
MAPFS-DAI, an extension of OGSA-DAI

based on a parallel file system

Alberto Sánchez a, Maŕıa S. Pérez a, Konstantinos Karasavvas b,
Pilar Herrero a, Antonio Pérez a

aDepartment of Computer Architecture and Technology, Technical University of
Madrid, Madrid, Spain, {ascampos, mperez, pherrero, aperez}@fi.upm.es

bNational e-Science Centre, e-Science Institute, Edinburgh, UK,
kostas@nesc.ac.uk

Abstract

Since current applications demand access to a huge volume of data, new and sophis-
ticated I/O systems are required. Several mass storage systems have been developed
from different institutions to access their own data repositories. These systems ex-
pose native interfaces not interoperable among them. In order to deal with this
requirement, OGSA-DAI has emerged to provide a uniform access to data sources.
However, this initiative is not focused on the performance of the I/O operations.
This paper describes MAPFS-DAI, an approach which tries to combine both ideas:
performance and interoperability.

Key words: Data access on grids, OGSA-DAI, MAPFS-Grid, Interoperability,
Performance.

1 Introduction

A large number of applications must be able to “consume” huge volumes of
data in order to improve their behaviour. Therefore, data management and
access are taking a relevant role in current applications and systems.

Although the efficiency of accessing to data is a key factor, addressed by in-
novative I/O systems, which will be analysed later on, the interoperability
between different data sources and the need of “standard” interfaces to access
data are causing more and more interest on current solutions. Particularly,
in grid environments this demand has originated the proliferation of specifi-
cations such as WS-DAI (Web Services Data Access and Integration), whose

Preprint submitted to Elsevier Science 18 January 2006



main goal is to define a “. . . specification for a collection of generic data inter-
faces that can be extended to support specific kinds of data resources . . . ” [4].

OGSA-DAI [22] is intented to provide a reference implementation of WS-
DAI. OGSA-DAI project has as main goal to provide a uniform access to data
resources, being compliant with OGSA [15]. OGSA-DAI has been released
on GT3, Axis, the OMII 1 infrastructure and on GT4, based on different
specifications, such as OGSI, WS-I, WS-I+ [6] and WSRF [29] respectively.

In spite of all the benefits given by OGSA-DAI, its performance can be en-
hanced. In fact, in [5] it is stated that “We expect to invest significant effort
in engineering good performance. . . ”.

In order to tackle the performance and the uniformity of the I/O access, this
paper presents MAPFS-DAI, an OGSA-DAI compliant infrastructure, which
is based on a parallel I/O system for grids, namely MAPFS-Grid. The outline
of this paper is as follows. Section 2 describes the problem which MAPFS-
DAI tries to solve and presents related work. Section 3 shows MAPFS-DAI
as a standard and optimised interface to data resources in a grid. Section 4
describes the results obtained for evaluating MAPFS-DAI. Finally, section 5
summarizes our conclusions and suggests future work.

2 Problem Statement and Related Work

In short, the problem stated by this paper is an extension of OGSA-DAI, in
order to provide two features:

(1) Facilitating uniform access to data resources by means of a service-oriented
architecture. With this aim, OGSA-DAI [22] was chosen, since it will pro-
vide a reference implementation of WS-DAI.

(2) Improving the performance provided by OGSA-DAI, through the use of
a parallel I/O system suitable for grid environments, that is, MAPFS-
Grid [33].

Both approaches are combined in order to produce MAPFS-DAI. The fea-
sibility of this combination is guaranteed because of the following common
characteristics between OGSA-DAI and MAPFS-Grid:

(1) They both are OGSA compliant [15]. OGSA-DAI supports WS-I, WS-I+
and WSRF [29]. MAPFS-Grid supports WSRF. For this reason, we will
use WSRF as the common grid specification for MAPFS-DAI.

(2) OGSA-DAI can be extended, adding new functionalities and activities.
Moreover, OGSA-DAI provides a flexible way to add new data resources.

2



Although OGSA-DAI is mainly intended for relational or XML databases,
users can provide additional functionalities. MAPFS-DAI gives support
for accessing flat files in a efficient fashion. OGSA-DAI allows files to be
accessed on grids, but up to this point, they are focused on file formats
such as OMIM, SWISSPROT and EMBL, and not on performance.

(3) Both OGSA-DAI and MAPFS-Grid rely on the factory pattern for the
creation of grid services associated to data.

Before analysing our proposal in more depth, it is important to describe some
of the most relevant approaches on data grids. This description is made in the
next section.

2.1 Data Grids

Data Grids [13,8,20] are grids where the access to distributed data resources
and their management are treated as first-class entities along with processing
operations. Data Grids, therefore primarily deal with providing services and
infrastructure for distributed data-intensive applications. The fundamental
features of Data Grids are provision of a secure, high-performance transfer
protocol for transferring large datasets and a scalable replication mechanism
for ensuring distribution of data on-demand. In order to get the maximum
benefits of the infrastructure, some requirements are needed:

• ability to search through numerous available datasets for those that are
required;

• ability to select suitable computational resources to perform data analysis;
• ability to manage access permissions;
• intelligent resource allocation and scheduling.

Some studies have investigated and surveyed Data Grids. Bunn and New-
man provide in [11] a survey of projects in High Energy Physics, while Qin
and Jiang [37] produce a compilation that concentrates more on the con-
sistent technologies. Moore and Merzky [27] identify functional requirements
and components of a persistent archival system. In the same way thousand
of projects are currently being developed for different application purposes
and objectives, such as create and maintain a data movement and analysis
infrastructure for users [23,2], create a uniform common/integrated/scalable
grid infrastructure that provides computational and storage facilities for scien-
tific research [14,19,36,16,9], access diverse observation and simulation archives
through integrated mechanisms [21,7] or even to foster collaboration in biomed-
ical science through sharing of data [10].

In all these projects data sources are generally mass storage systems from
which data is transferred as files or datasets to other repositories. Thus, both

3



storage and data management play an important role in the applications of
grid technology.

The earliest applications were complex analysis, often traversing large data
sets. Examples of this include protein folding, semiconductor manufacturing,
energy exploration research and analysis of recorded DNA sequences. The
datasets for all these applications are normally static in nature.

Data management of the static data sets is handled via common data storage
techniques such as file systems. The problem to be solved is how to take the
data stored in files, typically large in size and move the data to the nodes in
the grid that require the data in order to perform the designed tasks. Most
common methods used today are File Transfer Protocol (FTP), GridFTP [18],
as a protocol engine for data management within the grid, and distributed file
systems. Since these address the movement of static data sets, Di Stefano [41]
considers them as the first level of Data Grid. They do no address data man-
agement issues such as updates, transactions, or integration with external
systems. The first example was found in Chervenak et al. [13] where two basic
services (storage systems and data management) were introduced in data grid.
For Moore at al. [28], data grid provides a uniform name space across the un-
derlying store systems, and is also used to support projects as diverse as digital
libraries (National Library of Medicine Visible Embryo project), federation of
multiple astronomy sky surveys (NSF National Virtual Observatory project),
and integration of distributed data sets (Long Term Ecological Reserve).

The use of Grid Computing has been expanded to also support dynamic data
sets (such as those associated to business applications). New data management
techniques and infrastructures were required for addressing these kinds of be-
havioural properties. This second level of Data Grid [41] takes into account
both static and dynamic data sets and addresses data management issues as-
sociated to the management of this data in the grid, supplying among other
things methods of access, management, synchronization, and for transactions.
Some examples of the engines that support this level of data grids include
JavaSpaces and projects such as OceanStore and OpenMP. JavaSpaces [17]
combines persistent stores (tuples) with single operations, creates a shared
memory environment that not only exchanges information between distributed
processes but also coordinates operations and tasks with each other. JavaS-
paces exhibit some of the properties of a distributed management system such
as: shared access of data across a network of machines, persistence and trans-
actions. OceanStore [38], a global persistent data store provides a consistent,
highly-available, and durable storage utility atop an infrastructure comprised
of untrusted servers. OceanStore caches data promiscuously; any server may
create a local replica of any data object. These local replicas provide faster
access and robustness to network partitions. They also reduce network conges-
tion by localizing access traffic. OpenMP [30] has existed in the industry for

4



several years. It addresses multithreaded applications as well as the manage-
ment of interactive data across clusters. Although OpenMP was not designed
for grid computing, it provides the splitting of large processing loops into
smaller bits of work in a multithreaded, multiprocessor environment. It also
creates a distributed memory space to eliminate the use of traditional network
communication methods and middleware to allow the threads to share data.

Data sources such as relational databases would become more prominent in
future Data Grids. The challenge is to extend the existing Grid mechanisms
such as replication, data transfer and scheduling to work with these new data
sources. Work in this regard is already being done by projects such as OGSA-
DAI [24,25], as we mentioned previously.

The storage Resource Managers (SRM) interface provides a standard uniform
management interface to these heterogeneous storage systems, providing a
common interface to data grids, abstracting the peculiarities of each particular
Mass Storage System. Storage Resource Managers (SRMs) are middleware
components whose function is to provide dynamic space allocation and file
management on shared storage components on the Grid [40,39]. SRM interface
could be used to access the different storage system such as CASTOR (“CERN
Advanced STORage manager”) [12], a scalable and distributed hierarchical
storage management system developed at CERN in 1999. Other mass storage
systems which provide a SRM interface are HPSS, Enstore, JASMine, dCache
and SE.

Applications have to work between different systems, such as copying data
from an archival system located in one organization to a disk drive located
in another, having therefore to work across multiple interfaces. The existence
of a standard, transparent, uniform, consistent and centralised interface that
supports querying, transfer and archiving of data among different systems
would simplify the development of Data Grid applications [31].

3 Proposed Approach

Some of the approaches mentioned in the previous section address several as-
pects related to data grids. Nevertheless, as far as we know, there is not any
work which deals with the combination of access uniformity and high perfor-
mance. This section shows our proposal, whose main aim is the integration
of the OGSA-DAI philosophy and our system, MAPFS-Grid, for providing
uniform access.

MAPFS-Grid [33] provides a grid-like interface to a parallel file system based
on clusters, that is, MAPFS [32]. MAPFS (Multi Agent Parallel File System)

5



has been developed at the Universidad Politécnica de Madrid in 2003. The
main contribution of MAPFS is the conceptual use of agents to provide ap-
plications with new properties, with the aim of increasing their adaptation
to dynamic and complex environments. MAPFS is based on a multiagent ar-
chitecture that offers features such as data acquisition, caching, prefetching
and use of hints [34]. MAPFS is intended to be used in a cluster of worksta-
tions, transfering in parallel among all the cluster nodes. On the other hand,
MAPFS-Grid allows heterogeneous servers connected by means of a wide-area
network to be used as data repositories, by storing data in a parallel way
through all the clusters and individual nodes which make up the grid.

The problem of this proposal is that MAPFS-Grid offers a native interface,
which does not provide interoperability with other I/O systems. This feature
is against the principles of a grid environment. For this reason we propose
MAPFS-DAI as a bridge between the interoperability and the performance
optimization.

3.1 MAPFS-DAI Architecture

According to our goals, MAPFS-DAI architecture must be an extension of the
OGSA-DAI architecture [3]. This architecture is divided into four layers (see
Figure 1):

(1) Data Layer, which consists of the data resources. The data resources
exposed by MAPFS-DAI are flat and unformatted files. Besides, OGSA-
DAI gives support to other kind of data resources, such as relational and
XML databases.

(2) Business Logic Layer, which is composed of the data service resources
and accessors. Concretely, it is necessary to specify: (i) a suitable Data
Service Resource, which is named File Data Service Resource, associated
to flat and unformatted files, and (ii) A new accessor, whose main goal
is to control access to the underlying data resource, that is, files. We will
name our accessor as MAPFS-DAI accessor. The MAPFS-DAI accessor
allows activities to access data resources. Activities are the operations
performed by data service resources. Currently in MAPFS-DAI, we have
2 activities, one for reading (FileAccessActivity) and another one for writ-
ing (FileWritingActivity), which are compliant with the File Activities
defined by OGSA-DAI.

(3) Presentation Layer, which provides the web service interfaces to data
services. In the case of MAPFS-DAI, WSRF is used.

(4) Client Layer, which includes client application and client toolkit. This
last component makes easier the development of client applications by
providing useful and simple tools to create the documents exchanged

6



between the client and server: perform and response documents. Both
documents must fulfill the requirements specified by the service schema.
As long as the service schema is supported, it is possible to modify the
accessor to access a different storage system, without changing the client
application.

Client Application

Client Toolkit

WS-RFClient Stubs Other client stubs

Data Services

WS-RFDataService Other dataservices

OGSA-DAI Core

MAPFS-DAI

Accessor
Other

accessors

Relational

databases

XML

databases

Formatted

files

Flat

files

FileData

ServiceResource

Other DataService

Resource

Other accessors

Service

schema (.xsd)

Fig. 1. MAPFS-DAI within the OGSA-DAI Architecture

3.2 Double level of parallelism

By providing a uniform access to our system, the performance is drastically
reduced, as we will see in Section 4. For alleviating this decrease, we propose to
take advantage of two levels of parallelism, in the same way that MAPFS-Grid
does [35]:

(1) The high level provides parallelism among the set of storage elements.
(2) The low level provides parallelism among the set of nodes of each cluster,

in the case of using MAPFS-DAI. For performing this action, MAPFS is
used.

7



These two levels are depicted in Figure 2. The interoperability between MAPFS-
DAI and other OGSA-DAI compliant systems is also shown. This is an impor-
tant feature, since every storage element that exhibits the OGSA-DAI interface
can be used together with MAPFS-DAI elements. This is the case of the el-
ement 1 in Figure 2. New OGSA-DAI compliant elements could be created
from mass storage systems (MSSs), such as CASTOR, and incorporated to
this scenario. Due to the interoperability provided by OGSA-DAI, different
storage systems could be accessed in parallel.

Cluster Cluster

Original File

B0 B1 B2 B3 B4 B5

Element 0

B0 B3

MAPFS-DAI

Element 2

B5

MAPFS-DAI

Server

B2

Element 1

B4

OGSA-DAI compliant system

B1

Block 0

Block 3

Block 2

Block 5

Block 1 Block 4

Block fragmentation

MAPFS-GridClient

PARALLELISM. LEVEL1

PARALLELISM. LEVEL 2 PARALLELISM. LEVEL 2

Fig. 2. Double parallelism by using MAPFS-DAI storage elements

4 Performance Analysis

This section shows the results obtained by evaluating our system (MAPFS-
DAI) and the comparison of this system against other kind of systems, which
allow us to extract some interesting conclusions that assert our previous pro-
posals. Through this analysis, our aim is proving the performance benefits
obtained due to the parallel use of a standard and uniform access provided by
OGSA-DAI.

8



In order to validate our proposal, it is necessary to evaluate its performance.
Experiments were run in two different clusters. The first one is composed of
two Intel Pentium IV 3GHz nodes, with 512 MB of RAM memory, connected
by a Gigabit network. The second one has seven Intel Xeon 2.40GHz nodes,
with 1GB of RAM memory interconnected by means of a Gigabit network.
Both are connected by means of a wide-area network.

Our experiment consists of accessing a file stored in the system, through a
common interface (OGSA-DAI), which assists the access and integration of
data, located in disparate data sources.

In the first approach we have integrated the MAPFS file system inside OGSA-
DAI as an accessor. In this sense it is possible to access the data stored in
MAPFS by using the fileAccess interface provided by OGSA-DAI. As it is
shown in Figure 3 the total time taken to finish the activity is smaller in
MAPFS-DAI than the basic implementation of fileAccess in OGSA-DAI. This
is because of the fact that the MAPFS-DAI file access is made in a parallel
fashion by using all nodes from the second cluster, whereas OGSA-DAI access
is using only one server (the master node of the cluster).

Fig. 3. Comparison between the FileAccess method implemented in OGSA-DAI and
MAPFS-DAI to access a 100 MB filesize

However, MAPFS-DAI does not provide a performance-full solution. Although
it is not comparable with GridFTP due to their different applications 1 , if
these results are analysed in relation to the solutions provided by GridFTP
and MAPFS-Grid, as is described in [35], an interesting conclusion could be
reached: most time is consumed by performing the file transfer because that
is based on SOAP, used by OGSA-DAI. In fact, OGSA-DAI interacts with

1 GridFTP only transfers complete files

9



data service resources via a document-oriented interface, by sending a perform
document. The data service performs the actions described in the document
and composes a response document, which is sent back to the client. More
or less 85% of the time is used for the SOAP transfer. This means that the
problem is not an I/O problem, but a protocol problem (e.g., use of SOAP).
In order to enhance the overall system performance, one possibility would be
to improve these transport mechanism.

For improving the performance, we have built a parallel client that can use
all the different file accessors, because OGSA-DAI is a common interface, as
explained in section 3.2. Thus, all the systems or accessors implemented that
use the fileAccess interface could be used to access data in a parallel way.

Fig. 4. Comparison between a simple access and parallel access by using the fileAcces
method implemented in OGSA-DAI and MAPFS-DAI to access a 100 MB filesize

Figure 4 shows that the total time required to read a file is reduced. The
performance improvement is obvious, since both clusters are being used in
a parallel fashion through MAPFS-DAI, by taking advantage of both levels
of parallelism. Thus, it is possible to reduce the access time limited by the
network bandwidth by means of this double parallelism. In the case of a par-
allel access to OGSA-DAI services, it is possible to take advantage only of the
higher level of paralellism.

Furthermore, it is advisable to take into account the fact that different kinds
of systems (such as MAPFS-DAI, fileAccess based on OGSA-DAI, CASTOR,
and so on), could be used together, in the case of providing the same inter-
face. This feature should improve the performance if we use more servers and
could increase the fault tolerance if data replication is implemented within the
system.

10



5 Conclusions and Future Work

This paper describes MAPFS-DAI as a trade-off between uniform access in-
terfaces to data resources and performance enhancement for accessing these
resources, by means of the use of double parallelism.

The cost of using a standard interface is high, as we have seen in the perfor-
mance analysis. Nevertheless, the interoperability of MAPFS-DAI with other
OGSA-DAI I/O systems provides the possibility of using more I/O systems
in parallel, which alleviates this performance lost. Furthermore, most of the
time spent in I/O operations is lost in the data transfer through the network.
This problem could be solved by reimplementing the transfer stage of the sys-
tem according, for instance, to the way in which this problem is treated in
GridFTP. This constitutes part of our future research work.

Additionally, we consider how important is to create a new line inside of the
WS-DAI working group related to enhanced access to flat files. One of the
possible aspects which should be tackled within this line would be the defini-
tion of semantics close to the POSIX standard. In OGSA-DAI, the FileAccess
activity corresponds to one operation. For MAPFS-DAI, it would be more in-
teresting to define only one activity related to the access to files and within this
activity a set of POSIX-like operations (open, read, write, close and so on).
This would improve the system performance because, in the current solution,
it is required to open and close the file every time a read or write operation
is performed. By using the POSIX semantics, a session is established and the
file is opened and closed once, independent of the number of I/O operations.
This requirement has been investigated in the WS-DAIF specification (Web
Services Data Access and Integration - The File Realisation): “It would be rel-
atively straightforward to devise a bespoke XML schema to express the POSIX
commands and parameters, but that is not the function of this specification”.

References

[1] 13th International Symposium on High-Performance Distributed Computing
(HPDC-13 2004), 4-6 June 2004, Honolulu, Hawaii, USA. IEEE Computer
Society, 2004.

[2] Bill Allcock, Ian Foster, Veronika Nefedova, Ann Chervenak, Ewa Deelman, Carl
Kesselman, Jason Lee, Alex Sim, Arie Shoshani, Bob Drach, and Dean Williams.
High-performance remote access to climate simulation data: a challenge problem
for data grid technologies. In Supercomputing ’01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing, pages 46–46, New York, NY, USA,
2001. ACM Press.

11



[3] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. Chue Hong,
P. Dantressangle, A. Hume, M. Jackson, A. Krause, S. Laws, P. Parson,
N. Paton, J. Schopf, T. Sugden, P. Watson, and D. Vyvyan. OGSA-DAI status
and benchmarks. In Proceeedings of UK e-Science All Hands Meeting, 2005.

[4] M. Antonioletti, M. Atkinson, S. Laws, S. Malaika, N. Paton, D. Pearson, and
G. Riccardi. Web services data access and integration (WS-DAI). 13th Global
Grid Forum, 2005.

[5] M. Atkinson, K. Karasavvas, M. Antonioletti, R. Baxter, A. Borley, N. Chue
Hong, A. Hume, M. Jackson, A. Krause, S. Laws, N. Paton, J. Schopf,
T. Sugden, K. Tourlas, and P. Watson. A new architecture for OGSA-DAI.
AHM, 2005.

[6] Malcolm P. Atkinson, David De Roure, Alistair N. Dunlop, Geoffrey Fox, Peter
Henderson, Anthony J. G. Hey, Norman W. Paton, Steven Newhouse, Savas
Parastatidis, Anne E. Trefethen, Paul Watson, and Jim Webber. Web service
grids: an evolutionary approach. Concurrency - Practice and Experience, 17(2-
4):377–389, 2005.

[7] Australian Virtual Observatory, accessed dec 2005 [online]. available:
http://www.aus-vo.org.

[8] P. Avery. Data grids: a new computational infrastructure for data-intensive
science. Philosophical Transactions of the Royal Society of London Series a-
Mathematical Physical and Engineering Sciences, 360(1795):1191–1209, 2002.

[9] BioGrid japan, accessed dec 2005 [online]. available: http://www.biogrid.jp.

[10] Biomedical Informatics Research Network (BIRN), accessed dec 2005 [online].
available: http://www.nbirn.net.

[11] J. Bunn and H. Newman. Data-intensive grids for high-energy physics. Grid
Computing: Making the Global Infrastructure a Reality, 2003.

[12] The Castor Project, http://www.castor.org.

[13] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data
grid: towards an architecture for the distributed management and analysis of
large scientific datasets. Network and Computer Applications, 23:187–200, 2001.

[14] Enabling Grids for E-sciencE (EGEE), accessed dec 2005 [online]. available:
http://public.eu-egee.org.

[15] I. Foster et al. The Open Grid Services Architecture, version 1.0. 2005.

[16] Ian T. Foster et al. The grid2003 production grid: Principles and practice. In
HPDC [1], pages 236–245.

[17] David Gelernter and Arthur J. Bernstein. Distributed communication via
global buffer. In PODC ’82: Proceedings of the first ACM SIGACT-SIGOPS
symposium on Principles of distributed computing, pages 10–18, New York, NY,
USA, 1982. ACM Press.

12



[18] GridFTP: Universal Data Transfer for the grid,
http://www.globus.org/datagrid/gridftp.html.

[19] Grid Physics Network (GriPhyN), accessed dec 2005 [online]. available:
http://www.griphyn.org.

[20] W. Hoschek, F. J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger.
Data management in an international data grid project. In Proceedings of the
First IEEE/ACM International Workshop on Grid Computing(GRID 2000),
December 2000.

[21] International Virtual Observatory Alliance, accessed dec 2005 [online]. available:
http://www.ivoa.net.

[22] Konstantinos Karasavvas, Mario Antonioletti, Malcolm P. Atkinson, Neil
P. Chue Hong, Tom Sugden, Alastair C. Hume, Mike Jackson 0003, Amrey
Krause, and Charaka Palansuriya. Introduction to ogsa-dai services. In Pilar
Herrero, Maŕıa S. Pérez, and Vı́ctor Robles, editors, SAG, volume 3458 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2004.

[23] Lhc computing grid, accessed dec 2005 [online]. available:
http://lcg.web.cern.ch/LCG.

[24] James Magowan. A view on relational data on the grid. In IPDPS, page 90.
IEEE Computer Society, 2003.

[25] Susan Malaika, Andrew Eisenberg, and Jim Melton. Standards for databases
on the grid. SIGMOD Record, 32(3):92–100, 2003.

[26] Beniamino Di Martino, Jack Dongarra, Adolfy Hoisie, Laurence Tianruo
Yang, and Hans Zima, editors. Engineering the Grid: Status and Perspective.
American Scientifc Publisher, January 2006.

[27] R. Moore and A. Merzky. Persistent archive concepts. Global Grid Forum
Persistent Archive Research Group, Global Grid Forum 8, June 2003.

[28] Reagan W. Moore, Igor Terekhov, Ann Chervenak, Scott Studham, Chip
Watson, and Heinz Stockinger. Data grid implementations. available
at http://www.ppdg.net/docs/WhitePapers/Capabilities-grids.v6.pdf, January
2002.

[29] OASIS. Ws-ResourceFramework. 2005.

[30] OpenMP, accessed dec 2005. Available: http://www.openmp.org.

[31] Laura Pearlman, Carl Kesselman, Sridhar Gullapalli, B. F. Spencer Jr., Joe
Futrelle, Kathleen Ricker, Ian T. Foster, Paul Hubbard, and Charles Severance.
Distributed hybrid earthquake engineering experiments: Experiences with a
ground-shaking grid application. In HPDC [1], pages 14–23.

[32] Maŕıa S. Pérez, Jesús Carretero, Félix Garćıa, José M. Peña Sánchez, and
Victor Robles. A flexible multiagent parallel file system for clusters. In
Peter M. A. Sloot, David Abramson, Alexander V. Bogdanov, Jack Dongarra,

13



Albert Y. Zomaya, and Yuri E. Gorbachev, editors, International Conference
on Computational Science, volume 2660 of Lecture Notes in Computer Science,
pages 248–256. Springer, 2003.

[33] Maŕıa S. Pérez, Jesús Carretero, Félix Garćıa, José M. Peña Sánchez, and
Victor Robles. MAPFS-Grid: A flexible architecture for data-intensive grid
applications. In F. Fernández Rivera, Marian Bubak, A. Gómez Tato, and
Ramon Doallo, editors, European Across Grids Conference, volume 2970 of
Lecture Notes in Computer Science, pages 111–118. Springer, 2003.

[34] Maŕıa S. Pérez, Alberto Sánchez, Vı́ctor Robles, José M. Peña Sánchez, and
Fernando Pérez. Optimizations based on hints in a parallel file system. In
Marian Bubak, G. Dick van Albada, Peter M. A. Sloot, and Jack Dongarra,
editors, International Conference on Computational Science, volume 3038 of
Lecture Notes in Computer Science, pages 347–354. Springer, 2004.

[35] M.S. Pérez, A. Sánchez, P. Herrero, and V. Robles. A New Approach for
overcoming the I/O crisis in grid environments. American Scientific Publisher,
2006. Article belonging to [26].

[36] Particle Physics Data Grid(PPDG), accessed dec 2005 [online]. available:
http://www.ppdg.net.

[37] X. Qin and H. Jiang. Data grids: Supporting data-intensive applications in wide
area networks. Technical Report TR-03-05-01, May 2003.

[38] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz.
Pond: The oceanstore prototype. In Proceedings of the Conference on File and
Storage Technologies. USENIX, 2003.

[39] Arie Shoshany et al. SRM Interface Specification v.2.1, http://sdm.lbl.gov/srm-
wg/doc/srm.spec.v2.1.final.pdf.

[40] Arie Shoshany et al. SRM Joint Design v.1.0, http://sdm.lbl.gov/srm-
wg/doc/srm.v1.0.pdf.

[41] Michael Di Stefano. Distributed Data Management for Grid Computing. Wiley-
Interscience, July 2005.

14


