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Abstract

One of the most common forms of addressing reproducibility in scientific workflow-based computational science in the past decades
has consisted in tracking the provenance of the produced and published results. Such provenance allows inspecting intermediate
and final results, improves understanding, and permits replaying a workflow execution. Nevertheless, this approach does not
provide any means for capturing and sharing the very valuable knowledge about the experimental equipment of a computational
experiment, i.e., the execution environment in which the experiments are conducted. In this work, we propose a novel approach
for describing the execution environment of scientific workflows, so as to conserve them, using semantic vocabularies. We define
a process for documenting the workflow application and its related management system, as well as their dependencies. Then we
apply this approach over three different real workflow applications on three distinguished scenarios, using public, private, and local
Cloud platforms. In particular, we study one astronomy workflow and two life science workflows for genomic information analysis.
Experimental results show that our approach can reproduce an equivalent execution environment of a predefined virtual machine
image on all evaluated computing platforms.
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1. Introduction

Reproducibility of results of scientific experiments is a cor-
nerstone in science. Therefore, the scientific community has
been encouraging researchers to publish their contributions in
a verifiable and understandable way [1, 2]. In computational
science, or in-silico science, reproducibility often requires that
researchers make code and data publicly available so that the
data can be analyzed in a similar manner as in the original work
described in the publication. Code must be available to be dis-
tributed, and data must be accessible in a readable format [3].

Scientific workflows are a useful representation for manag-
ing the execution of large-scale computations. Many scientists
now formulate their computational problems as scientific work-
flows running on distributed computing infrastructures such as
campus Clusters, Clouds, and Grids [4]. Researchers in bioin-
formatics have embraced workflows for a whole range of anal-
yses, including protein folding [5], DNA and RNA sequenc-
ing [6, 7, 8], and disease-related research [9, 10], among others.
The workflow representation not only facilitates the creation
and management of the computation but also builds a founda-
tion upon which results can be validated and shared.
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Many efforts have been reported on studying the repro-
ducibility of scientific results in life sciences. Some studies
clearly show the difficulties when trying to replicate experimen-
tal results in biology [11]. The Reproducibility Project: Cancer
Biology [12] is an active project aiming to independently repro-
duce the experimental results of 50 high-impact cancer biology
studies, evaluating the degree of reproducibility of those results
and the main issues related to them.

Since workflows formally describe the sequence of computa-
tional and data management tasks, it is easy to trace the origin
of the data produced. Many workflow systems capture prove-
nance at runtime, what provides the lineage of data products
and as such underpins the whole of scientific data reuse by pro-
viding the basis on which trust and understanding are built. A
scientist would be able to look at the workflow and provenance
data, retrace the steps, and arrive at the same data products.
However, this information is not sufficient for achieving full re-
producibility.

Reproducibility, replicability, and repeatability are often used
as synonyms. Even when they pursuit similar goals, there are
several differences between them [13]. In this work we con-
sider them as separated concepts. While replicability can be
defined as a strict recreation of the original experiment, using
the same method, data and equipment, reproducibility implies
that at least some changes have been introduced in the experi-
ment, thus exposing different features. While being a less re-
strictive term, reproducibility is a key concept in science, as it
allows the incremental research of scientific studies by modify-
ing, improving and repurposing them.
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In this work, we address the reproducibility of the execu-
tion environment for a scientific workflow, as we do not aim
to obtain an exact incarnation of the original one, but rather
an environment that is able to support the required capabilities
exposed by the former environment. In order to reproduce or
replicate any digital artifact we need to properly handle its con-
servation. According to [14], to achieve conservation one needs
to guarantee that “sufficient information exists with which to un-
derstand, evaluate, and build upon a prior work if a third party
could replicate the results without any additional information
from the author”. Hence, we address workflow conservation in
order to attain its reproducibility.

In [15], authors explain the problems they faced when they
tried to reproduce an experiment [16] for mapping all putative
FDA and European drugs to protein receptors within the scope
of a given proteome. For each identified problem, they enumer-
ate a set of suggestions for addressing the related issues. In four
out of the total six advises, execution environment problems are
mentioned.

Currently, most of the approaches in computational science
conservation, in particular for scientific workflow executions,
have been focused on data, code, and the workflow description,
but not on the underlying infrastructure—which is composed
of a set of computational resources (e.g., execution nodes, stor-
age devices, and networking) and software components. We
identify two approaches for conserving the environment of an
experiment: 1) physical conservation, where the real object is
conserved due to its relevance and the difficulty in obtaining a
counterpart; and 2) logical conservation, where objects are de-
scribed in such a way that an equivalent one can be obtained in
a future experiment.

The computational environment is often conserved by using
the physical approach, where computational resources are made
available to scientists over a sustained period of time. As a re-
sult, scientists are able to reproduce their experiments in the
same environment. However, such infrastructures demand huge
maintenance efforts, and there is no guarantee that it will not
change or suffer from a natural decay process [17]. Further-
more, the infrastructure may be subjected to organization poli-
cies, which restrict its access to a selective group of scientists,
thereby limiting reproducibility to this restricted group. On the
other hand, data, code, and workflow descriptions can be con-
served by using a logical approach, which is not subjected to
natural decay processes.

Accordingly, we propose a logical-oriented approach to con-
serve computational environments, where the capabilities of the
resources (virtual machines (VM)) are described. From this
description, any scientist, interested in reproducing an experi-
ment, will be able to reconstruct the former infrastructure (or an
equivalent one) in any Cloud computing infrastructure (either
private or public). One may argue that it would be easier to keep
and share VM images with the community research through a
common repository, however the high storage demand of VM
images remains a challenging problem [18, 19].

Inspired by the aforementioned ideas, exposed in [14], we
aim to define means for authors to share the relevant informa-
tion about the execution environment of a given scientific work-

flow. We argue that by explicitly describing this knowledge we
increase the reproducibility degree of the environment and of
the workflow therefore.

Semantics have been proposed as a way for attaining cu-
ration and conservation of the digital assets related to scien-
tific experiments (e.g., biomedical research [20]). Our ap-
proach uses semantic-annotated workflow descriptions to gen-
erate lightweight scripts for an experiment management API
that can reconstruct the required infrastructure. We propose to
describe the resources involved in the execution of the exper-
iment using a set of semantic vocabularies, and use those de-
scriptions to define the infrastructure specification. This spec-
ification can then be used to derive the set of instructions that
can be executed to obtain a new equivalent infrastructure. We
conduct a practical experimentation process, using real scien-
tific workflow applications, in which we describe the applica-
tions and their environments using a set of semantic models.
Then, we use an experiment management tool to reproduce a
workflow execution in different Cloud platforms.

The semantics modeling of computational resources and
some of the reproducibility tools were introduced and evaluated
in [21] for a single astronomic scientific workflow application.
In this work, we extend our previous work by introducing 1) a
set of new features to our framework (as a result of our previ-
ous work), 2) a study of two new life sciences workflows based
on genomic processing applications, and 3) a practical evalua-
tion of the framework with the new features for the astronomic
workflow as well as the two new life science workflows.

The paper is organized as follows. Section 2 describes our
semantic approach for documenting computational infrastruc-
tures. Section 3 presents the description of the tools used to
implement the semantic models and manage the experiment.
Section 4 describes the experimentation process. Section 5
presents the related work, and Section 6 summarizes our results
and identifies future works.

2. Semantic Modeling of Computational Resources

In this work, we argue that for achieving the reproducibility
of a scientific workflow, enough information about the compu-
tational resources should be provided. These descriptions allow
the target audience, usually another computational scientist in
the same domain, to better understand the underlying compo-
nents involved in a workflow execution.

We propose the definition of semantic models for describ-
ing the main domains of a computational infrastructure, and
for defining the taxonomy of concepts and the relationships
between them. These models describe software components,
hardware specifications, and computational resources (in the
form of VMs). They also capture infrastructure dependencies
of the workflows (e.g services that must be running, available
libraries, etc.). As a result, this process facilitates experiment’s
reusability since a new experiment, which may reuse parts of
the workflow previously modeled, or a reproduction of a work-
flow, would benefit from the infrastructure dependencies al-
ready described.
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Figure 1: Overview of the ontology network (→ denotes inter-domain relation).

We have identified four main domains of interest for docu-
menting computational scientific infrastructures [22]. We have
developed a set of models, one for each domain, and an on-
tology network that defines the inter-domain relations between
these models (Figure 1):

• Hardware domain: it identifies the most common hard-
ware information, including CPU, Storage and RAM
memory, and their capacities.

• Software domain: it defines the software components in-
volved on the execution. It includes the pieces of exe-
cutable software (e.g., scripts, binaries, and libraries) used
in the experiment. In addition, dependencies between
those components and configuration information are also
defined, as well as the required steps for deploying them.

• Workflow domain: it describes and relates workflow
fragments (a.k.a transformations) to their dependencies.
Therefore, scientists can understand which are the relevant
infrastructure components for each part of the workflow.

• Computing Resources domain: it expresses the informa-
tion about the available computing resources. In this do-
main, only virtualized resources are currently considered
(i.e., virtual machine). It includes the description of the
VM image, its provider, and specifications.

3. Reproducibility in Scientific Workflows

In this section, we introduce the tools used in this work for
the instantiation and evaluation of the aforementioned semantic
models. We first describe the Pegasus Workflow Management
System (WMS) [23, 24], which is used as our workflow engine,
and then a set of reproducibility tools for semantic annotations
and experiment management.

3.1. Scientific Workflow Execution

The Pegasus WMS can manage workflows comprised of mil-
lions of tasks, recording data about their execution and interme-
diate results. In Pegasus, workflows are described as abstract
workflows, that is, they do not contain resource information,
or the physical locations of data and executables. Workflows
are described as directed acyclic graphs (DAGs), where nodes

represent individual computational tasks and the edges repre-
sent data and control dependencies between tasks. The abstract
workflow description is represented as a DAX (DAG in XML),
capturing all the tasks that perform computations, the execution
order of these tasks, and for each task the required inputs, ex-
pected outputs, and the arguments with which the task should
be invoked.

During a workflow execution, Pegasus translates an abstract
workflow into an executable workflow, determining the exe-
cutables, data, and computational resources required for the ex-
ecution. Pegasus maps executables to their installation paths or
to a repository of stageable binaries defined in a Transforma-
tion Catalog (TC). A workflow execution includes data man-
agement, monitoring, and failure handling. Individual work-
flow tasks are managed by a task scheduler (HTCondor [25]),
which supervises their execution on local and remote resources.

3.2. Reproducibility Artifacts
To conduct the experimentation on scientific workflows re-

producibility, we use the WICUS framework [22], which com-
prises the semantic models described in Section 2 and a set of
tools for annotating and consuming data; and the PRECIP [26]
experiment management tool to manage the experiment. In ad-
dition, we use Vagrant [27], a tool for deploying virtual de-
ployment environments, to achieve local reproducibility of the
experiments. Below, we describe each of these tools in detail.

3.2.1. WICUS
The Workflow Infrastructure Conservation Using Semantics

ontology (WICUS) is an OWL2 (Web Ontology Language)
ontology network that implements the semantic models intro-
duced in Section 2. This ontology network is available on-
line [28] and its goal is to define the relevant and required prop-
erties for describing scientific computational infrastructures.
The detailed description of the ontologies, including its mains
terms and relation in the context of a workflow execution are
provided in [22]. Currently, two versions of the ontology net-
work have been released. The latest one, released in August
2014, includes a set of new properties for better describing soft-
ware and hardware requirements, and for also including the out-
put information of a configuration process (e.g., the resultant IP
and port in which a recently deployed service will be listening).

Besides the ontology network, a set of components have
been developed around it, for facilitating the annotation of the
resources involved on the execution of a scientific workflow.
These tools are not fully automated yet, but represent a first
step on helping users to define the requirements of their ex-
periments. Figure 2 shows the main modules, their flow and
intermediate results involved in the process for achieving re-
producibility, and describes the process of data generation and
consumption. Below, we provide an overview of each of these
modules:

1. DAX Annotator. This tool parses a DAX (Pegasus’ work-
flow description) and generates a set of annotations using
the terms of the WICUS vocabulary, representing work-
flow transformations and the workflow infrastructure re-
quirements.
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Figure 2: WICUS annotation modules and flow. White boxes represent tools
for semantic annotation or algorithms, and grey boxes represent files used or
generated by the framework.

2. Workflow Annotations. This RDF file contains the de-
scription of the workflow and its infrastructure require-
ments.

3. WMS Annotations. This RDF file contains the informa-
tion of the WMS component and its dependencies. This
information is added to the Software Components Cata-
log.

4. Transformation Catalog Annotator. This tool parses the
Pegasus Transformation Catalog (which describes the bi-
naries involved on the workflow execution and their loca-
tions) and the WMS annotations file, to generate two set
of annotations: the Software Components Catalog and the
Workflow & Configuration Annotation files.

5. Software Components Catalog. This RDF file contains
the set of annotations about the binaries, dependencies, de-
ployment plans and scripts, and configuration information
of the software involved in the experiment.

6. Workflow & Configuration Annotation File. This RDF
file contains the same information as in 2, but enriched
with the configuration information for each workflow exe-
cution step, as specified in the transformation catalog.

7. Scientific Virtual Appliances Catalog. This RDF file
contains available VM appliances. Information about the
related infrastructure providers and the VM images that
compose an appliance are included in this dataset.

8. Infrastructure Specification Algorithm. This process
reads files 5, 6, and 7, and generates a configuration file,

which describes VMs and software components to be cre-
ated and deployed.

9. Abstract Deployment Plan. This plan contains infor-
mation about the set of components and their associated
deployment steps for configuring the execution infrastruc-
ture. This plan will be later enacted using a concrete lan-
guage. This decoupled approach allows the integrations of
new enactment systems easily.

10. Script Generator. This module concretizes the abstract
deployment plan using the selected language (either PRE-
CIP or Vagrant in this case) to generate an executable
script. New script syntaxes may be added in the future.

11. Executable Script. This script creates a PRECIP/Vagrant
experiment, which runs a VM, copies the required bina-
ries, and executes deployment scripts to set the environ-
ment for the workflow execution. It also contains the orig-
inal experiment commands in order to re-execute it.

In the experimentation process (Section 4), we will present
a detailed description and the applicability of each module for
the studied scientific workflows.

3.2.2. PRECIP
The Pegasus Repeatable Experiments for the Cloud in

Python (PRECIP) [26] is a flexible experiment management
control API for running experiments on all types of Clouds, in-
cluding academic Clouds such as FutureGrid [29] and the NS-
FCloud [30, 31] (through OpenStack), and commercial Clouds
such as Amazon EC2 [32] and Google Compute Engine [33].
In PRECIP, interactions with the provisioned instances are done
by tagging. When an instance is provisioned, the scientist can
add arbitrary tags to that instance in order to identify and group
the instances in the experiment. API methods such as run-
ning remote commands, or copying files, all use tags to specify
which instances to target. PRECIP does not force the scientist
to use a special VM image, and no PRECIP components need to
be pre-installed in the image. Scientists can use any basic Linux
image and PRECIP will bootstrap instances using SCP and SSH
commands. PRECIP provides functionality to run user-defined
scripts on the instances to install/configure software and run ex-
periments, and also manages SSH keys and security groups au-
tomatically.

In this work, we use PRECIP to define a script able to repro-
duce the execution environment of the former experiment, and
run it on a Cloud platform.

3.2.3. Vagrant
Vagrant [27] is an open-source and multi-platform solution

for deploying development environments locally using virtual-
ization. It relies on virtualization solutions such as Oracle Vir-
tualBox [34] (also open-source) or VMWare [35], and support
Amazon EC2-like server configurations. Since version 1.6 it
also supports Docker [36] containers. Vagrant provides a set of
commands and configuration files to enact and customize vir-
tual machines (also referred to as boxes). It allows defining the
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set of commands and/or scripts to be executed during the dif-
ferent stages of the booting process. Several base images are
publicly available for users to download and customize [37].

In this work, we introduce how Vagrant can be used for
achieving reproducibility at a local execution environment—
usually a scientist’s laptop/desktop computer. As a result, users
are able to repeat and modify their original experiment, repur-
posing or improving it, which is a highly desirable goal of any
reproducibility process. By executing Vagrant with the resul-
tant Vagrantfile generated by the Infrastructure Specification
Algorithm, the user will create a virtual machine on its own
computer and automatically execute the workflow, being also
able to access it and modify the environment.

4. Experimentation Process

In this section, we instantiate the semantic models introduced
in section 3 (Figure 1) for three real scientific workflow ap-
plications. This process is an extension of the one introduced
in [21], in which we evaluate the improvements on our ap-
proach to the Montage [38] workflow, and also evaluate the
Epigenomics [39], and SoyKB [40, 41] workflows. We study
and document these workflows and their execution environ-
ments, which include the application software components and
the workflow management system.

The goal of this experiment is to reproduce original workflow
executions into the three different Cloud scenarios introduced in
this work: FutureGrid [29] and Amazon EC2 [32] using PRE-
CIP, and a local execution environment by using Vagrant. Fu-
tureGrid is an academic Cloud test-bed facility that includes
a number of computational resources at distributed locations.
Amazon Web Services EC2 is a public infrastructure provider,
and the de facto standard for IaaS Cloud platforms.

4.1. Scientific Workflows

Montage. The Montage workflow [38] was created by the
NASA Infrared Processing and Analysis Center (IPAC) as an
open source toolkit that can be used to generate custom mo-
saics of astronomical images in the Flexible Image Transport
System (FITS) format. In a Montage workflow, the geometry
of the output mosaic is calculated from the input images. The
inputs are then re-projected to have the same spatial scale and
rotation, the background emissions in the images are corrected
to have a uniform level, and the re-projected, corrected images
are co-added to form the output mosaic. Figure 3 illustrates a
small (20 node) Montage workflow. The size of the workflow
depends on the number of images required to construct the de-
sired mosaic.

Epigenomics. The USC Epigenome Center [39] is currently
involved in mapping the epigenetic state of human cells on a
genome-wide scale. The Epigenomics workflow (Figure 4) pro-
cesses multiple sets of genome sequences in parallel. These
sequences are split into subsets, the subsets are filtered to re-
move contaminants, reformatted, and then mapped to a refer-
ence genome. The mapped sequences are finally merged and

mProjectPP mDiffFit mConcatFit mBgModel mBackground

mImgtbl mAdd mShrink mJPEG

Figure 3: A small (20 node) Montage workflow.

fastQSplit

filterContams

sol2sanger

fastq2bfq

map

mapMerge

maqIndex

pileup

Figure 4: Epigenomics workflow.

indexed for later analysis. In this work, the Epigenomics work-
flow was used to align genome sequence reads to a reference
genome for human chromosome 21. The size of the workflow
depends on the chunking factor used on the input data, which
determines the number of sequence reads in each chunk.

SoyKB. The SoyKB workflow [40, 41] is a genomics pipeline
that re-sequences soybean germplasm lines selected for desir-
able traits such as oil, protein, soybean cyst nematode resis-
tance, stress resistance, and root system architecture. The work-
flow (Figure 5) implements a Single Nucleotide Polymorphism
(SNP) and injection/deletion (indel) identification and analysis
pipeline using the GATK haplotype caller [42] and a soybean
reference genome. The workflow analyzes samples in parallel
to align them to the reference genome, to de-duplicate the data,
to identify indels and SNPs, and to merge and filter the results.
The results are then used for genome-wide association studies
(GWAS) and genotype to phenotype analysis. The workflow
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Figure 5: SoyKB workflow.

instance used in this paper is based on a sample dataset that re-
quires less memory than a full-scale production workflow, how-
ever it carries out the same process and requires the same soft-
ware components.

4.2. Generating Semantic Annotations

In this subsection, we present the annotations generated for
each of the scientific workflows presented above and the Pe-
gasus WMS using the WICUS ontology network. All the an-
notations generated in this work are available on the Research
Object (RO) [43] associated to this paper [44].

As described in Figure 2, the first step in the process of doc-
umenting a workflow is the annotation of the workflow DAX
file. We use the Workflow domain ontology to describe a work-
flow as 1) an individual that represents the top level workflow,
and 2) a set of individuals representing its sub-workflows, one
for each transformation. We then generate the necessary re-
quirements, one for the top level workflow, which specifies the
WMS requirements, and and one for each sub-workflow, which
defines the software components required by each transforma-
tion. Figure 6 shows a simplified overview of the annotations
generated using the WICUS ontology network for the Montage,
Epigenomics, and SoyKB workflows as well as for the Pegasus
WMS. Below, we describe each of these semantic annotations
in detail:

Workflow Management System. We use the Software do-
main ontology to describe the components that compose the
workflow engine (in this case Pegasus) as individuals, and to
represent its dependencies. Pegasus relies on HTCondor as task
manager, and both depend on Java and wget. In addition, all
components also depend on the operating system, which in our
case is CentOS. The process to describe the deployment of the

WMS components is based on the installation of and configura-
tion processes as specified in their documentation. As a result,
we will define a set of installation scripts for each of the compo-
nents. These scripts are included as part of the deployment plan
along with their configuration information. The WMS compo-
nents are defined as a requirement (WMS Requirements) us-
ing the Workflow domain ontology. This requirement is then
linked to each of the workflows included in this work. As a
result, Java, wget, HTCondor, and Pegasus WMS should be
installed on the target computational resource.

Montage Workflow. We use the Workflow domain ontology to
describe the Montage workflow as an individual that represents
the top level workflow, and another 9 individuals representing
its sub-workflows, one for each transformation. We also gener-
ate 9 requirements, which define the software components re-
quired by each transformation. At this point, these requirements
are empty, as they are not yet related to their software compo-
nents. Figure 7 shows the set of generated individuals for the
Montage workflow.

Application components are described in the Montage work-
flow’s Transformation Catalog, where the binary file, version,
and destination path are defined. These components are also
described as individuals using the Software domain ontology.
We use this information to generate the configuration param-
eters of the deployment script, which in this case is the same
for all components. The script downloads the binary files from
an online repository and copies them to the specified destina-
tion path. This process identified 59 software components for
the Montage workflow that are annotated and included in the
Software Components Catalog. Then, the Transformation Cata-
log Annotator module relates each transformation requirement,
defined using the Workflow domain ontology, to the applica-
tion component, and therefore to the deployment information.
In this experiment, we define 9 Montage components that are
linked to the requirements, and another two sub-components
that are defined as dependencies in the software catalog (mDiff-
Fit depends on the mDiff and mFitPlane components).

Epigenomics Workflow. Following the same approach as in
the previous case, we use the Workflow domain ontology to
describe the Epigenomics workflow as an individual that rep-
resents the top level workflow, and another 8 individuals rep-
resenting its sub-workflows, one for each transformation (Fig-
ure 8). We have then annotated the components described in the
Epigenomics’ Transformation Catalog as individuals using the
Software domain ontology. We have also identified and anno-
tated 6 software dependencies related to the workflow, which
include the Perl [45] interpreter, the GNU libc [46] and Lib-
stdc++ [47] libraries, and two other binaries from the Epige-
nomics distribution, maq and maqindex.

SoyKB Workflow. We describe the SoyKB workflow as an in-
dividual that represents the top level workflow, and another 14
individuals representing each transformations. For the sake of
simplicity, we do not show the annotations for this workflow.
Although SoyKB is the largest workflow in terms of its number
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Figure 6: Overview of the generated annotations for the Montage, Epigenomics, and SoyKB workflows using the WICUS ontology network (yellow rectangles
represent the workflow component; blue squashed rectangles represent the Montage workflow; green bevelled rectangles represent the Epigenomics workflows; and
red hexagons represent the SoyKB workflow).
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Figure 7: Annotations for the Montage workflows using the Workflow domain
ontology.

of steps (around 670) among the other workflows included in
this work, it defines only four software components as depen-
dencies (bwa-wrapper, gatk-wrapper, picard-wrapper,
and software-wrapper). These components are software
wrappers that invoke different libraries and binaries depend-
ing on the parameters used for the execution of the workflow.
The components are included on a software bundle that is de-
ployed on the computational nodes to be invoked by the wrap-
pers. Hence, a dependency for this bundle has been included in
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Fast2Bfq
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Map
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MapMerge
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MaqIndex
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Figure 8: Annotations for the Epigenomics workflows using the Workflow

domain ontology.

the Software Components Catalog.

Computational Resources. We use the Computing

Resources and Hardware domain ontologies to describe
computational resources. For each Cloud resource (Amazon
EC2 and FutureGrid), we defined two virtual machines: one
that meets the requirements for the Montage and Epigenomics
workflows (requires smaller disk space); and one for the
SoyKB workflow (requires larger disk space). In both cases,
we generated conceptually equivalent VMs appliances, as
they both provide the CentOS 6 operating system, but differ
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in the hardware configuration. We attempt to reduce the
resource consumption of Cloud resources due to the cost for
storing/transferring VM images. Since Vagrant execution is
performed locally, we generated a single VM appliance that
meets the requirements of all workflows.

The description of the appliances is then included in the Sci-
entific Virtual Appliances Catalog (step 7 in Figure 2). We de-
fine an Image Appliance that groups all VMs appliances into
one single Scientific Virtual Appliance (CentOS 6 SVA). As
described in the Software domain ontology [22] a Scientific Vir-
tual Appliance is defined by the set of software elements associ-
ated to it, while Image Appliances describe the combination of
hardware characteristics and infrastructure providers. Thus, we
will have five different Image Appliances grouped into one sin-
gle Scientific Virtual Appliance, defined by the Centos 6 soft-
ware stack. Table 1 summarizes the main characteristics of the
five appliances we have annotated.

Amazon EC2 FutureGrid VagrantSmall Large Small Large
RAM (GB) 7 7 8 8 4
Disk (GB) 40 5 40 5 50
CPU (GHz) 2.4 2.4 2.9 2.9 2.83
CPU Arch. 64 bits 64 bits 64 bits
OS CentOS 6 CentoOS 6 CentOS 6

Table 1: CentOS 6 Virtual Image Appliances.

Hardware Requirements. For each scientific workflow, we
have also analyzed the hardware specifications required for
their execution. Table 2 shows the minimum threshold per
workflow for each requirement. During the computational re-
source selection process (described in the following section),
we will consider that any resource that meets the requirements
specified by a workflow will be a valid candidate for running
the workflow. Since we do not target workflow execution per-
formance, but a correct execution of the workflow, we have not
identified any specific capacity regarding CPU frequency.

CPU (GHz) CPU Arch. RAM (GB) Disk (GB)
Montage - 64 bits 4 4
Epigenomics - 64 bits 4 4
SoyKB - 64 bits 4 10

Table 2: Workflow hardware requirements.

4.3. Reproducing Workflow Executions.

The last step on the process for achieving reproducibility in
scientific workflows (Figure 2) is to execute the Infrastructure
Specification Algorithm (ISA) described in [22]. The algorithm
retrieves the corresponding information for the workflow and its
dependencies from the annotation datasets, and calculates the
dependencies and compatibility between requirements and the
available computational resources. It also considers the soft-
ware already installed on the resources to avoid unnecessary
installation steps.

Infrastructure Specification Algorithm. ISA combines the an-
notated data based on the 4 domain ontologies in order to find a
suitable infrastructure specification that meets the requirements
of the workflow. The algorithm retrieves and propagates the
WMS requirements of the top-level workflow (Workflow do-
main ontology) to its related sub-workflows (as defined in Fig-
ure 6). Requirements and software components are matched,
and a dependency graph is built based on the relation between
the requirements and the component dependencies. This graph
is then used to compute the intersection between the set of soft-
ware components from the Scientific Virtual Appliance (SVA)
and the dependency graph of each sub-workflow. ISA selects
the intersection where the value is maximized for each sub-
workflow. Software components already available in the SVA
are then removed from the chosen graph. To reduce the num-
ber of SVAs, the algorithm attempts to merge sub-workflow re-
quirements into a single SVA. Requirements can be merged if
all their software components are compatible. Finally, ISA gen-
erates a script (either using PRECIP or Vagrant) with the set of
required instructions to instantiate, configure, and deploy the
computational resources and software components on the cor-
responding provider. Listing 1 shows the pseudo-code of the
algorithm.

Listing 1: Pseudo-code overview of the Infrastructure Specification Algorithm
(ISA).

1 W o r k f l o w R e q u i r e m e n t s D a t a s e t . l o a d ( ) ;
2

3 SVADataset . l o a d ( ) ;
4

5 S o f t w a r e C a t a l o g D a t a s e t . l o a d ( ) ;
6

7 Map<Workflow , L i s t <Requi rement s >> wfSwReqs =

r e t r i e v e S w R e q u i r e m e n t s (
Work f lowRequ i r emen t sDa ta se t , WorkflowID ) ;

8

9 Map<Workflow , L i s t <Requi rement s >>
propagatedWfSwReqs = propagateSwReqs (
wfSwReqs ) ;

10

11 L i s t <L i s t <L i s t <SWComponents>>>
so f twareComponen t s = ge tSo f twareComponen t s (
propagatedWfSwReqs ) ;

12

13 Map<Requi rement , D−Graph<SWComponents>>
sof twareComponentsDependencyGraph =

g e t S o f t w a r e D e p e n d e n c i e s ( so f twareComponen t s ) ;
14

15 L i s t <SVA> a v a i l a b l e S v a s =

g e t A v a i l a b l e S v a s ( p r o v i d e r s L i s t ) ;
16

17 Map<Requi rement s , SVA> m a x C o m p a t i b i l i t i e s =

g e t C o m p a t i b i l i t y I n t e r s e c t i o n (
sof twareComponentsDependencyGraph ,
a v a i l a b l e S v a s ) ;

18

19 Map<Requi rement , D−Graph<SWComponents>>
subs t rac tedSwComponentsDepGraph =

s u b s t r a c t S o f t w a r e C o m p o n e n t s (
sof twareComponentsDependencyGraph ,
m a x C o m p a t i b i l i t i e s ) ;

20

21 Map<SVA, L i s t <Requi rments >>mergedSvas=

mergeSubworkf lows ( propagatedWfSwReqs ,
m a x C o m p a t i b i l i t i e s ) ;
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22

23 Map<Workflow , L i s t <Requi rement s >> wfHwReqs =

r e t r i e v e H w R e q u i r e m e n t s (
Work f lowRequ i r emen t sDa ta se t , WorkflowID ) ;

24

25 Map<SVA, L i s t <Requi rments >> f i l t e r e d S v a s =

ge tCompa t ib leHwImageAppl i ances ( mergedSvas ,
wfHwReqs ) ;

26

27 g e n e r a t e S c r i p t ( f i l t e r e d S v a s ,
subs t rac tedSwComponentsDepGraph ) ;

In this work, we have extended ISA to support 1) Image Ap-
pliance filtering, and 2) generation of Vagrant scripts. The algo-
rithm filters Image Appliances from the selected SVAs that do
not meet the hardware requirements specified for the workflow
(lines 23–25). To enact support to different execution scripts,
we created an intermediate phase (Abstract Deployment Plan,
step 9 in Figure 2), which defines the steps and scripts to be
executed, along with their configuration parameters. ISA then
translates this plan into a PRECIP or Vagrant script depending
on the resultant target provider (line 27).

Abstract Deployment Plan. This layer allows WICUS to gen-
erate abstract deployment plans regardless of the underlying ex-
ecution tool. The abstract plan is based on the WICUS Soft-
ware [22] domain ontology, which defines the software stacks
that should be deployed in the execution platform. Figure 9
shows the relations between the different elements that com-
pose the Stack domain ontology. A Software Stack may
be composed by one or more Software Components. Each
of them has an associated Deployment Plan according to the
target execution platform, which is composed by one or more
Deployment Steps.

Listing 2 shows an example of the abstract plan for the
SoyKB workflow generated by the ISA. The first section of
the plan (lines 1–26) describes the deployment of the Pegasus
WMS and its related dependencies. Note that this section is com-
mon across all deployment plans for the workflows covered in
this work. The remaining lines describe how the SoyKB soft-
ware is deployed. The SOFTWARE.TAR.GZ stack, which is a
dependency for all SoyKB wrappers, is the first component to
be deployed (lines 27–29). Finally, the last section of the plan

Software 
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Component
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Step

Deployment 
Plan

*1
hasSoftwareComponent

isDeploymentOf
* 1
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1

is
De

pl
oy

me
nt

Pl
an

Of

Figure 9: Overview of the WICUS software stack relation diagram.

(lines 30–45) describes how the four SoyKB wrappers are de-
ployed. For each wrapper, two deployment steps are required:
1) copy of the program execution binary, and 2) the granting of
proper execution permissions.

Listing 2: Abstract deployment plan of the SoyKB WF.

1 OPEN SSH CLIENTS SOFT STACK s t a c k
2 OPEN SSH CLIENTS SOFT COMP component
3 OPEN SSH CLIENTS DEP STEP s t e p
4 OPEN SSH SERVER SOFT STACK s t a c k
5 OPEN SSH SERVER SOFT COMP component
6 OPEN SSH SERVER DEP STEP s t e p
7 WGET SOFT STACK s t a c k
8 WGET SOFT COMP component
9 WGET DEP STEP s t e p

10 CONDOR CENTOS 6 5 SOFT STACK s t a c k
11 CONDOR CENTOS 6 5 SOFT COMP component
12 STOP CONDOR DEP STEP s t e p
13 ADD CONDOR REPO DEP STEP s t e p
14 CONDOR YUM INSTALL DEP STEP s t e p
15 CLEAN AND SET CONDOR DEP STEP s t e p
16 RESTART DAEMONS DEP STEP s t e p
17 JAVA−1.7.0 −OPENJDK . X86 64 SOFT STACK s t a c k
18 JAVA−1.7.0 −OPENJDK . X86 64 SOFT COMP component
19 JAVA−1.7.0 −OPENJDK . X86 64 DEP STEP s t e p
20 JAVA−1.7.0 −OPENJDK−DEVEL . X86 64 SOFT STACK s t a c k
21 JAVA−1.7.0 −OPENJDK−DEVEL . X86 64 SOFT COMP

component
22 JAVA−1.7.0 −OPENJDK−DEVEL . X86 64 DEP STEP s t e p
23 PEGASUS WMS CENTOS 6 5 SOFT STACK s t a c k
24 PEGASUS WMS CENTOS 6 5 SOFT COMP component
25 ADD PEGASUS REPO DEP STEP s t e p
26 PEGASUS YUM INSTALL DEP STEP s t e p
27 SOFTWARE TAR GZ SOFT STACK s t a c k
28 SOFTWARE TAR GZ SOFT COMP component
29 SOFTWARE TAR GZ DEP STEP s t e p
30 PICARD−WRAPPER SOFT STACK s t a c k
31 PICARD−WRAPPER SOFT COMP component
32 PICARD−WRAPPER DEP STEP s t e p
33 PICARD−WRAPPER 2 DEP STEP s t e p
34 SOFTWARE−WRAPPER SOFT STACK s t a c k
35 SOFTWARE−WRAPPER SOFT COMP component
36 SOFTWARE−WRAPPER DEP STEP s t e p
37 SOFTWARE−WRAPPER 2 DEP STEP s t e p
38 GATK−WRAPPER SOFT STACK s t a c k
39 GATK−WRAPPER SOFT COMP component
40 GATK−WRAPPER DEP STEP s t e p
41 GATK−WRAPPER 2 DEP STEP s t e p
42 BWA−WRAPPER SOFT STACK s t a c k
43 BWA−WRAPPER SOFT COMP component
44 BWA−WRAPPER DEP STEP s t e p
45 BWA−WRAPPER 2 DEP STEP s t e p

Execution Script. In all cases, ISA is able to map the abstract
plan either into a PRECIP or a Vagrant script (depending on the
specified provider). Each generated script is composed of the
following main sections:

• Experiment Creation: generates a new experiment using
the given VM image ID and the user credentials for the
selected infrastructure provider;

• Software Deployment: executes the set of instructions de-
fined on the deployment plan of each software component
to install and configure the required software to execute
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the workflow. In this section, both the workflow manage-
ment system and the application are deployed with their
dependencies;

• User Setup: creates a user account on the VM (if it does
not exist) and configures the necessary pair of SSH keys
to enable file transfer and execution. This account will be
used to run the workflow;

• Data Stage and Workflow Execution: stages all the input
data required for the workflow execution on the VM, and
launches the workflow execution. Since our work is fo-
cused on infrastructure reproducibility, data and workflow
management are not covered in our approach. This part of
the script is generated ad-hoc for each workflow.

Note that all the configuration and deployment commands (first
3 sections) require superuser privileges on the VM. The work-
flow execution, however, is performed under the user account
created in the third section.

We executed the resultant scripts for the three workflows over
their corresponding platforms. That is, a total of 9 different ex-
ecutions, as each workflow is executed in Futuregrid and Ama-
zon EC2 using PRECIP, and in a local Vagrant execution en-
vironment. All the executions were compared to their original
one in a predefined VM image, where the execution environ-
ment was already in place.

Results show that the VM execution environments deployed
by all scripts are able to fully execute their related workflows.
To check that not only the workflows are successfully executed
but also that the results are correct and equivalent, we checked
their produced output data. In the case of Montage, which pro-
duces an image as output, we used a perceptual hash tool [48]
to compare the resulting image (0.1 degree image of the sky)
against the one generated by the baseline execution, obtaining
a similarity factor of 1.0 (over 1.0) with a threshold of 0.85. In
the Epigenomics and SoyKB workflows, the output data is non-
deterministic due to the existence of probabilistic steps. In this
case, the use of a hash method is unfeasible. Hence, we val-
idated the correct execution of the workflow by checking that
correct output files were actually produced, and that the stan-
dard errors produced by the applications did not contain any
error message. In both cases the results obtained in each infras-
tructure were equivalent in terms of their size (e.g., number of
lines) and content.

All the original and generated scripts are available as part of
the experimental material included in the RO associated with
this work [44]. This RO also contains pointers to the software
and resources used in the experimental evaluation.

5. Related Work

A computational experiment involves several elements that
must be conserved to ensure reproducibility. In the last year
several studies and initiatives have been conducted for solving
its associated challenges [49, 50]. Most of the works address
the conservation of data and the workflow description, how-
ever the computational environment is often neglected. Recent

studies have exposed the necessity of publishing adequate de-
scriptions of the runtime environment of experiments to avoid
replication hindering [51]. As a result, there is an increase on
the number of publications providing associated experimental
materials [52, 53].

A study to evaluate reproducibility in scientific workflows is
conducted in [54]. The study evaluates a set of domain-specific
workflows, available in myExperiment [55], to identify causes
of workflow decay. The study shows that nearly 80% of the
workflows cannot be reproduced, that about 12% of these re-
producibility issues are due to the lack of information about the
execution environment, and that 50% of them are due to the
use of third-party resources such as web services and databases
that are not available anymore. Note that some of those third-
party resource issues could be also considered as execution en-
vironment problems, as many of them are remote services for
information processing.

Recently, another comprehensive study has been pub-
lished [56], surveying 601 papers from ACM conferences and
studying how authors share the data and code supporting their
results. Authors found that 402 of those papers were supported
by code. In this study authors tried to obtain the code related
to each publication, looking for links within the paper itself,
searching on code repositories, and contacting the authors when
necessary. After the code was obtained, several students were
asked to try to build it. This whole process was limited by ex-
perimental design to a period of 30 minutes. Results show that
in 32.3% of the 402 papers students were able to obtain the
code and build the code within the given period. In 48.3% of
the cases, code was built with some extra effort, and in 54% of
the papers code was either built or the authors stated the code
would build with reasonable effort. Authors propose, as a result
of this study, a sharing specification for publications that allow
to state the level of sharing of each paper.

The workflow paradigm has been widely adopted in the
bioinformatics community, for studying genome sequencing
[6, 7, 8], disease-related experiments [9, 10] and many others.
Several studies have exposed the difficulties of trying to repro-
duce experimental results on life sciences, such as biology [11].
and cancer analysis [12].

Replicability and reproducibility of computational experi-
ments using cloud computing resources and software descrip-
tions have been widely proposed as an approach for those stud-
ies in which performance is not a key experimental result [57].

The Executable Paper Grand Challenge [58] and the SIG-
MOD conference in 2011 [59] highlighted the importance of
allowing the scientific community to reexamine experiment
execution. The conservation of virtual machine (VM) im-
ages emerges as a way of preserving the execution environ-
ment [60, 61]. However, the high storage demand of VM im-
ages remains a challenging problem [18, 19]. Moreover, the
cost of storing and managing data in the Cloud is still high,
and the execution of high-interactivity experiments through a
network connection to remote virtual machines is also chal-
lenging. A list of advantages and challenges of using VMs
for achieving reproducibility is exposed in [62]. ReproZip [63]
is a provenance-based tool that tracks operating system calls
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to identify the libraries and data dependencies, as well as the
configuration parameters involved in an experiment. The tool
combines all these dependencies into a single package that can
be used to reproduce an experiment. Although this approach
avoids storing VM images, it still requires storing the applica-
tion binaries and their dependencies. Instead, our work uses
semantic annotations to describe these dependencies.

Galaxy [64], a well know workflow system in the context of
life sciences, proposes a web-service based system for achiev-
ing accessible and reproducible computations. Galaxy hides
the implementation details of the underlying tools for workflow
developers, providing a web-based interface for retrieving an
analyzing genomic data. Even when this approach has proved
to be successful in several cases, we argue that it does not cover
local development of workflows, which is a common case on
computational science.

Software components cannot be preserved just by maintain-
ing their binary executable code, but by guaranteeing the per-
formance of their features. In [65], the concept of adequacy is
introduced to measure how a software component behaves rel-
atively to a certain set of features. Our work is based on this
same concept, where we build a conceptual model to semanti-
cally annotate the relevant properties of each software compo-
nent. Then, we use scripting to reconstruct an equivalent com-
putational environment using these annotations.

A recent and relevant contribution to the state of the art of
workflow preservation has been developed within the context
of the TIMBUS project [66]. The project aimed to preserve and
ensure the availability of business processes and their compu-
tational infrastructure, aligned with the enterprise risk and the
business continuity managements. They also proposed a se-
mantic approach for describing the execution environment of a
process. However, even though TIMBUS has studied the ap-
plicability of their approach to the eScience domain, their ap-
proach is mainly focused on business processes.

Semantics have been also proposed in the area of biomedi-
cal research as a way for achieving reproducibility of published
experiments [20]. In this work authors propose to annotate the
software artifacts in the same way that gene products or phe-
notypes are annotated. In order to do so, authors propose the
Software Ontology (SWO), a model for describing the software
involved on the storage and management of data. The SWO
have many concepts in common with the WICUS ontology net-
work, but is specialized on the biomedical domain, focusing
on modeling biomedical-related software specifically. WICUS
aims to be a more generic ontology that can be applied in dif-
ferent scientific domains.

6. Conclusion and Future Work

In this work, we proposed a semantic modeling approach
to conserve computational environments in scientific workflow
executions, where the resources involved in the execution of the
experiment are described using a set of semantic vocabularies.
We defined and implemented 4 domain ontologies, aggregated
in the the WICUS ontology network. From these models, we
defined a process for documenting workflow applications, the

workflow management system where they can be executed, and
their dependencies.

We conducted and experimental process in which we stud-
ied three workflow applications from different areas of science
(Montage, Epigenomics and SoyKB) using the Pegasus WMS.
We executed the ISA to obtain a set of PRECIP and Vagrant
scripts to describe and execute the experiment. Experimental
results show that our approach can reproduce an equivalent ex-
ecution environment of a predefined VM image on academic,
public, and local Cloud platforms.

Semantic annotations of the computational environment,
combined with the ISA and the scripting functionality provided
by PRECIP and Vagrant, is a powerful approach for achieving
reproducibility of computational environments in future exper-
iments, and at the same time addresses the challenges of high
storage demand of VM images. The drawback of our approach
is that it assumes the application and the workflow management
system binaries are publicly available.

The results of this work also show how components, such as
the workflow system, can be annotated once and then reused
among workflows. We envision a library of workflow descrip-
tions in which components and tools can be easily reused, even
during the development process of the workflow. Many work-
flows are built upon previous workflows, especially within the
context of a scientific domain, and hence having such kind of
library would be helpful. We plan to study how and when those
libraries can be built, analyzing their degree of reuse.

We also aim to study other workflows, belonging to different
scientific areas, as well as applying our approach to new work-
flow management systems. We will also work on increasing
the degree of automation of the semantic annotation process to
describe both the workflow application and the workflow man-
agement system. As introduced in this work, WICUS is a on-
going effort, thus we also plan to extend the ontology network
to include new concepts and relations such as software variants,
incompatibilities, and user policies for resource consumption.
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