duration and load values. This criterion approximates rea-
sonably well the expected execution time since the time spent in
the route evaluation function represents the 95% of the overall exe-
cution time of the proposed algorithms.

In particular, for all the tests carried out in this work, the stop-
ping criterion has been set to 20000 � #requests calls to the route
evaluation function. Furthermore, due to the stochasticity behavior
of the algorithms, 25 executions have been conducted per
algorithm.

6.3. Parameter tuning

For the experimentation a fractional design based on orthogonal
matrices according to the Taguchi method (Taguchi, Chowdhury, &
Wu, 2005) was chosen in order to conduct a study on the effect of
each parameter on the response variable. This method allows the
execution of a limited number of configurations and still reports
significant information on the best combination of parameter



Table 4
Parameters values tested. The final selected values by the Taguchi method are marked
in bold.

Parameter Values

tinitratio 0.0025, 0.005 and 0.01
tinitprob 0.1, 0.2 and 0.4
lsvalue1 1.01, 1.02 and 1.04
lsprobvalue 0.005, 0.01 and 0.02
lsvalue2 1.025, 1.05 and 1.1
min delta 0, 0.05 and 0.1
max delta 0.1, 0.2 and 0.4
shakersScheme first, second and third as defined in Section 6.2.1

Fig. 4. Main effects p

Fig. 5. Main effects
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values. In particular, 27 different configurations were tested for the
whole set of problems defined in Section 6.1 and with the param-
eter values presented in Table 4 using 25 executions per
configuration.

In the Taguchi method, the concept of signal-to-noise (SN) ratio
is introduced for measuring the sensitivity of the quality character-
istic being investigated in a controlled manner to those external
influencing factors (noise factors) not under control. The aim of
the experiment is to determine the highest possible SN ratio for
the results since a high value of the SN ratio implies that the signal
is much higher than the random effects of the noise factors. The SN
ratio estimate for the obtained values is defined in Eq. (10) where n
denotes the total number of instances and y1,y2, . . . ,yn the target
values (the f(s) values in this case).
lot for SN ratios.

plot for means.



Table 5
Algorithms selected for conducting the tests.

ID Algorithm Initialization

VNSN VNS (New proposal) New
VNSP-1 VNS (Parragh et al.) Original
VNSP-2 VNS (Parragh et al.) New
TS-1 TS (Cordeau and Laporte) Original
TS-2 TS (Cordeau and Laporte) New
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SN ¼ �10 log
1
n

Xn

t¼1

y2
t

 !
ð10Þ

Figs. 4 and 5 and display the main effects plot for the data means
and SN ratio, respectively. A main effect plot is a plot of the mean
response values at each level of a design parameter. This plot can
be used to compare the strength of the effects of the values of the
parameter. The objective is to select the values that obtain the high-
est SN ratio with a lower mean value.

From these graphs it can be seen that the influence of some
parameters is more determinant than others. For example, the val-
ues used for the lsprobvalue parameter have obtained very similar
results whereas in the shakersScheme parameter, the selection of
the first scheme (the one that uses all the shakers) has dramatically
affected the performance of the algorithm. It is also worth to men-
tion that in the shakersScheme parameter, the best results have
been obtained by the scheme that does not follow the VNS philos-
ophy but instead tries to apply each shaker based on the results of
a performance measure. Based on these results the algorithm was
Table 6
Mean values in 100-D.

Alg. Key C-1 C-2 C-3

VNSN f(s) 2.3903E + 04 2.4090E + 04 2.59P
iPi 4.3844E + 04 4.1711E + 04 4.42P
iLi 6.6912E + 04 6.7841E + 04 6.63

VNSP-1 f(s) 2.7237E + 04 2.6828E + 04 2.84P
iPi 4.5881E + 04 4.3725E + 04 4.28P
iLi 6.9184E + 04 7.0068E + 04 6.79

VNSP-2 f(s) 3.0904E + 04 3.0131E + 04 3.08P
iPi 4.4573E + 04 4.3909E + 04 4.44P
iLi 6.8114E + 04 7.0596E + 04 6.78

TS-1 f(s) 2.8475E + 04 2.8829E + 04 2.97P
iPi 4.2842E + 04 4.1614E + 04 4.11P
iLi 6.6862E + 04 6.8192E + 04 6.41

TS-2 f(s) 2.4645E + 04 2.4294E + 04 2.57P
iPi 4.5718E + 04 4.1001E + 04 4.45P
iLi 6.5988E + 04 6.7379E + 04 6.60

Alg. Key HT-1 HT-2 HT-

VNSN f(s) 2.0143E + 04 1.7197E + 04 2.05P
iPi 4.1446E + 04 4.0474E + 04 4.38P
iLi 4.5710E + 04 3.7416E + 04 4.74

VNSP-1 f(s) 2.2284E + 04 1.9374E + 04 2.27P
iPi 4.2266E + 04 4.1927E + 04 4.51P
iLi 4.6946E + 04 4.0197E + 04 4.91

VNSP-2 f(s) 2.2446E + 04 1.8677E + 04 2.30P
iPi 4.1036E + 04 3.8765E + 04 4.29P
iLi 4.6778E + 04 3.8478E + 04 4.97

TS-1 f(s) 2.3749E + 04 2.0653E + 04 2.35P
iPi 4.0811E + 04 3.9239E + 04 4.47P
iLi 4.4469E + 04 3.7693E + 04 4.62

TS-2 f(s) 1.9739E + 04 1.6805E + 04 2.03P
iPi 4.1345E + 04 4.0103E + 04 4.40P
iLi 4.5216E + 04 3.6739E + 04 4.67

inf. means an infeasible solution.
configured selecting the best value for each parameter. This selec-
tion is displayed in Table 4, where the selected values are marked
in bold.
6.4. Comparison with other algorithms

Two of the best algorithms from the literature, the TS of Cor-
deau and Laporte (2003) and the VNS of Parragh et al. (2010), pro-
posed for a similar DARP problem have been implemented and
tested in the same benchmark (TS-1 and VNSP-1). Furthermore,
in view of the strong influence in the final performance of the ini-
tialization method, these algorithms have also been executed with
the proposed initialization process (TS-2 and VNSP-2). The final
selection of algorithms for conducting the tests is displayed in
Table 5.
7. Results and discussion

The algorithms proposed in Table 5 were executed for a set of
24 different problems (three different instances on each of the four
different scenarios with 100 requests and another 12 instances
with 1000 requests) and for 25 executions each. Tables 6 and 7
present, for each algorithm, the mean values (of the 25 executions)
obtained by each algorithm for the evaluation function as well as
the sum of pickup and ride times. If an algorithm is unable to ob-
tain a feasible solution, this fact is represented in the table with the
abbreviation inf.
HS-1 HS-2 HS-3

39E + 04 5.3184E + 04 5.0890E + 04 5.1471E + 04
25E + 04 4.3600E + 04 4.8762E + 04 5.0409E + 04
18E + 04 7.6167E + 04 7.3580E + 04 7.7660E + 04

84E + 04 5.5577E + 04 5.2986E + 04 5.3307E + 04
97E + 04 4.6331E + 04 4.9810E + 04 5.1786E + 04
02E + 04 7.6575E + 04 7.2252E + 04 7.7637E + 04

34E + 04 5.8256E + 04 5.5746E + 04 5.7945E + 04
31E + 04 4.1716E + 04 4.7611E + 04 4.7681E + 04
47E + 04 7.4889E + 04 7.2821E + 04 7.8663E + 04

97E + 04 5.4447E + 04 5.1404E + 04 5.1998E + 04
18E + 04 4.5473E + 04 4.6631E + 04 5.1736E + 04
15E + 04 7.4974E + 04 7.3016E + 04 7.8011E + 04

66E + 04 5.4014E + 04 5.0752E + 04 5.1971E + 04
58E + 04 4.4215E + 04 4.9206E + 04 5.0650E + 04
16E + 04 7.4054E + 04 7.2761E + 04 7.9037E + 04

3 M-1 M-2 M-3

30E + 04 1.5189E + 04 1.5554E + 04 1.5312E + 04
60E + 04 4.4022E + 04 4.4294E + 04 4.4424E + 04
02E + 04 6.6627E + 04 6.7854E + 04 7.2651E + 04

05E + 04 inf. inf. inf.
00E + 04 inf. inf. inf.
02E + 04 inf. inf. inf.

91E + 04 3.0427E + 04 3.0856E + 04 4.5990E + 04
92E + 04 5.3231E + 04 5.3240E + 04 6.9151E + 04
00E + 04 8.4988E + 04 8.4915E + 04 1.0712E + 05

97E + 04 inf. inf. inf.
32E + 04 inf. inf. inf.
68E + 04 inf. inf. inf.

48E + 04 1.5842E + 04 3.5557E + 04 1.6579E + 04
01E + 04 4.2425E + 04 6.0646E + 04 4.3324E + 04
15E + 04 6.7850E + 04 8.8362E + 04 7.4562E + 04



Table 7
Mean values in 1000-D.

Alg. Key C-1 C-2 C-3 HS-1 HS-2 HS-3

VNSN f(s) 2.0327E + 05 1.9937E + 05 2.0487E + 05 4.3751E + 05 4.4327E + 05 4.3996E + 05P
iPi 4.4881E + 05 4.5210E + 05 4.5899E + 05 4.7771E + 05 4.7455E + 05 4.7827E + 05P
iLi 7.1993E + 05 6.8218E + 05 7.0915E + 05 8.3767E + 05 8.3023E + 05 8.2386E + 05

VNSP-1 f(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

VNSP-2 f(s) 2.4803E + 05 2.3735E + 05 2.4917E + 05 4.8579E + 05 4.9113E + 05 4.9101E + 05P
iPi 4.6515E + 05 4.6147E + 05 4.7197E + 05 4.7471E + 05 4.7294E + 05 4.7992E + 05P
iLi 7.7419E + 05 7.2788E + 05 7.6100E + 05 8.4671E + 05 8.3910E + 05 8.3358E + 05

TS-1 f(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

TS-2 f(s) 2.4757E + 05 2.3804E + 05 2.4959E + 05 4.7844E + 05 4.8569E + 05 4.8307E + 05P
iPi 4.7037E + 05 4.6646E + 05 4.7507E + 05 4.6901E + 05 4.6303E + 05 4.6867E + 05P
iLi 7.7477E + 05 7.3110E + 05 7.6200E + 05 8.4516E + 05 8.3501E + 05 8.2879E + 05

Alg. Key HT-1 HT-2 HT-3 M-1 M-2 M-3

VNSN f(s) 1.7217E + 05 1.7497E + 05 1.7843E + 05 1.6091E + 05 1.6368E + 05 1.6703E + 05P
iPi 4.7062E + 05 4.6206E + 05 4.6996E + 05 4.2898E + 05 4.2199E + 05 4.2825E + 05P
iLi 4.9709E + 05 4.9605E + 05 4.8777E + 05 6.6531E + 05 6.5665E + 05 6.6757E + 05

VNSP-1 f(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

VNSP-2 f(s) 1.7307E + 05 1.7627E + 05 2.1717E + 05 1.7367E + 05 1.7765E + 05 1.8742E + 05P
iPi 4.7247E + 05 4.6521E + 05 5.0852E + 05 4.3317E + 05 4.3327E + 05 4.4084E + 05P
iLi 5.0354E + 05 5.0282E + 05 5.3184E + 05 7.1554E + 05 7.1767E + 05 7.3010E + 05

TS-1 f(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

TS-2 f(s) 1.7334E + 05 1.7590E + 05 1.9063E + 05 1.7158E + 05 1.7852E + 05 1.9373E + 05P
iPi 4.6699E + 05 4.6918E + 05 4.7856E + 05 4.3199E + 05 4.3379E + 05 4.5044E + 05P
iLi 5.0307E + 05 5.0467E + 05 5.0839E + 05 7.1565E + 05 7.2003E + 05 7.3063E + 05

inf. means an infeasible solution.

Table 8
Average ranking of the mean values.

Ranking

VNSN 1.20
TS-2 2.04
VNSP-2 2.75

Table 9
Statistical validation for the mean values (VNSN is the control algorithm).

VNSN vs. Wilcoxon p-value

VNSP-2 5.96E � 08
p

TS-2 1.23E � 05
p

Wilcoxon p-value with FWER: VNSN vs. VNSP-2, TS-2 1.24 � 05
p

p
means that there are statistical differences with significance level a = 0.05.

S. Muelas et al. / Expert Systems with Applications 40 (2013) 5516–5531 5527
First, the ability to generate feasible solutions was analyzed.
From the aforementioned tables, it can be seen that the proposed
initialization method is the only method that is able to obtain a
100% value of feasible solutions for both 100 and 1000 requests.
Furthermore, due to the special characteristics of the problems,
the original initialization method of the VNSP-1 algorithm is un-
able to find a feasible solution for the Music concert problem. This
initialization method constructs the initial set of routes based on
the spatial relationships of the requests. If there are several re-
quests with similar origin and destination, this method has the dis-
advantage that tends to group all the related requests in a single
route, creating considerably large routes that are, in general, harder
to optimize (and consume more evaluations per local search call)
than the solutions obtained by a random approach (as happens
in the TS-1 algorithm). This effect is dramatically enlarged in the
1000 requests problems, where the initialization methods of the
VNSP-1 and TS-1 algorithms are unable to obtain a single feasible
solution. Due to the high dimensionality of these problems, it is
crucial to start with a feasible (or almost feasible solution). Other-
wise, the algorithm is not capable of constructing a satisfactory
solution.

The second analysis consisted in comparing the overall results
obtained in all the problems. As previously mentioned, Tables 6
and 7 display the results of the evaluation function as well as the
sum of the pickup

P
iPi

� �
and ride time

P
iLi

� �
values for 100 and

1000 requests, respectively. For each algorithm and problem, the
best results for each measure are marked in bold. Although the
evaluation function is proposed to optimize the cost of the route
(while satisfying the proposed constraints), the pickup and ride
time values have also been included in the table in order to have
a better insight of the service provided to the clients.

The first thing that can be observed from these results, is that
for the HS problem, the algorithms have obtained higher values
than in the other problems. This results seems logical since the re-
quests in the HS problem are more sparsed in time than in the
other proposed problems and, therefore, it is harder to group the
clients in the same route in order to avoid traversing the same path
several times. The next pattern that can be observed is that, in gen-
eral, all the solutions from the proposed algorithms have higher Li

values than their corresponding Pi values and that this behavior is
independent of the initialization method, algorithm and evaluation



Table 10
Best values in 100-D.

Alg. Key C-1 C-2 C-3 HS-1 HS-2 HS-3

VNSN f(s) 2.2845E + 04 2.2546E + 04 2.4676E + 04 5.2510E + 04 4.9403E + 04 4.9880E + 04P
iPi 3.6970E + 04 3.6792E + 04 3.6045E + 04 3.7334E + 04 3.7922E + 04 4.1838E + 04P
iLi 6.2046E + 04 6.2446E + 04 6.1149E + 04 7.0998E + 04 7.0005E + 04 7.4423E + 04

VNSP-1 f(s) 2.5644E + 04 2.4701E + 04 2.7119E + 04 5.4070E + 04 5.1234E + 04 5.1669E + 04P
iPi 3.8660E + 04 3.5707E + 04 3.5675E + 04 2.9928E + 04 4.0885E + 04 4.0596E + 04P
iLi 6.2173E + 04 6.6236E + 04 6.3904E + 04 7.1061E + 04 6.7443E + 04 7.4083E + 04

VNSP-2 f(s) 2.4887E + 04 2.5606E + 04 2.6089E + 04 5.3807E + 04 5.1466E + 04 5.3378E + 04P
iPi 3.6086E + 04 3.5232E + 04 3.6213E + 04 2.7505E + 04 3.5285E + 04 4.2035E + 04P
iLi 6.4934E + 04 6.7000E + 04 6.4101E + 04 6.8840E + 04 6.7857E + 04 7.2927E + 04

TS-1 f(s) 2.7014E + 04 2.6837E + 04 2.7969E + 04 5.2946E + 04 4.9618E + 04 5.0580E + 04P
iPi 3.8294E + 04 3.3972E + 04 3.2245E + 04 3.7858E + 04 3.5275E + 04 4.5865E + 04P
iLi 6.2538E + 04 6.3931E + 04 5.9628E + 04 7.1107E + 04 6.7414E + 04 7.4071E + 04

TS-2 f(s) 2.3491E + 04 2.2704E + 04 2.4644E + 04 5.3169E + 04 4.9553E + 04 5.0728E + 04P
iPi 3.8406E + 04 3.6230E + 04 3.8184E + 04 3.3495E + 04 4.0840E + 04 3.7685E + 04P
iLi 6.2881E + 04 6.2963E + 04 5.9881E + 04 6.9401E + 04 6.8505E + 04 7.1460E + 04

Alg. Key HT-1 HT-2 HT-3 M-1 M-2 M-3

VNSN f(s) 1.9085E + 04 1.6386E + 04 1.9527E + 04 1.3871E + 04 1.4114E + 04 1.3762E + 04P
iPi 3.5261E + 04 3.4095E + 04 3.8756E + 04 4.0933E + 04 3.9249E + 04 3.9124E + 04P
iLi 4.1958E + 04 3.3552E + 04 4.2344E + 04 6.1266E + 04 5.8337E + 04 6.8238E + 04

VNSP-1 f(s) 2.1279E + 04 1.8352E + 04 2.1315E + 04 inf. inf. inf.P
iPi 3.7372E + 04 3.6120E + 04 3.6786E + 04 inf. inf. inf.P
iLi 4.3724E + 04 3.7317E + 04 4.5035E + 04 inf. inf. inf.

VNSP-2 f(s) 2.0480E + 04 1.7712E + 04 2.1340E + 04 1.5780E + 04 1.7444E + 04 1.4268E + 04P
iPi 3.4611E + 04 3.3338E + 04 3.6470E + 04 3.4046E + 04 3.6527E + 04 3.3678E + 04P
iLi 4.3755E + 04 3.6309E + 04 4.6864E + 04 6.4345E + 04 6.6202E + 04 7.1488E + 04

TS-1 f(s) 2.2224E + 04 1.8680E + 04 2.2079E + 04 inf. inf. inf.P
iPi 3.3815E + 04 3.5405E + 04 3.7924E + 04 inf. inf. inf.P
iLi 4.0340E + 04 3.4414E + 04 4.1487E + 04 inf. inf. inf.

TS-2 f(s) 1.9098E + 04 1.6348E + 04 1.8926E + 04 1.4903E + 04 1.4650E + 04 1.4861E + 04P
iPi 3.3460E + 04 3.4881E + 04 3.7675E + 04 3.6860E + 04 3.4614E + 04 3.7471E + 04P
iLi 4.2522E + 04 3.4473E + 04 4.3789E + 04 5.9984E + 04 6.3075E + 04 6.6607E + 04

inf. means an infeasible solution.
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function. Therefore, the clients tend to spend more time during
their ride times than waiting at the pickup stops.

Regarding the performance of each algorithm, it is clear that the
proposed algorithm has obtained the best overall results, especially
with the difficult 1000 requests problems where the best results
were found in 12 out of 12 problems. As expected, the TS-1 algo-
rithm (Cordeau & Laporte, 2003) has obtained the worst results
of the comparison, mainly, due to the difference in the initializa-
tion function.

It is worth pointing out the surprising performance of the TS-2
algorithm in 100-D where, with merely the change of the initializa-
tion procedure, it has obtained the best mean results in 5 out 12
problems. With the original VNS the addition of the new initializa-
tion mechanism has not been so determinant in the results ob-
tained but has allowed it to find feasible solutions in all the
problems where the VNSP-1 algorithm was unable to do so.

In order to provide a proper statistical validation of the results,
the distribution of all the results was first compared with the
Friedman test to detect significant differences among the algo-
rithms. The VNSP-1 and TS-1 algorithms were not included in this
study since not all of their results were feasible. A value of 28.58
was obtained for the chi-squared statistic, which corresponds with
a p � value of 6.21E � 07, confirming the existence of significant
differences between the algorithms. According to this test, the
algorithms were ranked as shown in Table 8, where, once again,
the proposed algorithm obtained the best results. Then, the Wilco-
xon signed-rank test was used for comparing the results, adjusting
the obtained p � values to take into account the Family-Wise Error
Rate (FWER) when conducting multiple comparisons. The results
of these tests are reported in Table 9, and show, for all of them, that
there is statistical evidence to state that the proposed VNSN algo-
rithm is significantly better than the remaining algorithms.

The previous analysis gave us an insight of the central tendency
behavior of each algorithm. Since it is a common usage to conduct
several executions and select the best routing solution among all
the results, an interesting complementary study is to analyze the
performance of the best results that each algorithm returned. Ta-
bles 10 and 11 display the best results. In these tables, the pro-
posed algorithm has achieved similar better results, with 9 and
11 (out of 12 problems) best results in 100 and 1000 requests,
respectively. Similarly, these results were validated following the
previous procedure. The Friedman test returned a p � value of
1.11E � 07 and the associated ranks are displayed in Table 12. As
shown in Table 13, the Wilcoxon tests also confirmed the signifi-
cance of the results. Therefore, it is confirmed that the conducted
modifications to the VNS algorithm have obtained not only the best
results from a central point of view but also from an absolute point
of view.

7.1. Improving the shakers scheme

Once it was proved the beneficial effects of the proposals, we
tried to improve even more the VNS algorithm by looking for
new ways for combining the shakers. As it can be seen in Table 3,
there are some shakers, such as GWOM-4, that have a high number
of improvements but that were not selected with the previous cri-
terion due to their high number of evaluations consumed. On the
other hand, there were some shakers that were being placed at



Table 11
Best values in 1000-D.

Alg. Key C-1 C-2 C-3 HS-1 HS-2 HS-3

VNSN f(s) 1.9590E + 05 1.9456E + 05 1.9744E + 05 4.2821E + 05 4.3324E + 05 4.2772E + 05P
iPi 4.2853E + 05 4.2723E + 05 4.3569E + 05 4.4453E + 05 4.3919E + 05 4.3104E + 05P
iLi 6.9961E + 05 6.6210E + 05 6.8203E + 05 8.2224E + 05 8.1139E + 05 8.0999E + 05

VNSP-1 c(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

VNSP-2 f(s) 2.4242E + 05 2.3305E + 05 2.4396E + 05 4.7996E + 05 4.8067E + 05 4.7901E + 05P
iPi 4.3484E + 05 4.2750E + 05 4.4551E + 05 4.5194E + 05 4.5344E + 05 4.5527E + 05P
iLi 7.3863E + 05 7.1159E + 05 7.2597E + 05 8.3409E + 05 8.2593E + 05 8.1391E + 05

TS-1 f(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

TS-2 f(s) 2.4174E + 05 2.3248E + 05 2.4131E + 05 4.6567E + 05 4.7653E + 05 4.7401E + 05P
iPi 4.5000E + 05 4.4574E + 05 4.5667E + 05 4.4677E + 05 4.4464E + 05 4.3470E + 05P
iLi 7.6526E + 05 7.0802E + 05 7.3636E + 05 8.3019E + 05 8.1950E + 05 8.1312E + 05

Alg. Key HT-1 HT-2 HT-3 M-1 M-2 M-3

VNSN f(s) 1.6719E + 05 1.7014E + 05 1.7437E + 05 1.5153E + 05 1.5655E + 05 1.5935E + 05P
iPi 4.5342E + 05 4.4073E + 05 4.4832E + 05 4.1149E + 05 4.0567E + 05 4.0534E + 05P
iLi 4.7891E + 05 4.8018E + 05 4.7212E + 05 6.2439E + 05 6.2211E + 05 6.3563E + 05

VNSP-1 c(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

VNSP-2 f(s) 1.6719E + 05 1.7220E + 05 1.7527E + 05 1.6649E + 05 1.7068E + 05 1.7300E + 05P
iPi 4.5424E + 05 4.4273E + 05 4.5265E + 05 4.1578E + 05 4.1799E + 05 4.1512E + 05P
iLi 4.9588E + 05 4.9036E + 05 4.8255E + 05 6.9072E + 05 6.9023E + 05 6.9617E + 05

TS-1 f(s) inf. inf. inf. inf. inf. inf.P
iPi inf. inf. inf. inf. inf. inf.P
iLi inf. inf. inf. inf. inf. inf.

TS-2 f(s) 1.6784E + 05 1.7053E + 05 1.7366E + 05 1.6448E + 05 1.7240E + 05 1.7552E + 05P
iPi 4.5081E + 05 4.5057E + 05 4.5006E + 05 4.0748E + 05 4.0962E + 05 4.2134E + 05P
iLi 4.8720E + 05 4.9225E + 05 4.8497E + 05 6.8988E + 05 6.8017E + 05 6.9033E + 05

inf. means an infeasible solution.

Table 12
Average ranking of the best values.

Ranking

VNSN 1.18
TS-2 2.00
VNSP-2 2.81

Table 13
Statistical validation for the bests values (VNSN is the control algorithm).

VNSN vs. Wilcoxon p-value

VNSP-2 1.19E � 07
p

TS-2 5.38E � 05
p

Wilcoxon p-value with FWER: VNSN vs. TS-2, VNSP-2 5.39E � 05
p

p
means that there are statistical differences with significance level a = 0.05.
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the higher (or better) positions in the table although the number of
times that they improved a solution was considerably smaller than
several of the shakers placed in inferior (or worse) positions be-
cause they had a small number of evaluations consumed. Since
the shakers with a high number of improvements could be benefi-
cial for finding better solutions, it was decided to take into account
the number of improvements as part of the criterion for selecting
the set of shakers. The new criterion, defined in Eq. (11), combines
both the percentage normalization of the number of improvements
per #evaluations consumed as well as the percentage normaliza-
tion of the number of improvements.
newmeasurei ¼
1
2
� #improvementsi=#evalsiP

i#improvementsi=#evalsi
þ #improvementsiP

i#improvementsi

� �
ð11Þ

The results of the performance of the shakers according to new
criterion are shown in Table 14, where it can be seen that some
shakers that were discarded with the previous criterion, such as
GWOM-4, are now placed at the top positions of the table. Based
on this criterion, two new shakers schemes were defined: (i) the
subset of shakers that accumulats the 90% of the total value of
the measure and sorted based on this value, i.e., C1-GWOM2-
ANSC-C2-GBDM2-GWOM4-S1-GOS2-GWOM6-S2-C3-S2-GDS2
and (ii) a slightly reduced version where only shakers that accumu-
late the 80% of the total value have been selected, i.e, C1-GWOM2-
ANSC-C2-GBDM2-GWOM4-S1-GOS2.

Based on the new schemes, two new VNS algorithms were cre-
ated using the same set of parameter values of VNSN and naming
them as VNSN-2 for the VNS using the first of the new schemes and
VNSN-3 for the second. These algorithms were tested with the
same set of problems and compared against the same algorithms
of the previous Section. Tables 15 and 16 present the results of
the new algorithms for 100 and 1000 requests. As with the previ-
ous tables, the best results among all the algorithms proposed in
the paper are marked in bold.

From these results it can be seen that the new algorithms have
obtained outstanding results in both 100 and 1000 dimensions
having the VNSN-2 algorithm obtained the best results in 6 out
of 12 problems in 100 dimensions and having VNSN-3 obtained
the best results in all the problems in 1000 dimensions. It seems
that the larger set of shakers of VNSN-2 has been more beneficial
to explore new solutions with the 100 requests problems. On the



Table 14
Overall results of the performance of the shakers combining both the #improvements per evaluation as well as the number of improvements.

Shaker #Improvements per feval #Improvements New Measure Cum. Value

C1 2.4397E � 03 1.8680E + 03 0.48 0.244
GWOM2 3.6024E � 04 9.5620E + 03 0.35 0.420
ANSC 1.8033E � 04 5.0760E + 03 0.18 0.513
C2 6.5568E � 03 1.6650E + 03 0.16 0.596
GBDM2 2.8411E � 04 2.2410E + 03 0.11 0.655
GWOM4 6.5626E � 05 2.8260E + 03 0.09 0.704
S1 4.2473E � 04 5.9900E + 02 0.09 0.750
GOS2 1.8507E � 04 9.5600E + 02 0.06 0.781
GWOM6 1.8489E � 05 1.9200E + 03 0.06 0.812
S2 2.4236E � 04 4.9500E + 02 0.05 0.841
C3 1.1151E � 04 8.1000E + 02 0.04 0.863
S3 1.8265E � 04 3.1000E + 02 0.04 0.884
GDS2 5.7387E � 05 9.9800E + 02 0.04 0.904
S4 1.3222E � 04 2.7300E + 02 0.03 0.920
C4 6.3525E � 05 6.5500E + 02 0.03 0.935
S5 1.0345E � 04 2.1600E + 02 0.02 0.948
S6 9.7473E � 05 2.3200E + 02 0.02 0.960
GBDM4 6.1266E � 06 6.9600E + 02 0.02 0.971
GOS4 2.3021E � 05 3.1200E + 02 0.01 0.978
C5 7.2464E � 06 3.5800E + 02 0.01 0.984
GBDM6 2.8612E � 07 3.7700E + 02 0.01 0.990
C6 3.4861E � 06 2.1900E + 02 0.00 0.993
GOS6 2.8462E � 06 1.7600E + 02 0.00 0.996
GDS4 1.0497E � 06 1.8100E + 02 0.00 0.999
GDS6 4.5469E � 08 7.1000E + 01 0.00 1.000

Table 15
Mean values of the new algorithms in 100-D.

Alg. Key C-1 C-2 C-3 HS-1 HS-2 HS-3

VNSN-2 f(s) 2.3769E + 04 2.3394E + 04 2.5402E + 04 5.3312E + 04 5.0776E + 04 5.1436E + 04P
iPi 4.4352E + 04 4.0996E + 04 4.5201E + 04 4.4459E + 04 4.9610E + 04 5.1673E + 04P
iLi 6.6828E + 04 6.8226E + 04 6.6689E + 04 7.5112E + 04 7.3705E + 04 7.7196E + 04

VNSN-3 f(s) 2.3819E + 04 2.3354E + 04 2.5726E + 04 5.3194E + 04 5.1128E + 04 5.1444E + 04P
iPi 4.3962E + 04 4.2510E + 04 4.3933E + 04 4.2135E + 04 5.0240E + 04 5.0482E + 04P
iLi 6.6827E + 04 6.7895E + 04 6.6758E + 04 7.5101E + 04 7.4637E + 04 7.7112E + 04

Alg. Key HT-1 HT-2 HT-3 M-1 M-2 M-3

VNSN-2 f(s) 1.9623E + 04 1.7145E + 04 2.0513E + 04 1.5164E + 04 1.5426E + 04 1.5469E + 04P
iPi 4.0987E + 04 4.0642E + 04 4.3904E + 04 4.4875E + 04 4.3535E + 04 4.5124E + 04P
iLi 4.5907E + 04 3.7439E + 04 4.7089E + 04 6.7010E + 04 6.8194E + 04 7.2362E + 04

VNSN-3 f(s) 1.9895E + 04 1.7204E + 04 2.0615E + 04 1.5229E + 04 1.5715E + 04 1.5469E + 04P
iPi 4.1436E + 04 4.0758E + 04 4.2845E + 04 4.4856E + 04 4.4105E + 04 4.4839E + 04P
iLi 4.5758E + 0 3.7326E + 04 4.7644E + 04 6.6918E + 04 6.7460E + 04 7.3678E + 04

Table 16
Mean values of the new algorithms in 1000-D.

Alg. Key C-1 C-2 C-3 HS-1 HS-2 HS-3

VNSN-2 f(s) 1.9925E + 05 1.9396E + 05 1.9910E + 05 4.3797E + 05 4.4277E + 05 4.3922E + 05P
iPi 4.5367E + 05 4.5354E + 05 4.5407E + 05 4.7449E + 05 4.6703E + 05 4.7581E + 05P
iLi 7.2298E + 05 6.8358E + 05 7.1221E + 05 8.4207E + 05 8.3164E + 05 8.2916E + 05

VNSN-3 f(s) 1.9585E + 05 1.9245E + 05 1.9690E + 05 4.3354E + 05 4.3811E + 05 4.3509E + 05P
iPi 4.5297E + 05 4.5508E + 05 4.5387E + 05 4.7936E + 05 4.6704E + 05 4.7399E + 05P
iLi 7.1943E + 05 6.8186E + 05 7.0413E + 05 8.3986E + 05 8.3061E + 05 8.2887E + 05

Alg. Key HT-1 HT-2 HT-3 M-1 M-2 M-3

VNSN-2 f(s) 1.7157E + 05 1.7400E + 05 1.7728E + 05 1.5606E + 05 1.6129E + 05 1.6503E + 05P
iPi 4.7214E + 05 4.5944E + 05 4.7165E + 05 4.2508E + 05 4.2299E + 05 4.2757E + 05P
iLi 4.9619E + 05 4.9153E + 05 4.8389E + 05 6.5417E + 05 6.4982E + 05 6.6278E + 05

VNSN-3 f(s) 1.7112E + 05 1.7338E + 05 1.7635E + 05 1.5428E + 05 1.5922E + 05 1.6248E + 05P
iPi 4.7178E + 05 4.6206E + 05 4.6883E + 05 4.2568E + 05 4.2544E + 05 4.2806E + 05P
iLi 4.9523E + 05 4.9173E + 05 4.8297E + 05 6.5103E + 05 6.4532E + 05 6.5037E + 05

inf. means an infeasible solution.
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Table 17
Average ranking of the mean values.

Ranking

VNSN-2 1.83
VNSN-3 1.87
VNSN 2.79
TS-2 3.75
VNSP-2 4.75

Table 18
Statistical validation for the mean values (VNSN-2 is the control algorithm).

VNSN-2 vs. Wilcoxon p-
value

VNSN 5.38E � 05
p

VNSP-2 6.63E � 10
p

TS-2 8.04E � 05
p

VNSN-3 9.92E � 01

Wilcoxon p-value with FWER: VNSN-2 vs. VNSN,VNSP-2,
TS-2

5.54 � 05
p

Wilcoxon p-value with FWER: VNSN-3 vs. VNSN,VNSP-2,
TS-2

3.78 � 04
p

p
means that there are statistical differences with significance level a = 0.05.
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other hand, with 1000 requests, the subset of shakers of VNSN-3
has consumed more effectively the assigned evaluations and has
been able to find better solutions in all the proposed problems.

To validate the results, the same statistical procedures of Sec-
tion 7 were conducted with the data. The results are shown in Ta-
bles 17 and 18. In these tables, it can be seen that both algorithms
have obtained the best results among all the algorithms that have
been executed, being these differences statistically significant.
VNSN-2 has obtained a better average ranking than VNSN-3
although the difference is so small that, as proved by the Wilcoxon
test, there is no significant difference between the two algorithms.
It seems that VNSN-2 works better with the low dimensional prob-
lems whereas VNSN-3 has obtained better results with the 1000
dimensions problems. Both approaches have demonstrated that
the new criterion for constructing the shaker scheme has been
quite successful in improving the results.
8. Conclusions

In this paper a new algorithm has been presented for the opti-
mization of the service of a DRT transportation company. This algo-
rithm, based on a VNS algorithm, has undergone several
modifications in order to obtain the best results for the proposed
problem. Concretely, the following proposals have been presented:
a new initialization procedure centered around the objective func-
tion that tries to minimize the violation of the constraints, several
neighborhood classes that use a greedy approach for conducting
the perturbation of the solution and different schemes for combin-
ing the neighborhood classes that use new criteria not based on the
size of the neighborhood (as has been traditionally used with VNS
algorihtms). Moreover, the proposed algorithm has been general-
ized in several key parts to conduct a formal tuning of all of its
parameters by means of the Taguchi method. The resultant algo-
rithm has been tested over a broad set of synthetic problems that
have been generated with a GIS software and statistical procedures
to simulate real demanding scenarios in the city of San Francisco.
Two points of view have been used for analyzing the results:
one based in the central tendency of the executions and another
one based on the best result of all the executions. The results have
been compared against two state of the art algorithms of the liter-
ature and have been formally validated with the help of Friedman
and Wilcoxon tests, proving, for both points of view, that the pro-
posed algorithm has obtained the best results.
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