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1. Introduction

Prediction of a secondary structure of a protein
from its amino acid sequence remains an impor-
tant and difficult task. Not only can successful

predictions provide a starting point for direct
tertiary structure modelling, but they can also sig-
nificantly improve sequence analysis and sequence-
structure threading for aiding in structure and
function determination [1].

Since early attempts to predict secondary struc-
ture, most effort have focused on development of
mappings from a local window of residues in the
sequence to the structural state of the central
residue in the window (see Fig. 1). A large number
of methods for estimating such mappings have been
developed.
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Summary Successful secondary structure predictions provide a starting point for
direct tertiary structure modelling, and also can significantly improve sequence
analysis and sequence-structure threading for aiding in structure and function deter-
mination. Hence the improvement of predictive accuracy of the secondary structure
prediction becomes essential for future development of the whole field of protein
research.

In this work we present several multi-classifiers that combine the predictions of the
best current classifiers available on Internet. Our results prove that combining the
predictions of a set of classifiers by creating composite classifiers is a fruitful one. We
have created multi-classifiers that are more accurate than any of the component
classifiers. The multi-classifiers are based on Bayesian networks. They are validated
with 9 different datasets. Their predictive accuracy results outperform the best
secondary structure predictors by 1.21% on average.

Our main contributions are: (i) we improved the best know predictive accuracy by
1.21%, (ii) our best results have been obtained with a new semi na½̈ve Bayes approach
named Pazzani-EDA and (iii) our multi-classifiers combine results of previously build
classifiers predictions obtained through Internet, thanks to our development of a Java
application.
� 2004 Elsevier B.V. All rights reserved.

0933–3657/$ — see front matter � 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.artmed.2004.01.009



Methods predicting protein secondary structure
have improved substantially in the 1990s through
the use of machine learning methods and evolu-
tionary information from the divergence of proteins
in the same structural family. At the alignment
level, the increase of the size of databases and
the ability to produce profiles that include remote
homologs using PSI-BLAST [2] have also contributed
to performance improvement [3,4].

In this paper we present a protein secondary
structure prediction multi-classifier system based
on the stacked generalization paradigm [5] in which
a number of classifier layers are designed to be part
of a global multi-classifier, where the upper layer
classifiers receive the class predicted by its imme-
diately previous layer as input. The multi-classifier
system has been programmed as a JSP Web applica-
tion using several Java classes.

During the past several years, in a variety of
application domains, researches in machine learn-
ing have reignited the effort to learn how to create
and combine an ensemble classifiers. This research
has the potential to apply accurate composite
classifiers to real world problems by intelligently
combining known learning algorithms.

Classifier combination falls within the supervised
learning paradigm. This task orientation assumes
that we have been given a set of training examples,
which are customarily represented by feature vec-
tors (training records). Each training example is
labelled with a class target, which is a member of
a finite, and usually small set of class labels. The
goal of supervised learning is to predict the class
labels of examples that have not been seen.

Combining the predictions of a set of component
classifiers has shown to yield accuracy higher than
the most accurate component on long variety of
supervised classification problems [6].

We have used nine main datasets to train and test
our approach: a training set, the PDB_SELECT list [7]
of March 2002 (HS1771), and eight test sets (RS126
[8], CB513[9] and 6 different datasets from the EVA
project [10]).

We have developed a two layer classification
system in which we use a set of protein secondary
structure prediction servers of Internet as layer-0
single classifiers, and we induce, over predictions
made, different Bayesian network structures that
acts as a consensed voting system at layer-1.

The rest of the paper is organized as follows.
Section 2 explains the multi-classifier schema.
Section 3 describes the datasets for the level-0
classifiers. In Section 4 we present in detail the
statistics used to compare the secondary structure
servers and the multi-classifiers. Section 5 describes
the six level-0 classifiers used in construction of our
multi-classifiers. Section 6 describes how to obtain
the datasets for the level-1 classifiers (i.e. multi-
classifiers). Section 7 contains a description of the
level-1 multi-classifiers. In Section 8 we shortly
discuss the experimental results. Finally, Section
9 contains the conclusion and the future research
plans.

2. Multi-classifier schema

We present a multi-classifier for protein secondary
structure prediction based on a straightforward
approach that has been termed stacked general-
ization by Wolpert [5]. In its most basic form, its
layered architecture consists of a set of component
classifiers that form the first layer. Wolpert [5] calls
the component classifiers the level-0 classifiers and
the combining classifier, the level-1 classifier. In
this work we introduce 7 different level-1 classi-
fiers. See Fig. 2 for the schema of our stacked
generalization classifiers.

Figure 1 Mappings from a local window of residues in
the sequence to the structural state of the central
residue in the window.

Figure 2 Multi-classifier schema.
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Stacked generalization is a framework for classi-
fier combination in which each layer of classifiers is
used to combine the predictions of the classifiers of
its preceding layer. A single classifier at the top-
most level outputs the ultimate prediction. In our
approach, we use a two-level system that has a
Bayesian network as this single, combining classifier
and this Bayesian network is used to perform the
last classification step.

3. Datasets for protein secondary
structure prediction

We have used nine different datasets to develop and
test our multi-classifiers. They are:

� HS1771: The dataset HS1771, with 1771 sequen-
ces, has been used for training and testing our
multi-classifiers. This dataset is the PDB_SELECT
list [7] published on March, 2002. The PDB_SELECT
lists are intended to save time and effort by offer-
inga representative selection of thePDBdatabase,
that is currently a factor of eight smaller than the
entire database.

� CB513: This dataset of 513 sequences was devel-
oped by Cuff and Barton [9] with the aim of
evaluating and improving protein secondary
structure prediction methods. It is, perhaps,
one of the most used independent dataset in this
field.

� RS126: This original set of 513 sequences by Rost
and Sander [8], currently correspond to a total of
23,363amino acids positions (this number has
varied slightly over the years due to changes
and corrections in the PDB [11]).

� EVA1, . . ., EVA6: 6 novel test sets are provided by
the datasets available from the real-time evalua-
tion experiment called EVA [10], which compares
a number of prediction servers on a regular basis
using the sequences deposited in the PDB every
week. In particular we have used all the datasets
labelled ‘‘common1’’ to ‘‘common6’’ published
on 19/10/2002.

4. Statistics in the PSSP problem

To validate the results obtained in the methods of
secondary structure prediction, a set of statistic
factors has been defined.

In order to compute these statistics, a 3 � 3-sized
confusion matrix has been used, where the rows
show the states of the actual secondary structure
(obtained through the DSSP program [12]) and
the columns describe the states of the secondary

structure predicted by the classifier. Table 1 shows
the elements of the confusion matrix.

The following values are calculated from the
confusion matrix:

� obsH: represents the number of residues observed
in state helix (H), that is, the states H that appear
in the real structure,

� obsE: represents the number of residues observed
in state b strand (E),

� obsL: represents the number of residues observed
in state coil (L),

� prdH: represents the number of residues pre-
dicted in state helix (H),

� prdE: represents the number of residues pre-
dicted in state b strand (E),

� prdL: represents the number of residues pre-
dicted in state coil (L),

� Nres: represents the total number of residues of
the chain, that is, the length of the sequence.

In a mathematical representation, we observe
that:

Mij denotes the number of residues observed in
state i and predicted in state j, with i; j 2 fH; E; Lg

The total number of residues observed in state i
is:

obsi ¼
X

j2fH;E;Lg
Mij (1)

The total number of residues predicted in state j
is:

prdj ¼
X

i2fH;E;Lg
Mij (2)

and the total number of states in the sequence is:

Nres ¼
X

i

obsi ¼
X

j

prdj ¼
X
i;j

Mij (3)

4.1. Three-state prediction accuracy: Q3

This is the measure used traditionally for evaluating
the accuracy of secondary structure prediction.
This parameter represents the total number of
residues correctly predicted. In order to calculate
it, the states helix, b strand and coilcorrectly pre-
dicted are added (sum of all Mii), dividing this sum

Table 1 Confusion matrix for the PSSP problem

Observed Predicted

H E L

H obsH

E obsE

L obsL
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by the total number of residues of the observed
sequence (Nres) and expressing the result as percen-
tage. Q3 is obtained as:

Q3 ¼ 100
1

Nres

X3

i¼1

Mii (4)

4.2. Per-state percentages

To define the accuracy for a particular state (helix,
strand, coil), there are two possible variants:

� Percentage of all residues observed in a particular
state (%obs).

Q%obs
i ¼ 100

Mii

obsi
(5)

In this way, for example, it is possible to
calculate the percentage of residues observed
in the state helix H.

� Percentage of all residues correctly predicted in a
particular state (%prd).

Q%prd
i ¼ 100

Mii

prdi
(6)

For example, for a particular state i ¼ H, it is
possible to calculate the percentage of residues
correctly predicted in the state helix H.

4.3. Information index

The information index is given by:

info ¼ ln
Pprd

Pobs

� �
(7)

where Pobs describes the probability for finding
one particular string of Nres residues with obsi resi-
dues being in structure i out of all combinatorial
possible ones, and Pprd is the probability for a
particular realization of the confusion matrix M.
The resulting information index is

info ¼ info%obs þ info%prd

2
(8)

with

info%obs ¼ 1 �
P3

i¼1 prdi ln prdi �
P3

i;j¼1 Mij ln Mij

Nres ln Nres �
P3

i¼1 obsi ln obsi

(9)

info%prd ¼ 1 �
P3

i¼1 obsi ln obsi �
P3

i;j¼1 Mij ln Mij

Nres ln Nres �
P3

i¼1 prdi ln prdi

(10)

4.4. Matthew’s correlation coefficients

Matthew’s correlation coefficients [13] are not
influenced by the percentage of true positives
(number of elements of the structure i correctly
predicted divided by the number of the elements of
the structure i) in a sample, being the best way of
evaluating different methods. The result is a num-
ber between �1 and 1, where value 1 represents a
perfect coincidence, value �1 a total inequality and
value 0 indicates that the prediction has not corre-
lation with the results.

Although the correlation coefficient is an useful
measure of the accuracy of the prediction, this
coefficient does not evaluate the similarity
between the prediction and the protein. In order
to know the accuracy of the prediction, the segment
overlap measure is taken into account. Matthew’s
correlation coefficients are defined by the following
formula:

Ci ¼
pini � uioiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpi þ uiÞðpi þ oiÞðni þ uiÞðni þ oiÞ
p (11)

with

pi ¼ Mii; ni ¼
X
j 6¼i

X
k6¼i

Mjk; oi ¼
X
j 6¼i

Mji; ui ¼
X
j 6¼i

Mij

(12)

i; j 2 fH; E; Lg, where:

� ni: contains the number of different states
observed in i and predicted as state j, being j
different from i. For example, for the state i ¼ H,
ni represents the number of states H observed in
the sequence and predicted as L or E.

� ui: contains the number of residues observed in
the state i and predicted in a state different from
i. For example, for the state i ¼ H, ui represents
the number of states H observed in the sequence
and predicted as E or L.

� pi: represents the number of residues observed in
the state i and correctly predicted.

� oi: represents the number of residues observed in
a state different from i and predicted as i.

4.5. SOV: Segment OVerlap measure

Statistics applied previously are general statistics,
and thus, can be applicable to every classification
problem. However, the segment overlap (SOV) is a
measure, developed by Rost [14] and modified by
Zemla [15], which specifies the specific objectives
of the secondary structure prediction.

Unlike the measure Q3, which considers the
residues in an individual fashion, SOV measures
the accuracy taking the different segments of a
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sequence into account. SOV provides the measure
of the segment overlap for an only state (H, E or L)
or for all three states.

If for example we consider the state coil (L), the
measure SOV calculates the accuracy of the seg-
ments prediction in such state. A segment is con-
sidered a part of the sequence where the state i
appears consecutively (in this case, L). Therefore,
100% is obtained when the segments of the observed
sequence are equal to the predicted sequence.
When the SOV is calculated for all the three states,
the segments of the three states (helix, b strand and
coil) are taking into account.

4.5.1. Per-stage segment overlap
This value is given by:

SOVðiÞ ¼ 100
1

NðiÞ
X
SðiÞ

minovðs1; s2Þ þ dðs1; s2Þ
maxovðs1; s2Þ

lenðs1Þ

(13)

where:

� s1 and s2: are the observed and predicted sec-
ondary structure segments (in state i, which can
be either H, E or L),

� lenðs1Þ: is the number of residues in the segment
s1,

� minovðs1; s2Þ: is the length of actual overlap of s1

and s2, i.e. the extent for which both segments
have residues in state i,

� maxovðs1; s2Þ: is the length of the total extent for
which either of the segments s1 or s2 has a residue
in state i,

� dðs1; s2Þ: is the integer value defined as being
equal to the following:

dðs1; s2Þ ¼ min

maxovðs1; s2Þ � minovðs1; s2Þ
minovðs1; s2Þ
intð0:5 � lenðs1ÞÞ
intð0:5 � lenðs2ÞÞ

8>>><
>>>:

9>>>=
>>>;

(14)

�
P

: is taken over all the pairs of segments ðs1; s2Þ,
where s1 and s2 have at least one residue in state i
in common,

� NðiÞ: is the number of residues in state i defined as
follows:

NðiÞ ¼
X
SðiÞ

lenðs1Þ þ
X
S0ðiÞ

lenðs2Þ (15)

The two sums are taken over S and S0. SðiÞ is the
number of all pairs of segments ðs1; s2Þ, where s1

and s2 have at least one residue in state i in
common. S0ðiÞ is the number of segments S1 that
do not produce any segment pair.

Fig. 3 shows a fragment of an observed sequence
and a predicted sequence, where the elements of
the SOV formula are depicted.

4.5.2. Segment OVerlap quantity measure
for all three states
This value is obtained by applying this formula:

SOV ¼100
1P

i NðiÞ
X

i

X
SðiÞ

minovðs1;s2Þþdðs1;s2Þ
maxovðs1;s2Þ

lenðs1Þ

(16)

where
P

i NðiÞ is a sum of NðiÞ over all three con-
formational states (i ¼ helix, strand, coil).

5. Level-0 composite classifiers

After an exhaustive search over Internet, we have
found 9 secondary structure prediction servers.
We have selected, with our own experimental
results, the best 6 servers as the level-0 classifiers.
The Table 2 shows all the contacted servers,
with its location and prediction method. Also,
Fig. 4 shows the geographical location of the ser-
vers.

5.1. JPred

JPred [16] is an interactive protein secondary struc-
ture prediction Internet server. The server allows
a single sequence or multiple alignment to be sub-
mitted, and returns predictions from six secondary
structure prediction algorithms that exploit evolu-
tionary information from multiple sequences. A
consensus prediction is also returned.

All the secondary structure prediction methods
used, require either, multiple sequences or an
alignment of multiple sequences. Thus, if a single
sequence is submitted, an automatic process cre-
ates a multiple sequence alignment, prior to pre-
diction [16].

Six different prediction methods: DSC [17], PHD
[8], NNSSP [18], PREDATOR [19], ZPRED [20] and
MULPRED [21] are then run, and results from each
method are combined into a simple file format.

Figure 3 Fragment of an observed sequence and a
predicted sequence with the elements of the SOV
formula.
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A consensus prediction based on a simple major-
ity method of NNSSP, DSC, PREDATOR and PHD is
provided by the JPred server.

5.2. SSPro

SSPro is a fully automated system for the prediction
of protein secondary structure. The system is based
on an ensemble of bidirectional recurrent neural
networks (BRNNs) [22,23]. BRNNs are graphical
models that learn from data the transition between
an input and an output sequence of variable length.
The model is based on two hidden Markov chains,
a forward and a backward chain, that transmit
information in both directions along the sequence,
between the input and the output sequences. Three
neural networks model respectively the forward
state update, the backward state update and
the input and hidden states to output transition.
BRNNs are trained in a supervised fashion using
the gradient descent algorithm. The error signal
is propagated through the model using the BPTS

(backpropagation through structure) algorithm, an
extension of BPTT (backpropagation through time),
used in unidirectional recurrent neural networks.

A set of 11 bidirectional recurrent neural
networks is trained on the dataset. The networks
contain roughly 70,000 adjustable weights, have
normalized exponentials on the outputs and are
trained using the relative entropy between the
target and output distributions. The final predic-
tions are obtained averaging the network outputs
for each residue.

5.3. PHD

PHD [24] was the first method to incorporate evo-
lutionary information (in the form of multiple
sequence alignment data) in the prediction of pro-
tein secondary structure. The first step in a PHD
prediction is generating a multiple sequence align-
ment. The second step involves feeding the align-
ment into a neural network system. Correctness of
the multiple sequence alignment is as crucial for

Table 2 Secondary structure prediction servers on Internet

Server Secondary structure prediction servers

Location Prediction method

JPred University of Dundee, Scotland Consensus
PHD Columbia University, USA Neural networks
Prof University of Wales, UK Neural networks
PSIPRED University College London, UK Neural networks
SAM-T02 University of California, Santa Cruz, USA Homology
SSPro University of California, Irvine, USA Neural networks

Figure 4 Geographical disposition of the secondary structure prediction servers combined in this work.
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prediction accuracy as that the alignment contains
a broad spectrum of homologous sequences.

The PHD methods process the input information
on multiple levels. The first level is a feed-forward
neural network with three layers of units (input,
hidden, and output). Input to this first level
sequence-to-structure network consists of two con-
tributions: one from the local sequence, i.e., taken
from a window of 13 adjacent residues, and another
from the global sequence. Output of the first level
network is the 1D structural state of the residue at
the centre of the input window. The second level is
a structure-to-structure network. The next level
consists of an arithmetic average over indepen-
dently trained networks (jury decision). The final
level is a simple filter.

5.4. PSIPRED

PSIPRED [3] is a simple and reliable secondary
structure prediction method. It use a two-stage
neural network to predict protein secondary struc-
ture based on the position specific scoring matrices
generated by PSI-BLAST. The prediction method is
split into three stages: generation of a sequence
profile, prediction of initial secondary structure,
and finally the filtering of the predicted structure.

5.5. PROF

The Prof server [25] is a classifier for protein sec-
ondary structure prediction which is formed by
cascading (in multiple stages) different types of
classifiers using neural networks and linear discri-
mination. To generate different classifiers it has
been used GOR formalism-based methods extended
by linear and quadratic discriminations [26,27] and
neural network-based methods [28,24]. The theo-
retical foundation for Prof comes from basic prob-
ability theory which states that all of the evidence
relevant to a prediction should be used in making
that prediction.

5.6. SAM-T02

The SAM-T02 [29] method is used for iterative SAM
HMM construction, remote homology detection and
protein structure prediction. It updates SAM-T99 by
using predicted secondary structure information in
its scoring functions.

The SAM-T02 server is an automatic method that
uses two-track hidden Markov models (HMMs) to find
and align template proteins from PDB to the target
protein. The two-track HMMs use an amino-acid
alphabet and one of several different local-struc-
ture alphabets.

The SAM-T02 prediction process consists of sev-
eral parts:

� Finding similar sequences with iterative search
using SAM-T2K.

� Predicting local structure properties with neural
nets.

� Finding possible fold-recognition templates using
2-track HMMS (the SAM-T02 method).

� Making alignments to the templates.
� Building a specific fragment library for the target

(with fragfinder).
� Packing fragments and fold-recognition align-

ments to make a 3D structure (with undertaker).

6. Obtaining the datasets for multi-
classifiers training

The process of creating an appropriate dataset for
both training and evaluation of the multi-classifiers,
as shown in Fig. 5, has been achieved in following
steps:

(1) High-quality datasets of proteins with known
secondary structure are selected. The most
representative dataset designed by different
groups are HS1771, CB513, RS126 as well as the
six data sets gathered by EVA project [10].
From all of them only HS1771 has been used
for the training phase of a multi-classifier.
This dataset has been selected because it is
the most complete of the nine datasets. The
remaining ones will be used in the testing phase
of the algorithm.

(2) These sequences of proteins are submitted to
the six web servers and the process waits for
their replies. These replies came as either web
pages or e-mail messages.

(3) The replies, once they have been received, are
processed. The prediction for the secondary
structure of the protein is extracted from the
body of the message or from the contents of
the web page.

(4) The results are stored in a new dataset to be
processed by a multi-classifier. For each of the
aminoacids of the protein an instance of the
dataset is inserted with all the predictions
from the servers and the actual value of its
secondary structure.

7. Level-1 classifiers based on Bayesian
networks

As exposed in [30] we have used Bayesian net-
works as the consensed voting system. Thus, for
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building the level-1classifiers, we have used three
different Bayesian network structures: na½̈ve
Bayes, Interval Estimation Na½̈ve Bayes (IENB) and
the idea of Pazzani of joining attributes in na½̈ve
Bayes.

7.1. Na½̈ve Bayes

The na½̈ve Bayes classifier [31,32] is a probabilistic
method for classification. It performs an approx-
imate calculation of the probability that an exam-
ple belongs to a class given the values of predictor
variables. The simple na½̈ve Bayes classifier is
one of the most successful algorithms on many
classification domains. In spite of its simplicity,
it is shown to be competitive with respect to
other more complex approaches in several specific
domains.

This classifier learns from training data the con-
ditional probability of each variable Xk given the
class label c. Classification is then done by applying
Bayes rule to compute the probability of C given the
particular instance of X1; . . . ; Xn,

PðC ¼ cjX1 ¼ x1; . . . ; Xn ¼ xnÞ (17)

Na½̈ve Bayes is founded on the assumption that
variables are conditionally independent given the

class. Therefore, posterior probability of the class
variable is formulated as follows,

PðC ¼ cjX1 ¼ x1; . . . ; Xn ¼ xnÞ

/ PðC ¼ cÞ
Yn

k¼1

PðXk ¼ xkjC ¼ cÞ (18)

This equation is highly appropriate for learning
from data, since probabilities pi ¼ PðC ¼ ciÞ and
pi

k;r ¼ PðXk ¼ xr
kjC ¼ ciÞ may be estimated from

training data. The result of the classification is
the class with highest posterior probability.

7.2. Interval estimation na½̈ve Bayes

Interval estimation na½̈ve Bayes (IENB) [33]belongs
to the semi na½̈ve Bayes approaches that correct the
probabilities produced by the standard na½̈ve Bayes.
In this approach, instead of calculating the point
estimation of the conditional probabilities from
data, as simple na½̈ve Bayes does, confidence inter-
vals are calculated. After that, the search for the
best combination of values into these intervals is
performed. The goal of this search is try to relieve
the assumption of independence among variables
the simple na½̈ve Bayes does. This search is carried
out by a heuristic search algorithm and is guided by
the accuracy of the classifiers.

Figure 5 Obtaining the multi-classifier dataset.
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To deal with the heuristic search EDAs—estima-
tion of distribution algorithms—have been selected.
EDAs [34] are non-deterministic, stochastic and
heuristic search strategies that belong to the evolu-
tionary computation approaches. In EDAs, a number
of solutions or individuals is created every genera-
tion, evolving once and again until a satisfactory
solution is achieved. In brief, the characteristic that
most differentiates EDAs from other evolutionary
search strategies, such as GAs, is that the evolution
from a generation to the next one is done by esti-
mating the probability distribution of the fittest
individuals, and afterwards, by sampling the induced
model. This avoids the use of crossover or mutation
operators, and, therefore, the number of para-
meters that EDAs requires is reduced considerably.

7.3. Pazzani

Pazzani in [35] proposes to improve the na½̈ve Bayes
classifier by searching for dependencies among
attributes. He develops two algorithms for detect-
ing dependencies among attributes: Forward
Sequential Selection and Joining (FSSJ) and Back-
ward Sequential Elimination and Joining (BSEJ).

In this paper, we propose to make a heuristic
search of the Pazzani structure with the target of
maximize the percentage of successful predictions.
We perform this heuristic search with EDAs. The
resulting algorithm is called Pazzani-EDA algorithm
and a multi-classified build upon it, the MC-Pazzani-
EDA multi-classifier.

Fig. 6 contains an example of two Pazzani struc-
tures and their corresponding individuals.

Thus, for a dataset with n attributes, individuals
will have n genes, each one with an integer value
between 0 an n. The value 0 represents that the
corresponding attribute is not part of the Pazzani
structure. A value between 1 and n means that the
corresponding attribute belongs to that group in the
Pazzani structure.

7.4. Level-1 classifiers

After all the predictions outputs from the six web
servers are collected a preliminary study of the

predictive accuracy is performed. The statistics
presented on Section 4are calculated. A detailed
discussion of these results is included in the next
section.

Taking these results into account, we have built
and trained the following seven multi-classifiers
based on Bayesian networks:

� Na½̈ve-Bayes with the:
� best 4 severs (MC-NB-4),
� best 5 severs (MC-NB-5),
� best 6 severs (MC-NB-6).

� Interval estimation na½̈ve-Bayes with the:
� best 4 severs (MC-IENB-4),
� best 5 severs (MC-IENB-5),
� best 6 severs (MC-IENB-6).

� MC-Pazzani-EDA with the best 6 servers.

The best six servers (sorted by their accuracy)
are: PSIPRED, SSPro, SAM-T02, PHD Expert, Prof and
JPred. Further details are shown on Tables 3—11.

8. Results

Statistics of the predictions performed by the six
selected servers (described in Section 5) and the
seven multi-classifiers are presented in a form of
tables: Tablest3,t4,t5,t6,t7,t8,t9,t10,t11. We pre-
sent one table for each of the datasets (HS1771,
CB513, RS126, EVA1, EVA2, EVA3, EVA4, EVA5and
EVA6).

These results show that the best classifier for
these datasets is PSIPRED. Although its predictions
of the secondary structure are of the highest accu-
racy, it has been further improved by our multi-
classifier architectures.

Improvements in terms of overall accuracy are
presented on Table 12. These results are compared
to PSIPRED predictions on each of the datasets.
Our results show that the best multi-classifier
algorithm is MC-Pazzani-EDA with and absolute
improvement of 1:21% compared to PSIPRED. If
we consider a relative improvement, taking the
theoretical maximum accuracy of 88% into
account, MC-Pazzani-EDA outperforms the best
classifier by 13:30%. This algorithm gets better
results in all but one (EVA6) of the datasets. In
Fig. 7, we show the final structure obtained by MC-
Pazzani-EDA. The four better servers have been
included in this structure.

8.1. Detailed analysis of HS1771 results

Here are some details of a deeper analysis of the
results obtained for HS1771, the most complete
dataset for protein second structure prediction.

Figure 6 Two Pazzani structures and their correspond-
ing individuals.
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Table 3 Statistics for HS1771 dataset

Servers HS1771 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 78.90 83.40 69.18 80.29 83.34 78.19 75.72 0.41 0.74 0.67 0.61 77.86 71.53 71.65 74.62
PHD Expert 77.37 80.01 72.87 77.55 84.73 71.58 74.81 0.38 0.73 0.64 0.58 72.81 72.92 70.22 73.44
Prof 74.57 71.56 71.01 78.95 86.50 67.27 70.93 0.34 0.69 0.60 0.55 65.32 69.95 69.43 69.74
GOR 54.31 56.67 45.28 57.13 54.43 42.34 61.49 0.08 0.31 0.27 0.31 52.15 54.41 49.60 50.21
SOPM 65.66 70.34 54.85 67.48 67.40 57.52 68.28 0.19 0.51 0.44 0.45 64.38 64.28 60.81 62.52
SSPro 78.04 82.65 66.26 80.44 83.84 76.83 74.17 0.40 0.74 0.64 0.59 74.70 70.09 69.81 71.78
JPred 71.68 63.56 54.57 87.52 87.04 73.13 64.40 0.30 0.64 0.54 0.52 62.78 63.23 67.82 65.91
SAM-T02 77.54 84.39 74.97 73.20 81.41 72.16 77.14 0.39 0.73 0.66 0.58 75.54 73.56 68.15 73.05
Predator 66.29 65.42 45.83 77.83 71.00 64.42 63.90 0.20 0.52 0.44 0.45 63.64 54.73 61.95 61.07
MC-NB-4 79.91 84.15 75.06 78.89 85.97 76.39 76.74 0.43 0.77 0.69 0.62 79.05 73.68 69.13 73.18
MC-NB-5 79.92 87.09 77.47 75.81 82.50 72.66 81.62 0.43 0.77 0.68 0.62 83.47 76.07 66.38 72.19
MC-NB-6 79.72 86.40 76.77 76.09 82.87 73.01 80.64 0.43 0.77 0.68 0.62 82.28 75.29 66.51 72.11
MC-IENB-4 79.96 83.94 75.50 78.89 86.30 76.06 76.74 0.44 0.77 0.69 0.62 79.09 74.66 69.13 73.29
MC-IENB-5 80.00 86.96 77.19 76.16 82.65 73.49 81.24 0.44 0.77 0.68 0.62 82.67 75.97 66.70 72.37
MC-IENB-6 79.74 86.47 76.79 76.09 82.87 73.11 80.65 0.43 0.77 0.68 0.62 82.39 75.37 66.51 72.15
MC-Pazzani-EDA 80.25 85.41 79.05 76.76 84.80 71.80 80.94 0.44 0.77 0.69 0.63 80.16 77.30 67.00 72.28
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Table 4 Statistics for CB513 dataset

Servers CB513 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 79.95 83.52 70.31 82.16 84.67 80.14 76.37 0.43 0.76 0.68 0.63 78.98 69.81 73.42 76.48
PHD Expert 77.61 78.92 73.32 78.82 85.58 72.00 74.84 0.39 0.73 0.65 0.59 73.36 69.83 71.27 74.98
Prof 77.13 74.19 74.23 81.03 88.65 71.14 73.10 0.39 0.73 0.64 0.58 68.58 69.83 72.24 73.74
GOR 55.36 56.20 47.53 58.82 55.91 43.02 62.55 0.08 0.33 0.28 0.33 51.45 51.87 50.89 51.60
SOPM 66.84 69.78 57.24 69.56 69.29 58.81 68.98 0.20 0.53 0.46 0.46 65.31 62.70 62.39 64.35
SSPro 79.07 82.72 66.90 82.56 85.90 78.43 74.53 0.42 0.76 0.65 0.61 76.22 68.11 72.27 74.39
JPred 73.37 65.21 56.18 89.07 89.41 77.01 65.40 0.34 0.67 0.58 0.54 64.65 61.00 69.16 68.03
SAM-T02 78.17 83.99 75.37 74.96 82.82 72.90 77.23 0.40 0.75 0.66 0.59 75.47 71.11 69.35 74.01
Predator 80.04 78.18 71.88 85.87 84.37 83.40 75.83 0.42 0.72 0.71 0.65 73.49 68.47 72.55 74.88
MC-NB-4 80.57 85.35 76.18 79.05 85.45 76.80 78.62 0.45 0.78 0.70 0.63 81.82 74.88 68.78 74.26
MC-NB-5 80.61 88.13 78.93 76.20 82.06 73.62 83.15 0.45 0.78 0.70 0.63 85.42 77.35 66.18 73.25
MC-NB-6 80.53 87.58 78.49 76.49 82.48 74.12 82.34 0.45 0.77 0.70 0.63 84.64 77.15 66.61 73.39
MC-IENB-4 80.63 85.15 76.67 79.05 85.80 76.56 78.62 0.45 0.78 0.70 0.63 81.79 75.66 68.78 74.4
MC-IENB-5 80.68 87.97 78.67 76.53 82.19 74.42 82.79 0.45 0.78 0.70 0.63 84.07 77.20 66.45 73.41
MC-IENB-6 80.52 87.62 78.44 76.49 82.46 74.15 82.34 0.45 0.77 0.70 0.63 84.65 77.14 66.61 73.39
MC-Pazzani-EDA 80.99 86.24 80.29 77.37 84.97 72.48 82.27 0.45 0.78 0.70 0.64 82.64 78.57 66.74 73.37
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Table 5 Statistics for RS126 dataset

Servers RS126 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 81.01 84.35 72.62 83.01 84.58 80.44 78.88 0.45 0.77 0.7 0.65 81.47 69.42 74.34 76.24
PHD Expert 76.92 78.33 73.65 77.62 84.77 69.46 75.93 0.38 0.73 0.63 0.57 71.42 68.86 70.32 72.57
Prof 76.95 74.18 75.20 79.82 88.07 69.30 74.79 0.38 0.73 0.63 0.58 69.44 68.66 70.23 71.70
GOR 55.39 56.21 48.46 58.41 53.75 44.17 63.68 0.08 0.33 0.29 0.32 51.02 51.47 51.39 50.89
SOPM 66.03 67.98 57.30 69.17 66.37 57.80 70.06 0.19 0.52 0.45 0.45 64.14 60.96 62.65 62.43
SSPro 77.01 80.84 64.38 80.85 82.81 74.62 74.32 0.38 0.74 0.61 0.58 75.63 64.87 68.83 70.24
JPred 73.82 65.53 56.46 88.78 89.32 77.56 66.68 0.34 0.68 0.58 0.54 65.66 59.88 67.33 66.55
SAM-T02 78.81 84.93 77.11 75.36 82.94 72.56 79.28 0.42 0.76 0.67 0.60 77.83 72.62 68.58 73.30
Predator 80.06 79.71 69.38 85.85 83.67 82.62 76.89 0.42 0.73 0.69 0.64 71.48 65.29 69.86 71.42

MC-NB-4 80.21 84.30 74.44 80.43 85.12 78.08 77.84 0.44 0.78 0.69 0.63 81.30 74.73 67.21 71.90
MC-NB-5 80.39 87.05 77.09 77.77 81.83 74.73 82.31 0.44 0.77 0.69 0.63 84.84 77.30 64.41 70.53
MC-NB-6 80.21 86.46 76.54 77.98 82.23 75.12 81.43 0.44 0.77 0.69 0.62 84.23 77.37 64.66 70.50
MC-IENB-4 80.29 84.10 74.96 80.43 85.58 77.83 77.84 0.44 0.78 0.69 0.63 81.77 76.39 67.21 72.08
MC-IENB-5 80.55 86.88 76.89 78.31 81.91 76.05 81.91 0.45 0.77 0.69 0.63 84.61 77.29 64.98 70.96
MC-IENB-6 80.22 86.55 76.47 77.98 82.23 75.16 81.43 0.44 0.77 0.69 0.62 84.22 77.38 64.43 70.37
MC-Pazzani-EDA 81.65 85.36 82.43 78.85 85.67 71.96 83.85 0.47 0.79 0.71 0.65 80.95 83.36 64.64 70.67
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Table 6 Statistics for EVA1 dataset

Servers EVA1 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 75.48 80.83 66.10 75.46 79.72 72.85 73.03 0.35 0.69 0.62 0.55 73.52 69.94 66.88 70.17
PHD Expert 75.26 79.37 73.36 72.64 80.58 68.53 74.23 0.35 0.69 0.63 0.54 67.78 74.05 66.84 69.81
Prof 72.11 71.88 68.67 74.00 81.42 63.82 69.56 0.30 0.64 0.57 0.50 61.84 69.98 65.84 66.59
GOR 54.44 62.23 43.03 53.30 55.07 41.01 61.69 0.08 0.32 0.26 0.30 50.63 56.06 48.92 49.49
SOPM 63.11 70.41 52.29 62.10 63.58 54.55 66.94 0.16 0.46 0.42 0.40 57.84 64.63 57.91 57.89
SSPro 74.48 81.14 63.51 74.10 77.49 72.54 72.64 0.33 0.67 0.60 0.53 67.90 71.07 65.80 67.03
JPred 68.82 59.23 54.07 84.37 83.32 67.67 62.57 0.25 0.58 0.51 0.47 54.99 64.78 65.11 61.79
SAM-T02 74.65 82.03 73.33 68.95 78.00 68.65 74.77 0.34 0.68 0.63 0.52 70.12 72.98 63.55 67.70
Predator 61.72 62.72 37.08 72.91 64.24 56.28 61.41 0.13 0.43 0.35 0.39 54.12 52.55 58.24 55.09
MC-NB-4 76.90 79.46 71.17 77.49 85.12 74.35 71.02 0.38 0.71 0.65 0.57 72.91 69.63 65.61 69.42
MC-NB-5 76.99 82.33 73.60 74.05 81.62 69.66 76.52 0.38 0.72 0.64 0.56 75.28 71.93 62.58 67.84
MC-NB-6 76.96 81.65 73.11 74.69 82.17 70.48 75.58 0.38 0.71 0.65 0.57 74.34 73.06 63.56 68.22
MC-IENB-4 76.86 79.07 71.59 77.49 85.37 73.70 71.02 0.38 0.71 0.65 0.57 72.67 69.78 65.61 69.37
MC-IENB-5 76.95 82.15 73.31 74.23 81.71 70.21 76.10 0.38 0.71 0.65 0.56 73.99 71.30 62.32 67.61
MC-IENB-6 76.99 81.68 73.18 74.70 82.16 70.65 75.58 0.38 0.71 0.65 0.57 74.32 73.17 63.57 68.26
MC-Pazzani-EDA 77.51 80.94 75.67 75.27 83.85 70.37 75.48 0.39 0.72 0.66 0.57 74.69 77.57 64.80 69.50
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Table 7 Statistics for EVA2 dataset

Servers EVA2 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 75.49 80.91 65.80 75.55 79.61 72.88 73.12 0.35 0.69 0.62 0.55 74.16 68.96 67.26 70.40
PHD Expert 75.27 79.42 73.29 72.65 80.62 68.47 74.25 0.35 0.69 0.63 0.54 68.31 73.15 66.75 69.91
Prof 72.11 72.00 68.45 73.99 81.47 63.72 69.56 0.30 0.64 0.57 0.50 62.41 69.08 65.66 66.65
GOR 54.40 61.97 43.15 53.36 55.14 40.68 61.77 0.08 0.32 0.26 0.30 50.60 55.48 48.97 49.53
SOPM 63.03 70.28 52.12 62.09 63.58 54.15 66.94 0.16 0.46 0.41 0.40 57.47 63.77 57.74 57.55
SSPro 74.45 81.21 63.33 74.05 77.50 72.38 72.62 0.33 0.67 0.60 0.53 68.25 70.18 65.52 66.98
JPred 68.86 59.35 54.02 84.34 83.40 67.54 62.63 0.25 0.58 0.51 0.47 55.25 64.08 65.41 61.86
SAM-T02 74.77 82.34 73.29 68.98 77.99 68.76 74.98 0.34 0.68 0.63 0.53 70.34 72.12 63.38 67.61
Predator 61.71 62.56 37.04 73.01 64.29 55.98 61.46 0.13 0.43 0.35 0.39 54.25 51.90 58.57 55.29
MC-NB-4 76.96 79.42 71.35 77.54 85.28 74.32 71.03 0.38 0.71 0.66 0.57 72.97 69.92 65.80 69.32
MC-NB-5 77.04 82.35 73.61 74.13 81.81 69.51 76.55 0.38 0.72 0.64 0.57 76.04 71.34 62.19 67.57
MC-NB-6 76.99 81.68 73.23 74.67 82.32 70.24 75.64 0.38 0.71 0.65 0.57 75.15 73.10 63.03 67.84
MC-IENB-4 76.91 79.00 71.78 77.54 85.54 73.62 71.03 0.38 0.71 0.66 0.57 72.70 70.07 65.80 69.26
MC-IENB-5 77.01 82.19 73.35 74.30 81.88 70.08 76.15 0.38 0.72 0.65 0.56 74.79 70.84 62.08 67.48
MC-IENB-6 77.02 81.74 73.26 74.68 82.30 70.41 75.64 0.38 0.71 0.65 0.57 75.12 73.18 63.03 67.88
MC-Pazzani-EDA 77.60 81.62 75.38 75.09 83.13 70.92 76.03 0.39 0.72 0.66 0.57 75.07 78.28 64.45 69.61
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Table 8 Statistics for EVA3 dataset

Servers EVA3 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 77.65 83.58 67.72 76.70 81.45 75.13 75.09 0.38 0.71 0.65 0.58 79.27 69.03 69.19 72.65
PHD Expert 76.50 80.82 71.86 74.60 82.23 70.99 73.83 0.36 0.70 0.64 0.56 74.88 73.35 67.79 72.28
Prof 73.78 72.87 69.72 76.54 83.61 65.37 70.23 0.32 0.66 0.59 0.53 64.88 70.23 65.90 66.74
GOR 54.76 57.06 47.45 56.02 58.95 38.96 60.34 0.08 0.32 0.28 0.30 50.63 57.38 48.90 50.31
SOPM 66.61 71.56 58.42 65.79 70.85 55.55 68.08 0.20 0.53 0.46 0.44 65.00 67.17 59.30 62.64
SSPro 76.38 82.06 64.84 76.41 80.92 73.47 73.36 0.35 0.69 0.62 0.56 74.57 69.71 66.63 69.74
JPred 71.16 65.33 53.89 84.78 83.93 71.79 63.89 0.28 0.61 0.55 0.50 62.81 64.18 66.35 65.15
SAM-T02 77.21 85.07 74.89 70.88 80.22 71.56 76.93 0.38 0.71 0.67 0.57 76.96 73.83 65.27 71.69
Predator 63.88 63.27 42.73 74.34 71.67 56.40 60.75 0.16 0.48 0.39 0.40 60.54 52.75 57.89 57.19
APSSP 92.49 94.78 93.26 90.43 88.66 96.14 93.58 0.72 0.88 0.93 0.86 79.79 84.15 79.25 74.74
MC-NB-4 78.60 81.91 73.06 77.98 85.79 75.69 73.20 0.40 0.73 0.68 0.59 77.30 70.46 68.27 72.13
MC-NB-5 78.86 84.72 75.81 75.00 82.81 71.41 78.63 0.41 0.74 0.67 0.60 81.36 72.37 65.30 71.77
MC-NB-6 78.51 83.65 74.97 75.35 83.33 71.39 77.31 0.40 0.73 0.67 0.50 80.21 73.27 65.47 71.40
MC-IENB-4 78.56 81.63 73.31 77.98 86.03 74.96 73.20 0.40 0.73 0.68 0.59 77.25 71.56 68.27 72.12
MC-IENB-5 78.88 84.59 75.34 75.34 82.92 72.31 78.15 0.41 0.73 0.68 0.60 80.06 72.15 65.60 71.90
MC-IENB-6 78.56 83.74 75.03 75.36 83.37 71.54 77.31 0.40 0.73 0.67 0.59 80.23 73.34 65.47 71.44
MC-Pazzani-EDA 79.55 85.06 76.38 76.01 83.39 73.54 78.74 0.42 0.74 0.69 0.61 80.33 73.19 66.28 72.27
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Table 9 Statistics for EVA4 dataset

Servers EVA4 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 77.92 83.74 68.71 76.98 81.82 76.24 75.00 0.39 0.72 0.66 0.59 79.29 70.42 70.02 73.56
PHD Expert 76.53 80.85 72.09 74.64 82.54 71.86 73.34 0.37 0.70 0.65 0.56 74.65 73.79 68.19 72.57
Prof 73.93 72.98 70.23 76.65 84.01 66.21 70.13 0.32 0.66 0.60 0.53 65.39 70.91 66.79 67.70
GOR 54.70 57.86 46.82 55.61 58.19 40.20 60.14 0.08 0.32 0.28 0.30 51.22 57.26 48.56 50.36
SOPM 66.50 71.82 57.95 65.70 70.11 57.14 67.72 0.20 0.52 0.47 0.44 64.81 67.44 59.38 62.61
SSPro 76.67 82.26 65.59 76.87 81.54 74.49 73.18 0.36 0.70 0.63 0.57 74.75 70.47 67.65 70.48
JPred 71.29 65.61 54.60 84.88 84.14 72.97 63.71 0.29 0.61 0.55 0.51 62.94 64.65 67.05 65.63
SAM-T02 77.40 85.03 75.73 71.04 80.75 72.15 76.73 0.39 0.72 0.67 0.57 76.71 74.77 65.94 72.24
Predator 63.61 63.59 42.36 74.06 70.87 57.49 60.42 0.16 0.48 0.39 0.40 60.40 52.97 57.72 57.31
MC-NB-4 78.78 82.42 73.88 77.64 85.78 76.14 73.49 0.41 0.74 0.69 0.59 78.03 71.16 68.22 72.38
MC-NB-5 79.04 85.19 76.48 74.83 82.88 72.29 78.75 0.41 0.74 0.68 0.60 82.19 72.91 65.49 72.08
MC-NB-6 78.67 84.06 75.75 75.12 83.32 72.36 77.39 0.41 0.73 0.68 0.59 81.07 73.72 65.74 71.99
MC-IENB-4 78.74 82.16 74.12 77.64 86.00 75.54 73.49 0.41 0.74 0.68 0.59 77.97 72.14 68.22 72.38
MC-IENB-5 79.08 85.06 76.09 75.17 82.99 73.15 78.32 0.41 0.74 0.68 0.60 81.04 72.73 65.84 72.26
MC-IENB-6 78.71 84.14 75.78 75.12 83.36 72.48 77.39 0.41 0.74 0.68 0.59 81.10 73.80 65.74 72.02
MC-Pazzani-EDA 79.71 85.12 78.53 75.44 84.07 71.86 79.46 0.43 0.75 0.69 0.61 81.39 73.69 65.54 71.88
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Table 10 Statistics for EVA5 dataset

Servers EVA5 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 77.95 83.03 67.68 77.86 82.95 74.80 74.57 0.38 0.72 0.65 0.59 79.33 70.64 70.37 73.32
PHD Expert 76.60 80.42 70.22 75.89 83.68 70.36 73.05 0.36 0.71 0.63 0.56 74.91 73.63 68.67 72.91
Prof 73.61 72.07 68.94 77.31 85.12 64.24 69.40 0.32 0.66 0.58 0.53 66.00 70.98 67.32 68.21
GOR 54.40 56.87 47.04 55.49 58.72 38.10 60.36 0.08 0.31 0.27 0.31 51.08 57.11 49.19 49.86
SOPM 65.64 70.77 56.18 65.12 70.15 53.89 67.06 0.18 0.51 0.44 0.43 64.60 66.16 58.14 61.32
SSPro 76.74 81.64 64.43 77.81 82.72 73.47 72.64 0.36 0.71 0.62 0.57 74.95 70.10 68.76 70.46
JPred 70.79 63.69 53.53 85.98 85.71 69.67 63.12 0.28 0.61 0.53 0.51 62.32 65.15 66.97 65.17
SAM-T02 77.40 84.92 74.59 71.40 81.49 71.05 76.35 0.38 0.72 0.66 0.57 75.80 74.96 66.54 72.00
Predator 63.00 62.76 41.39 73.50 70.77 54.25 60.10 0.15 0.47 0.37 0.39 60.82 53.03 57.70 56.89
MC-NB-4 79.09 83.42 73.07 77.63 85.76 74.93 74.57 0.41 0.74 0.68 0.60 79.15 70.58 68.61 72.43
MC-NB-5 79.09 86.20 75.54 74.42 82.14 71.16 79.88 0.41 0.74 0.67 0.60 82.29 72.08 65.16 71.42
MC-NB-6 78.77 85.32 74.60 74.69 82.59 71.05 78.71 0.40 0.74 0.66 0.60 81.22 71.87 65.11 71.08
MC-IENB-4 79.13 83.27 73.47 77.63 86.04 74.53 74.57 0.41 0.74 0.68 0.60 79.01 71.29 68.61 72.40
MC-IENB-5 79.14 86.08 75.22 74.73 82.30 71.92 79.48 0.41 0.74 0.67 0.60 81.59 71.83 65.46 71.56
MC-IENB-6 78.79 85.38 74.61 74.69 82.60 71.16 78.71 0.40 0.74 0.67 0.60 81.28 71.93 65.13 71.11
MC-Pazzani-EDA 79.67 85.65 76.43 75.60 83.87 72.12 79.16 0.42 0.75 0.68 0.61 81.67 73.30 65.88 71.70
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Table 11 Statistics for EVA6 dataset

Servers EVA6 dataset

Q3 Q%obs
H Q%obs

E Q%obs
L Q%prd

H Q%prd
E Q%prd

L info CH CE CL SOVH SOVE SOVL SOV

PSIPRED 77.56 83.50 66.79 77.20 81.88 75.67 74.31 0.38 0.71 0.64 0.58 78.75 71.15 69.42 72.93
PHD Expert 76.28 80.58 70.16 75.21 82.81 70.38 73.22 0.36 0.70 0.63 0.56 74.07 73.32 67.71 72.03
Prof 73.40 72.51 68.15 76.82 84.43 64.64 69.49 0.31 0.66 0.58 0.53 65.18 69.82 66.88 67.58
GOR 54.70 59.37 45.43 54.8 57.75 39.35 61.07 0.08 0.31 0.26 0.31 52.12 56.46 48.14 50.04
SOPM 65.05 71.23 54.17 64.53 68.29 54.73 66.93 0.18 0.50 0.43 0.43 63.60 65.39 57.85 60.69
SSPro 76.30 82.16 63.85 76.83 81.31 73.69 72.79 0.35 0.7 0.61 0.57 74.36 70.39 67.63 69.96
JPred 70.51 63.45 53.55 85.62 85.30 69.96 62.95 0.28 0.61 0.53 0.50 61.8 64.96 66.24 64.53
SAM-T02 76.76 84.62 73.65 70.81 80.57 70.69 76.00 0.37 0.71 0.65 0.56 75.88 74.35 65.87 71.40
Predator 62.73 63.30 39.72 73.49 69.23 55.26 60.25 0.15 0.46 0.36 0.39 60.82 52.40 58.40 57.24
MC-NB-4 77.05 82.47 73.38 73.66 82.16 71.47 74.86 0.38 0.71 0.66 0.56 77.92 72.08 67.12 71.23
MC-NB-5 77.47 85.23 75.74 71.85 79.78 68.15 79.79 0.39 0.72 0.65 0.57 81.13 74.10 64.31 70.66
MC-NB-6 77.65 84.60 75.17 72.75 80.99 68.91 78.69 0.39 0.72 0.65 0.58 79.97 73.77 64.36 70.71
MC-IENB-4 77.07 82.24 73.83 73.66 82.41 71.04 74.86 0.38 0.71 0.66 0.56 77.62 73.06 67.12 71.25
MC-IENB-5 77.50 85.11 75.45 72.09 79.88 68.90 79.41 0.39 0.72 0.66 0.57 80.37 73.63 64.54 70.70
MC-IENB-6 77.66 84.63 75.21 72.75 80.99 68.98 78.69 0.39 0.72 0.65 0.58 79.98 73.82 64.36 70.74
MC-Pazzani-EDA 75.86 84.36 76.47 69.22 76.48 66.12 80.00 0.36 0.69 0.65 0.55 79.81 76.38 63.62 69.53
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The most interesting results have been achieved
for b strand prediction. PSIPRED predicts accurately
69:18% of the cases while MC-Pazzani-EDA gets
79:05% giving an improvement of 9:87%. As a draw-
back, coil structures are classified correctly in a
76:76% of the cases, instead of the previous 80:29%
(although predictions have a better quality 80:94%
versus PSIPRED 75:72%).

Another important remark is that the information
index is better for all the multi-classifiers compared
to PSIPRED. Multi-classifiers have information
indexes between 0:43 and 0:44 while PSIPRED has
a index of 0:41.

Matthews’ correlation coefficients are also bet-
ter for all multi-classifier approaches.

The best improvements achieved by multi-clas-
sifiers are focus on a helix and b strands. Coil
prediction is less accurate than some of the best
servers.

9. Conclusions and future research

On this paper several multi-classifiers based on
Bayesian networks have been proposed for the pro-
blem of protein secondary structure prediction.
Although significant improvements are achieved
using simple classifiers (like na½̈ve Bayes), the best
results are obtained with innovative methods. These
methods have been designed as wrapper approaches
for existing Bayesian network classifiers. Interval
Estimation Na½̈ve Bayes (IENB) performs an estima-

tion of the best classification probabilities inside
of the boundaries of confidence intervals. Another
new approach is the design of a variant of Pazzani
classification method (greedy search), using heuris-
tic search for selecting themost appropriate features
for the classification procedure. Both new approa-
ches use EDAs (estimation of distribution algorithms)
to deal with heuristic search.

The multi-classifier system has been programmed
as a JSP Web application using several Java classes.
This system provides the following features:

� It compares the existing prediction servers world-
wide. Statistics of their accuracy and other qual-
ity measures are extracted.

� An appropriate selection of datasets for protein
secondary structure prediction has been
selected.

These datasets have been used to train/test
meta-classifiers commented above. The results
obtained by these methods have outperformed
existing state-of-the-art classifiers by 1:21% getting
the best results ever obtained for this problem
(80:99% from CB513—the most commonly used–—
and 80:25% for HS1771–—the most complete—).

There are open issues still ahead:

� To evaluate new classification methods as second
level strategies.

� To publish the meta-classifiers as an open-access
web service.

� Tocreateaportal toaccessexistingwebservers for
PSSP prediction. This service would provide users
with a single point to access multiple servers.
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[34] Larrañaga P, Lozano J. Estimation of distribution algo-
rithms. A new tool for evolutionary computation. Kluwer
Academic Publisher; 2002.

[35] Pazzani M. Searching for dependencies in Bayesian classi-
fiers. In: Learning from data: artificial intelligence and
statistics V; 1997, pp. 239—48.

136 V. Robles et al.


	Bayesian network multi-classifiers for protein secondary structure prediction
	Introduction
	Multi-classifier schema
	Datasets for protein secondary structure prediction
	Statistics in the PSSP problem
	Three-state prediction accuracy: Q3
	Per-state percentages
	Information index
	Matthew's correlation coefficients
	SOV: Segment OVerlap measure
	Per-stage segment overlap
	Segment OVerlap quantity measure for all three states


	Level-0 composite classifiers
	JPred
	SSPro
	PHD
	PSIPRED
	PROF
	SAM-T02

	Obtaining the datasets for multi-classifiers training
	Level-1 classifiers based on Bayesian networks
	Nave Bayes
	Interval estimation nave Bayes
	Pazzani
	Level-1 classifiers

	Results
	Detailed analysis of HS1771 results

	Conclusions and future research
	References


