
Failure detector abstractions for MapReduce-based
systems

Bunjamin Memishia,∗, Maŕıa S. Péreza, Gabriel Antoniub

aOEG, Universidad Politécnica de Madrid,
Campus de Montegancedo, Boadilla del Monte,

Madrid 28660, Spain
bINRIA, Campus Universitaire de Beaulieu

Rennes, Brittany 35042, France

Abstract

Omission failures represent an important source of problems in data-intensive
computing systems. In these frameworks, omission failures are caused by slow
tasks, known as stragglers, which can strongly jeopardize the workload perfor-
mance. In the case of MapReduce-based systems, many state-of-the-art ap-
proaches have preferred to explore and extend speculative execution mecha-
nisms. Other alternatives have based their contributions in doubling the com-
puting resources for their tasks. Nevertheless, none of these approaches has
addressed a fundamental aspect related to the detection and further solving of
the omission failures, that is, the timeout service adjustment.

In this paper, we have studied the omission failures in MapReduce systems,
formalizing their failure detector abstraction by means of three different algo-
rithms for defining the timeout. The first abstraction, called High Relax Failure
Detector (HR-FD), acts as a static alternative to the default timeout, which is
able to estimate the completion time for the user workload. The second abstrac-
tion, called Medium Relax Failure Detector (MR-FD), dynamically modifies the
timeout, according to the progress score of each workload. Finally, taking into
account that some of the user requests are strictly deadline-bounded, we have
introduced the third abstraction, called Low Relax Failure Detector (LR-FD),
which is able to merge the MapReduce dynamic timeout with an external mon-
itoring system, in order to enforce more accurate failure detections.

Whereas HR-FD shows performance improvements for most of the user re-
quest (in particular, small workloads), MR-FD and LR-FD enhance significantly
the current timeout selection, for any kind of scenario, regardless of the workload
type and failure injection time.

Keywords: MapReduce, Reliability, Failure Detection, Timeout, Heartbeat

∗Corresponding author
Email addresses: bmemishi@fi.upm.es (Bunjamin Memishi), mperez@fi.upm.es (Maŕıa

S. Pérez), gabriel.antoniu@inria.fr (Gabriel Antoniu)

Preprint submitted to Elsevier July 20, 2016



1. Introduction

Omission failures happen when a process does not send (or receive) a mes-
sage that is supposed to send (or receive). In distributed systems, in order to
detect and marginalize the impact of omission failures, any framework needs
to consider the failure detector abstraction [9]. Failure detectors are abstract
devices that offer information about the operational status of processes in a
distributed system. It is believed that the failure detector abstraction is funda-
mental and should be considered as a first-class citizen entity of any distributed
computing framework [20].

Failures are often detected by using a static or dynamic timeout service,
which is enabled by a heartbeat mechanism. In the static configuration, the
timeout parameter is set up when the job starts and is not changed until the
job execution finishes. It is well known that a static timeout value applicable
to any application, infrastructure or networking environment does not exist
[31]. This is due to its limitations: firstly, that value is not applicable to all the
scenarios, and secondly, even if the timeout value would have been chosen well at
the beginning, the application, infrastructure and the networking environment
may suffer changes (e.g. failures, delays, etc.).

Failure detectors may be divided in perfect or eventual. Perfect detectors
may report some process to have crashed, immediately with the first signs of
unresponsiveness, while eventual detectors report a level of suspect. In failure
detection, there are two metrics that provide the correctness of the mechanism
[10]: (i) Completeness, which requires that a heartbeat-based detector eventu-
ally suspects every process (task) that actually crashes; and (ii) Accuracy, which
restricts the mistakes that a heartbeat-based detector can make.

In the case of MapReduce [15], a relevant framework for Big Data process-
ing, omission failures are due to stragglers. The concept of stragglers is very
important in the MapReduce community, especially task stragglers, which can
jeopardize the job completion time. Stragglers are common when MapReduce
is deployed on a large-scale infrastructure, consisting of commodity hardware.
Typically, the main causes of a MapReduce straggler task are the existence of
a slow node, network overload or input data skew [7].

Foreseeing MapReduce usage in the next generation Internet [26], a partic-
ular concern is the aim of improving the MapReduce’s reliability by provid-
ing better fault tolerance mechanisms. Whereas the handling and recovery in
MapReduce fault-tolerance via data replication and task re-execution seem to
work well even at large scale [23, 3, 37], there is relatively little work on de-
tecting failures in MapReduce. Accurate detection of failures is as important
as failures recovery, in order to improve applications’ latencies and minimizing
resource waste.

As far as we know, there is not a formalization of the failure detector ab-
straction in MapReduce-based systems. This is mainly due to the difficulty of
modeling a framework for an environment with strictly dynamic requirements.
In this paper we study the omission failures in MapReduce systems, formal-
izing their failure detector abstraction by means of three different algorithms,

2



Heartbeating
Speculative 
Execution

Re-execution

DETECTION HANDLING RECOVERY

Fault Tolerance in MapReduce

Figure 1: Fault tolerance in MapReduce: The basic fault tolerance definitions (detection,
handling and recovery) with their corresponding implementations.

namely HR-FD (High Relax Failure Detector), MR-FD (Medium Relax Failure
Detector) and LR-FD (Low Relax Failure Detector), according to the time het-
erogeneity, i.e., how much relaxation the system is capable to tolerate in order
to detect an omission failure.

The rest of the paper is as follows. In Section 2, we specify the problem we
aim to solve. After that, in Section 3 we define the system model in which the
different modules (HR-FD, MR-FD and LR-FD) are based on. These modules
are described and evaluated in Sections 4, 5 and 6. Section 7 describes the
related work. We conclude the paper in Section 8.

2. Problem statement

The heartbeat is the concept in which the MapReduce failure detection mech-
anism is based, as shown in Figure 1. Any kind of failure that is detected in
MapReduce has to fulfill some preconditions, in this case to miss a certain num-
ber of heartbeats, so that the other entities in the system detect the failure. In
addition to let the master know that a worker is alive, heartbeats also can be
used as an additional channel for messages [33].

Currently, a static timeout based mechanism is used for detecting fail-stop
failures by checking the expiry time of the last received heartbeat from a certain
machine. In Hadoop (both Hadoop 1.0 and Hadoop YARN), each worker sends
a heartbeat every 3 seconds and the master checks the expiry time of the last
reported heartbeat every 200 seconds. If no heartbeat is received from a machine
for 600 seconds, then this machine will be labeled as a failed machine and
therefore the master will trigger the failure handling and recovery processes.
However, some studies have reported that the current static timeout detector is
not effective and may cause long and unpredictable latency [18, 17]. Our studies

3



1

1
T

1o
t f

t
1e

t
r
t

(a) One task example.

1

1
T

1o
t f

t
1e

t
r
t

2

1
T

(b) Uniform tasks start at the same time.

1

1
T

1o
t f

t
1e

t
r
t

2

1
T

2o
t

2e
t

(c) Uniform tasks start at different time.

1

1
T

1o
t

f
t

1e
t

r
t

2

1
T

2o
t

2e
t

(d) Non-uniform tasks start at different time.

Figure 2: Assumed timeout reaction to different task scenarios.

in [24] report that, in the presence of a single machine failure, the applications’
latencies vary not only in accordance to the occupancy time of the the failure,
similar to [17], but also vary with the job length (short or long).

An additional important factor is the non-uniformity of straggler tasks. If
we assume that a cloud infrastructure implements a shared Hadoop [2] cluster,
it is possible that some users may be willing to run a heavy CPU job request. If
its workload is large, it may need many virtualized tasks, spread among many
machines. If other users are running different tasks on these machines, at some
point in time, the cluster will have a large number of dynamic stragglers. To
worsen the scenario, the percentage of stragglers could be the majority set of
job tasks, that is, the stragglers number could be bigger than or equal to the
number of normal tasks. In this case, it is unlikely that a speculative execution
could work well, because it would starve cloud resources.

Let us explain the failure timeout problem with an example, shown in Figure
2.

Case 2a.. We consider a single task T 1
1 (subscript is the task number, whereas

superscript is the job number) of job J1 to start on a worker m at time to1.
If a worker crashes at time tf , according to its progress score, the task T 1

1 is
assumed to have finished around 70% of the load at time tf . However, after the
failure, a task will need to wait 10 minutes of the arranged timeout to finish in
time tr, and not in time te1. In this case, it is reasonable to assume that te1 is
proportional to the 30% left of the missing load, and obviously less than a 10
minutes timeout.

Case 2b.. We consider two uniform tasks, T 1
1 and T 2

1 of different jobs, J1 and
J2 respectively, to start on a single worker m at the same time to1. If a worker

4



crashes at time tf , both T 1
1 and T 2

1 will enforce their respective jobs to wait the
10 minutes timeout, and consequently, to extend their completion time equally,
from te1 into tr.

Case 2c.. We consider two uniform tasks, T 1
1 and T 2

1 of different jobs, J1 and
J2 respectively, to start on a single worker m, but at different times (to1, and
to2, respectively). If a worker crashes at time tf , both tasks will cause their
respective jobs to respect the 10 minutes timeout, and both extend their com-
pletion time equally, from different te1 and te2 into tr. In this case, it is clear
that T 1

1 has started earlier than T 2
1 . Therefore, the first one normally would

have finished earlier at time te1. But the present timeout adjustment harms the
T 1
1 equally as T 2

1 , by giving advantage to the second task T 2
1 , which is not fair.

Case 2d.. We consider two non-uniform tasks, T 1
1 and T 2

1 of different jobs, J1
and J2 respectively, to start on a single worker m, and at different times (to1,
and to2, respectively). If a worker crashes at time tf , both tasks will cause
their respective jobs to wait the 10 minutes timeout, and both extend their
completion time equally, from te1 and te2 into tr, as previously mentioned. In
this case, it is clear that T 1

1 has started earlier (to1) than T 2
1 (to2). However,

T 2
1 is shorter, and normally it should have finished earlier at time te2. But the

present timeout adjustment harms the T 2
1 more than T 1

1 , by giving advantage
to the first task T 1

1 , which is not fair again.
The static timeout implemented in MapReduce is not capable to address

any of the cases above. An accurate timeout detector is important not only to
improve application’s latency but also to improve resource utilization, especially
in the Cloud where we pay for the resources we use. Therefore, we state that a
significant potential exists for performance improvement in applications, partic-
ularly MapReduce applications, when choosing the appropriate timeout failure
detector. We believe that a new methodology to adaptively tune the timeout
detector can significantly improve the overall performance of the applications,
regardless of their execution environment.

3. System model

Our system model is an abstraction of a single MapReduce job in execu-
tion. We consider that each MapReduce request is composed of NT limited
number of identified processes (slave tasks, worker tasks, or tasks in general)
to be run. One of these processes is the master process (leader process, master
task, or master) TM , which controls the other workers tasks TW . During each
MapReduce request, the framework’s first duty is to initiate the master process.
The master is the responsible for executing the failure detection on other slave
processes. In this case, we consider that the master process is always alive, and
correct. In a previous work [25], we addressed the failure handling of masters.
However, in this work, we assume that the master does not fail. Therefore, dur-
ing the entire job execution, there is no leader election or any other algorithm
that executes in the background to replace the master.

5



Normal Suspected Result

∈ ∈ suspected \ {task}
∈ /∈ X
/∈ ∈ X
/∈ /∈ suspected ∪ {task}

Table 1: The probable task intersection between normal and suspected set.

After master initiation from the application manager, the scheduler allocates
NT − 1 slave processes. At any time t, a master monitors and coordinates a
set of D number of worker tasks (D ⊆ NT − 1), by ensuring and enforcing
the correct functioning of each worker task, until they finish the work partition
that was assigned to them. During the job execution, if a slave has terminated
its task, the scheduler decides whether to assign another task to the slave or
terminate it. When all the slaves have finished, the master delivers the output
to the application manager.

Unless explicitly stated, it is assumed that a cluster S consists of a limited
amount of uniform computing machines n, which can execute a limited number
of concurrent processes. We consider that each failure detector algorithm is
aware and dependent on the timing assumptions, and not on the resource uti-
lization. However, it is assumed that the more the algorithm relaxes its timeout,
the less amount of resources will be requested.

For example, we expect that HR-FD uses less amount of resources. On the
other side, the LR-FD algorithm is assumed to request more resources, because
the timing assumptions are stricter and therefore, more speculative executions
will be needed.

By default, we consider that none of the slave tasks is considered for specu-
lation, without its exclusion from the set of normal tasks. In other words, the
failure detector should rearrange the suspected task from the normal set into
the suspected set. Only after this, a task may get into the queue of tasks for
speculation. All these possible intersections are stated in Table 1 and Table 2.
According to these results, the failure detector mechanisms should react to two
scenarios from Table 1, because the other two scenarios belong to the normal
functioning of the MapReduce framework. If a task is included in both normal
and suspected sets, this task should be deleted from the suspected set. On the
other hand, if a task is not included in any of these sets, this should be added
to the suspected set. Table 2 shows that only one scenario requires a solu-
tion, namely, when a task belongs to the suspected set, but still has not been
speculated. In this case, the task should be added to the speculated set. Two
other scenarios (1 and 4) are completely correct, whereas the third scenario is
not possible, because the failure detector mechanism does not allow a task to
directly switch from the normal set to the speculated set, before being included
into the set of suspected tasks.

We assume that our system model does not have network failures. This
implies that if we have an operational task, this accomplishes the heartbeat

6



Suspected Speculated Result

∈ ∈ X
∈ /∈ speculated ∪ {task}
/∈ ∈ −
/∈ /∈ X

Table 2: The probable task intersection between suspected and speculated set.

mechanism, and if a task is non operational, the heartbeat is missed. As we
use the heartbeat as basic mechanism for our model, the appearance of network
failures would affect our accuracy. Although these failures are out of the scope of
this contribution, an interesting research line related to them could be explored
as future work.

In principle, if the network is not reliable, it is impossible to guarantee any
Quality of Service (QoS) of any application, including MapReduce applications.
MapReduce systems are capable of achieving a certain equilibrium in network
usage through data locality and similar techniques [36, 3]. Nevertheless, if the
MapReduce framework needs to deploy any algorithm of the present contri-
bution, apart from the network issues, it is necessary also to consider if these
resources are coming from a single or multiple sites or clouds, if the clouds are
private or public, and the network QoS that each of them could guarantee. In
the simple case of a single master, managing worker tasks from two different
clouds, the timeout adjustment can vary for both of these clouds. The informa-
tion about these adjustment will be very relevant in order to adjust the timeout
from the master side.

Simulation environment and experimental process

In the next sections, we describe the different modules of our failure detector
abstraction. In order to validate our algorithms, we have performed a set of
experiments that compare them with Hadoop MapReduce. These experiments
have been made by means of statistical-based simulations. In order to make this
evaluation, we have considered 25 containers, which are able to simultaneously
run 25 Map (with an input split of 128 MB) or Reduce tasks. This number of
containers is sufficient to evaluate the approach, considering 25 containers per
workload. We consider that every Map and Reduce container is the same, and
can execute a particular portion (split) of the workload. The application master
manages both Map and Reduce tasks. Commonly, the number of mappers is
bigger than the number of reducers. Because both phases are run sequentially,
we consider all the iterations to run the Map phase, except the last iteration,
which runs the Reduce phase.

An important parameter to take into account is the workload size. In this
case, we consider a workload size of 12 GB, which is an average workload size
of important production clusters [8]. The workload is used as input of a sort
application, which is a common MapReduce application for benchmarking the
respective systems [33]. The estimated completion time of the workload is 5
minutes.

7



For the evaluation, we will mainly focus on the worst case task, since our
goal is to measure the performance of our algorithms in terms of the workload
completion time. In order to do this, we compare failure free workloads with
single failure workloads. This failure is injected on a random task during the
iterations.

4. High relax failure detector

In this module of the framework, called high relax failure detector (HR-FD),
we extend the default functioning of the MapReduce failure detector mechanism.
Particularly, since the default timeout of Hadoop MapReduce has a static based
timeout mechanism of 10 minutes, we leave this value as it is, but only for large
jobs, that is, those ones whose completion time is above this value. For other
jobs, whose completion time is below the value of 10 minutes, the timeout should
be adjusted according to the estimation of the job completion time.

In this way, the failure detector timeout will be fair to most of the user
requests, regardless of the other parameters. This statement agrees with the
state-of-the-art literature [23, 38, 17, 8, 5, 19], where it is stated that most
large-scale MapReduce clusters run small jobs.

As discussed in Table 1, any failure detector algorithm should have in mind
that, a normal task which is suspected, needs to be removed from the normal set,
and enter into the suspected set of tasks. According to the possible alternatives,
we could derive the Algorithm 1.

Algorithm 1: A task evolution from normal to suspected and viceversa.

forall the task ∈ u do
if (task /∈ normal) ∧ (task /∈ suspected) then

suspected := suspected ∪ {task};
trigger(task, SUSPECT);

else if (task ∈ normal) ∧ (task ∈ suspected) then
suspected := suspected \ {task};
trigger(task, RESTORE);

end

end

For the tasks that are in the suspected set, it is necessary to find alternatives
for completing them. According to Table 2, a reasonable decision to make is
speculating the suspected task, as a form of not jeopardizing the completion
time of the overall job request. Algorithm 2 is used in this scenario. This
algorithm is composed of a loop for all the suspected tasks. This algorithm also
takes into account the resources available in the system. In particular, if a task
is not speculated yet and there are resources available in different nodes to the
node in which the task has been scheduled, the algorithm triggers this one as
speculated.

8



Algorithm 2: Speculating the suspection.

forall the task ∈ suspected do
if (task /∈ speculated) then

if (availableResources) ∧ (availableResources /∈ workertask ) then
speculated := speculated ∪ {task};
trigger(task, SPECULATE);

end

end

end

A relevant question to solve in this scenario is the maximum number of specu-
lations for a single suspected task. This could be taken into account by the Algo-
rithm 2, substituting the sentence if(task /∈ speculated) by if(speculatedtask ≥
max number speculations). This follows the guidelines provided for instance
by [7], which suggests 2 as maximum number of speculations.

In addition, there may be nodes whose performance is causing general over-
head on its tasks. In this case, a reasonable reaction would be to consider those
nodes as harmful for future executions, and provide a solution to their suspected
tasks. The procedure in Algorithm 3 is an example of this scenario. In this case,
we are not allocating tasks to a node whose number of suspected tasks is equal
or greater than 3.

Algorithm 3: Limiting the suspected task number in the same worker.

if (suspectedworker ≥ 3) then
lostworkers := lostworkers ∪ {suspectedworker};
trigger(suspectedworker, LOST);

end

From these algorithms, we have designed a complete one, called HR-FD,
which implements an eventual failure detector algorithm on top of a partially
synchronous system. As the other modules of our failure detector abstraction
have similarities with this algorithm, we have designed a basic algorithm struc-
ture (Algorithm 4). This basic algorithm is composed of three steps:

• Init (Initialization stage):

– Initialize all sets from beginning

– Estimate the workload finish time

• Timeout (Timeout adjustment)

• Heartbeat (Acknowledge the reception and change task set, if necessary)

The three main algorithms (HR-FD, MR-FD and LR-FD) follow this struc-
ture, although they have some differences, depending on the accuracy and level

9



of flexibility of the failure detector. We will show the differential aspects for the
three algorithms.

Algorithm 5 shows the differences of HR-FD with regards to the basic algo-
rithm structure. Through the HR-FD algorithm, we establish time boundaries
on omission failures. This is important, since the causes of the stragglers are
not only crashes, and the system must react to these issues that harm users
and resource providers. In other words, although it is not sure that a crash
has happened, the system should decide whether to concurrently speculate the
affected task or simply kill the straggler and re-execute it once again from the
beginning.

In the Algorithm 5, the master process maintains a list of normal, suspected
and speculated tasks. In addition, it adjusts a timeout according to an estimated
completion time increased with some probability margin of error.

Whenever the failure detector triggers a timeout, it will manage those tasks
which do not belong to normal and suspected sets. Accordingly, it will place
the tasks in the suspected set, and triggers a suspect event for the respective
task. If the task belongs to both sets, then this task will be removed from the
suspected set. It is very important to remove it, since it will not request other
resources in the next step.

All the suspected tasks are eventually speculated, if new resources, which
are independent from the worker, are available. In this condition, we have not
implemented any speculated number for the suspected task, although this is
possible.

The algorithm checks another condition in the same loop. Namely, it limits
the number of speculated tasks within the same worker. This means, whenever
the worker has a certain number of stragglers, it will be considered lost, in order
to let the scheduler know that this node should not accept future tasks until the
node recovers from this state.

4.1. Correctness

The completeness property is satisfied by the algorithm, because if a task is
behaving as a straggler, it will not send a heartbeat to the master for a certain
period, which is a condition of the respective master to place this straggler in
the suspected set. Regarding the accuracy property, a timeout according to the
initial estimation is believed to be sufficient for every task to deliver a heartbeat,
informing the master about its liveness and progress score.

4.2. Performance

In order to detect a MapReduce straggler through the HR module, the initial
timeout adjustment is crucial. As we have stated before, this algorithm should
be capable to adjust a job specific timeout, according to the estimated job com-
pletion time, and a probable margin of error. This is particularly important for
small jobs, whose estimated completion time is under 10 minutes. For longer
lasting jobs, we have decided to leave the default timeout of the Hadoop MapRe-
duce. By this statement, we have placed a higher boundary (that is, 10 minutes)

10



Algorithm 4: Basic structure of a failure detector

Implements: Timeout
Uses : ProgressScore
upon event (Init) do

normal := u;
suspected := ∅;
speculated := ∅;
starttimer(� parameters�);

end
upon event (Timeout) do
� Update parameters �
forall the task ∈ u do

if (task /∈ normal) ∧ (task /∈ suspected) then
suspected := suspected ∪ {task};
trigger(task, SUSPECT);

else if (task ∈ normal) ∧ (task ∈ suspected) then
suspected := suspected \ {task};
trigger(task, RESTORE);

end

end
forall the task ∈ suspected do

if (task /∈ speculated) then
if (availableResources) ∧ (availableResources /∈ workertask )
then

speculated := speculated ∪ {task};
trigger(task, SPECULATE);

end

end
if (suspectedworker ≥ 3) then

trigger(suspectedworker, LOST);
end

end
trigger(HeartbeatRequest, task, SEND);
starttimer(� parameters�);

end
�Address worker timeout�
upon event (HeartbeatReply, task, DELIVER) do

normal := normal ∪ task;
end

11



Algorithm 5: The High relax failure detector definitions, from the basic
structure

starttimer(� parameters�); = starttimer(InitialEstimatedTime);
� Update parameters � = ∅
�Address worker timeout� = ∅

Iteration Hadoop Failure
time

FHadoop λ =
1.00

λ =
0.75

λ =
0.50

λ =
0.25

1 5 1 10 6.00 5.75 5.50 5.25
2 4 2 11 7.00 6.75 6.50 6.25
3 3 3 12 8.00 7.75 7.50 7.25
4 2 4 13 9.00 8.75 8.50 8.25
5 1 5 14 10.00 9.75 9.50 9.25

Table 3: A performance comparison of Hadoop MapReduce timeout and HR-FD timeout
for a 5 minutes workload. Hadoop: Default Hadoop completion time without failure. Fail-
ure time: Failure injection time. FHadoop: Default Hadoop completion time with injected
failure. λ = 1.00. HR-FD with the respective margin of error that is specified, that is,
λ = 1.00; 0.75; 0.50; 0.25.

of the timeout. Knowing that the majority of the production clusters run small
jobs [23, 17, 8, 5, 19], this timeout is actually addressing the vast majority. We
consider that there are also very tiny jobs whose estimated completion time is
very small, in terms of seconds. Since a timeout of these margins would result
harmful for the infrastructure (resource utilization), due to the possibility of
many wrong suspicions, the algorithm should use a minimal timeout in these
cases. This minimal timeout should have a lower boundary, that guarantees no
eventual processing overhead. For small infrastructures, the administrator can
decide this value. For larger infrastructures, the best choice would be to apply
an autonomic approach [22, 30].

We have run performance simulations in order to compare the Hadoop time-
out with the HR-FD timeout. In Table 3, we have taken as a sample a workload
with an estimated time completion of 5 minutes. This is an average value, which
help us to see the evolution, since every iteration of the MapReduce tasks lasts
approximately 1 minute [37]. In the first column, there are different iterations
of the same workload. According to the iteration, the second column indicates
the finish time of the workload with no failures. The third column represents
the failure injection time for each iteration. Right after the Hadoop finish time,
there are 4 columns listing the HR-FD finish time, with different λ, which repre-
sents the margin of error. As we can notice, this static timeout, which is clearly
better than the default timeout in Hadoop MapReduce, performs really well for
most of the average production cluster jobs, whose completion time is not very
long and neither very small. As is shown in the Table, the smaller margin of
error is used, the more accurate the estimations are, since the system is more
stable.

The best performance of HR-FD corresponds to the first iterations. This is

12



0 

2 

4 

6 

8 

10 

12 

14 

16 

1 2 3 4 5 

Ti
m

e
 (

m
in

u
te

s)
 

Iteration number 

Failure-free completion time Hadoop completion time HR-FD (λ=0.5) 

Figure 3: A performance comparison of Hadoop MapReduce timeout and HR-FD timeout for
a 5 minutes workload.

due to the fact that the timeout triggers a threshold very early, and is capable of
maintaining a moderate completion time upon failures, comparable to the nor-
mal case. For example, in case of λ = 0.75, if a failure is enforced during the first
iteration, from a normal estimated completion time of te1 = 5min, the new com-
pletion time would be tr = 5.75min, instead of the Hadoop completion time of
tH = 10min. In other words, HR-FD timeout exhibits only 15% of performance
degradation, whereas Hadoop timeout exhibits 100% of performance degrada-
tion. Figure 3 shows the behavior of HR-FD compared to default Hadoop and
a failure-free scenario along the iterations. As the job progress score advances
through iterations, the HR-FD timeout benefits decrease when compared to the
Hadoop timeout, but despite this, they are still clearly much more favorable.

5. Medium relax failure detector

The previous algorithm (Algorithm 5) deploys a static timeout service. That
is, the timeout provided by HR-FD is static, although adjusted at the beginning.
Although the algorithm outperforms the default Hadoop mechanism, our aim
is to extend the basic HR-FD algorithm by providing a dynamic timeout value.

The ideal choice would be to use an estimated progress score of the overall
job, which is then divided in its phases and consequently, in individual tasks. A
dynamic timeout can rely on the progress score, especially when is predictable in
terms of tasks. This is an already built-in feature in MapReduce-based systems
[2, 1, 21], and other contributions have given even more accurate results in this
field [29, 28, 32].

13



The main novelty in this module is outlined in the lines of Algorithm 6,
where the algorithm calculates the progress score, by adding a margin of error
value (λ), that should carry the timeout of the next iteration. This involves that
the new progress score is the main parameter of the newly chosen and calculated
timeout. Upon each execution of the timeout event, the module sets up a new
timeout with a new value.

Algorithm 6: Procedure to calculate the estimated progress score.

. . .
ProgressScore := ProgressScore + λ;
. . .
startTimer(ProgressScore);
. . .

The Algorithm 7 shows the adaptation of the basic structure (Algorithm
4) to the Medium relax failure detector (MR-FD), implementing an eventual
failure detector algorithm on top of a partially synchronous system. MR-FD
enforces stronger timing assumptions than HR-FD, but it still implements an
eventual failure detector, presumably in a partially synchronous system. The
main differences of the algorithm 7 vs the algorithm 5 is that for every task
that gets out from the normal set, it is included in the suspected set of tasks,
and in a certain moment, when the cluster provides additional resources, it is
executed.

Algorithm 7: The Medium relax failure detector definitions, from the
basic structure

starttimer(� parameters�); = starttimer(ProgressScore);
� Update parameters � = { ProgressScore := ProgressScore + λ; }
�Address worker timeout� = ∅

5.1. Correctness

The failure detector properties are stronger than in the previous algorithm.
This means that, both completeness and accuracy have equal or stronger as-
sumptions than HR-FD. Considering this, the completeness property triggers a
threshold as long as the minimum progress score is left, in order to change the
set of a suspected task. On the other hand, the accuracy property is stricter to
guarantee the liveness property of the monitored task.

5.2. Performance

Unlike the Algorithm 5, whose initial adjustment of the timeout is crucial,
the Algorithm 7 does not really depend on the initial adjustment, except in the
case of those workloads whose estimated completion time is really small, since

14



Iteration Hadoop Failure
time

FHadoop λ =
1.00

λ =
0.75

λ =
0.50

λ =
0.25

1 5 1 10 6 5.75 5.5 5.25
2 4 2 11 5 4.75 4.5 4.25
3 3 3 12 4 3.75 3.5 3.25
4 2 4 13 3 2.75 2.5 2.25
5 1 5 14 2 1.75 1.5 1.25

Table 4: A performance comparison of Hadoop MapReduce timeout and MR-FD timeout
for a 5 minutes workload. Hadoop: Default Hadoop completion time without failure. Fail-
ure time: Failure injection time. FHadoop: Default Hadoop completion time with injected
failure. λ = 1.00. MR-FD with the respective margin of error that is specified, that is,
λ = 1.00; 0.75; 0.50; 0.25.

in this case, the completion time is equal to the minimum possible timeout
adjustment. This minimum value is the same as in the Algorithm 5, in order to
enforce boundaries for future latency and heartbeat overhead.

The dynamic timeout service is provided at the expense of a higher resource
utilization. Whereas the computing resources did not represent any real star-
vation risk, the Algorithm 7 is using clearly a higher amount of resources, since
more speculative executions are needed.

In Table 4, we provide performance simulations, maintaining the same method-
ology than HR-FD (a workload sample with an estimated completion time of 5
minutes), by comparing the Hadoop timeout with the MR-FD timeout. Unlike
the HR-FD timeout, whose reaction outcome was clearly noted in the first it-
erations due to its static parameter, MR-FD behaves clearly much better than
the default timeout setup of Hadoop MapReduce.

For instance, for λ = 0.75, if a failure is injected during the first itera-
tion, from a normal estimated completion time of te1 = 5min, the new com-
pletion time would be tr = 5.75min, instead of the Hadoop completion time of
tH = 10min. In other words, MR-FD timeout exhibits only 15% of performance
degradation, whereas Hadoop timeout exhibits 100% of performance degrada-
tion. And actually, as the job progress score advances through iterations, the
MR-FD timeout maintains its performance when compared to the Hadoop time-
out, except by the small influence of the accuracy margin values, which make
the difference for all the iterations.

As in the previous section, Figure 4 shows the behavior of MR-FD com-
pared to default Hadoop and a failure-free scenario along the iterations. Unlike
HR-FD, the MR-FD timeout benefits increase when compared to the Hadoop
timeout as the iterations increase.

6. Low relax failure detector

As previously mentioned, the difference between Algorithm 5 and Algorithm
7 is the time reaction to failures. Whereas Algorithm 5 assumes static timeout
predictions for suspicious tasks, the Algorithm 7 reacts dynamically to the same

15



0 

2 

4 

6 

8 

10 

12 

14 

16 

1 2 3 4 5 

Ti
m

e
 (

m
in

u
te

s)
 

Iteration number 

Failure-free completion time Hadoop completion time MR-FD (λ=0.5) 

Figure 4: A performance comparison of Hadoop MapReduce timeout and MR-FD timeout for
a 5 minutes workload.

suspicions, by providing clear advantage in job completion time. However, the
Algorithm 7 does not completely provide strictly bounded timings assumptions.
This algorithm does not fit with systems whose results are strictly deadline-
bounded, and where it would be possible to afford a bigger amount of resources
in order to complete their tasks as fast as possible. These systems could be mis-
sion critical systems (such as military or air traffic control systems), or enterprise
systems (such as auctioning systems), whose decision making is important and
urgent.

In addition to the use of the heartbeat mechanism for providing a timeout
service for tasks, it is also possible to monitor the machines (node, worker)
metrics [27] and adjust specific thresholds in order to target or enforce the
completion time of deadline-bounded workloads (requests).

For deadline-bounded workloads we consider the timeout for the workers as
an additional parameter. As long as this timeout notices uncommon behavior
after a certain established period, it will request from the application to trigger
speculative execution for the ongoing tasks on that particular worker. If there
are not tasks, then it will stop deploying future tasks, until the worker comes
back to the normal set. For example, in a worker, whose monitoring system
monitors parameter p, if this parameter does not appear during a number of
times provided by a threshold function, the failure detector mechanism will
suspect all of its tasks, and declare the worker as lost, as shown in Algorithm 8.

The Algorithm 8 may even expand and maintain a history of the workers.
By detecting a repeatable defect in any of them, it may decide to give priority
to newer or more stable workers, as long as they respect a certain degree of data
locality [36].

16



Algorithm 8: Worker parameters monitored with separate timeout.

forall the worker ∈ u do
if (measures(worker, p) ≤ threshold(p)) then

suspected := suspected ∪ {taskworker};
trigger(task, SUSPECT);
lostworkers := lostworkers ∪ {suspectedworker};
trigger(suspectedworker, LOST);

end

end

This approach is shown in Algorithm 9. This algorithm expands the Algo-
rithm MR-FD, by considering the additional timeout of the workers. As soon as
one of the timeouts shows an uncommon behavior, from either tasks or workers,
the algorithm triggers speculations in different stable nodes.

Algorithm 9: The Low relax failure detector definitions, from the basic
structure

starttimer(� parameters�); = starttimer(ProgressScore, threshold(p));
� Update parameters � = { ProgressScore := ProgressScore + λ; }
�Address worker timeout� = {
upon event (Timeoutworker) do

forall the worker ∈ u do
if (measures(worker, p) ≤ threshold(p)) then

suspected := suspected ∪ {taskworker};
trigger(task, SUSPECT);
lostworkers := lostworkers ∪ {suspectedworker};
trigger(suspectedworker, LOST);

end

end
startTimer(threshold(p));

end
}

6.1. Correctness

Let us consider the completeness property first. As long as a task or worker
is behaving right, the algorithm does not act. However, if a task or worker does
not deliver heartbeat signals for a certain period, these tasks or workers will be
deleted from the normal set of tasks/workers, assigning them to the suspected
set. The master process will suspect these tasks and workers until the job has
finished. Therefore, this algorithm shows some differences in terms of the use of
the sets with regards to the previous two failure detectors. Indeed, the change
of the sets is for this algorithm more rigorous. If there is a timeout threshold,

17



Iteration Hadoop Failure
time

FHadoop λ =
1.00

λ =
0.75

λ =
0.50

λ =
0.25

1 5 1 10 5.25 5.15 5.10 5.05
2 4 2 11 4.25 4.15 4.10 4.05
3 3 3 12 3.25 3.15 3.10 3.05
4 2 4 13 2.25 2.15 2.10 2.05
5 1 5 14 1.25 1.15 1.10 1.05

Table 5: A performance comparison of Hadoop MapReduce timeout and LR-FD timeout
for a 5 minutes workload. Hadoop: Default Hadoop completion time without failure. Fail-
ure time: Failure injection time. FHadoop: Default Hadoop completion time with injected
failure. λ = 1.00. LR-FD with the respective margin of error that is specified, that is,
λ = 1.00; 0.75; 0.50; 0.25.

the suspected tasks will not be terminated. However, if a certain task moves
to the suspected set, it will not be able to come back to the normal set again.
Therefore, all these tasks of the suspected set have to be speculated in other
workers.

Regarding the accuracy property, the master will suspect a task (worker),
only if a task (worker) is not able to transmit a message within a specified
interval. Otherwise, if any task or worker behave properly, it is assumed that it
would be able to send delivery notifications to the master.

6.2. Performance

The above Algorithm 9 does not depend only on a single dynamic timeout.
Indeed, it needs the participation of an external monitoring system. Unlike
the two previous algorithms (Algorithm 5 and Algorithm 7), whose initial and
dynamic adjustment of the timeout were crucial, the Algorithm 9 goes beyond
this. As previously mentioned, the first adjustment is only important for those
workloads whose estimated completion time is really small, and the dynamic
adjustment is only important for those workloads whose estimated completion
time is endangered from common task problems. However, the suspicion prob-
ability takes bigger risks when there are issues related to the nodes where tasks
are allocated. On the other hand, if the failure detector monitor depends on
two stricter timeouts instead of one, the resource utilization factor increases,
because the algorithm reacts sooner to suspicions and therefore, there would be
more suspicions than in the other scenarios.

In Table 5, we provide performance simulations, maintaining the same method-
ology as in HR-FD and MR-FD (a workload sample with an estimated time
completion of 5 minutes), by comparing the Hadoop timeout with the LR-FD
timeout. Unlike the HR-FD timeout, the Algorithm 9 reacts very well for any
production cluster scenario, and performs a slight improvement when comparing
to the MR-FD timeout.

For example, in case of λ = 0.15, if a failure is enforced during the first
iteration, from a normal estimated completion time of te1 = 5min, the new
completion time would be tr = 5.15min, instead of the Hadoop completion

18



0 

2 

4 

6 

8 

10 

12 

14 

16 

1 2 3 4 5 

Ti
m

e 
(m

in
u

te
s)

 

Iteration number 

Failure-free completion time Hadoop completion time LR-FD (λ=0.10) 

Figure 5: A performance comparison of Hadoop MapReduce timeout and LR-FD timeout for
a 5 minutes workload.

time of tH = 10min. In other words, LR-FD timeout exhibits only 3% of per-
formance degradation, whereas Hadoop timeout exhibits 100% of performance
degradation.

As in the previous cases, Figure 5 shows the comparison between default
Hadoop timeout and LR-FD timeout, representing also the failure-free comple-
tion time. This is clearly the approach with a higher performance, due to both
timeouts (tasks and workers) and the lower margin of error exhibited by this
algorithm.

Finally, Figure 6 shows the comparison between all the algorithms, HR-FD,
MR-FD and LR-FD and the default Hadoop MapReduce timeout. As we can
notice, MR-FD and LR-FD behaves much better than the other alternatives.
This is due to the dynamic adjustment of the timeout, which is applied by both
approaches. LR-FD behavior is slightly better than MR-FD, demonstrating
that the external timeout, that is, the timeout associated to the workers, is not
so relevant as the task timeout.

7. Related work

Most of the state of the art in this direction has intended to improve the
job execution time, by means of doubling the overall small jobs [4], or just by
doubling the suspected tasks (stragglers) through different speculative execution
optimizations [16, 21, 37, 7, 11, 34].

In [37], authors have also proposed a new scheduling algorithm called Longest
Approximate Time to End (LATE) to improve the performance of Hadoop in a
heterogeneous environment, due to the variation of VM consolidation amongst

19



0 

2 

4 

6 

8 

10 

12 

14 

16 

1 2 3 4 5 

Ti
m

e 
(m

in
u

te
s)

 

Iteration number 

Failure-free completion time Hadoop completion time HR-FD (λ=0.50) 

MR-FD (λ=0.50) LR-FD (λ=0.10) 

Figure 6: A performance comparison of Hadoop MapReduce timeout, HR-FD, MR-FD, and
LR-FD timeout for a 5 minutes workload.

different physical machines, by preventing the incorrect execution of speculative
tasks. In this work, authors try to solve the issue of finding the real stragglers1

among the MapReduce tasks, in order to speculatively execute them, giving
them the deserved priority. As the node heterogeneity is common in the real-
world infrastructures and particularly cloud infrastructures, the speculative ex-
ecution in the default Hadoop’s MapReduce implementation is facing difficulties
to give a good performance. The paper proposes an algorithm which should in
some way improve the MapReduce performance in heterogeneous environments.
It starts giving some assumptions made by Hadoop, and how they are broken
down in practice. Later on, it proposes the LATE algorithm, which is based on
three principles: prioritizing tasks to speculate, selecting fast nodes to run on,
and capping speculative tasks to prevent thrashing. The paper has an extensive
experimental evaluation, which proves the valuable idea implemented in LATE.

Mantri [7] is another important contribution related to omission failures,
which are called outliers in this paper. The main aim of the contribution is to
monitor and cull or relax the outliers, accordingly to their causes. Based on their
research, outliers have many causes, but mainly are enforced by MapReduce
data skew, crossrack traffic, and bad (or busy) machines. In order to detect these
outliers, Mantri does not rely only on task duplication. A real time progress
score is able to separate long tasks from real outliers. Whereas the former tasks

1It is important to mention that, differently from [37] which considers tasks as stragglers,
in the default paper of Google [16], a straggler is “a machine that takes an unusually long
time to complete one of the last few map or reduce tasks in the computation.”

20



are allowed to be run, the real outliers are only duplicated when new available
resources arise. Since the state-of-the-art contributions are mostly based on
duplicating tasks at the end of the job, Mantri is able to make smart decision
even before this, in case the progress score of the task is heavily progressing.
Apart from data locality, Mantri places task based on the current utilization of
network links, in order to minimize the network load and avoid self-interference
among loads. In addition, Mantri is also able to measure the importance of
the task output, and according to a certain threshold, it decides whether to
recompute task or replicate its output. In general, the real-time evaluations
and trace-driven simulations show Mantri to improve the average completion
time for about 32%.

In [38], authors have proposed two mechanisms to improve the failure de-
tection in Hadoop via heartbeat, but only in the worker side, that is, the
TaskTracker. While the adaptive interval mechanism adjusts the TaskTracker
timeout according to the estimated job running time in a dynamic way, the
reputation-based detector compares the number of fetch-errors reported when
copying intermediate data from the mapper and when any of the TaskTrackers
reaches a specific threshold that TaskTracker will be announced as a failed one.
As authors explain, the adaptive interval is advantageous to small jobs while
the reputation-based detector is mainly intended to longer jobs.

GRASS [6] is another novel optimization framework, which is oriented to
trimming the stragglers for approximation jobs. Approximation jobs are very
common in the last period, because many domains are willing to have partial
data in a specific deadline or error margin, instead of processing the entire data
in an unlimited time or with 0% error margin. After the introduction of the
MapReduce programming model, which came with a simple solution of specula-
tive execution of slow tasks (stragglers), the research community proposed more
complex alternatives, such as LATE [37] or Mantri [7]. However, they were not
meant to give near to optimal solution for the domain of approximation ana-
lytics. And this is the advantage of GRASS, which is basically formed of two
algorithms:

1. Greedy Speculative Scheduling (GS). This algorithm is intended to greed-
ily pick a task that will be scheduled next.

2. Resource Aware Speculative Scheduling (RAS). This algorithm is able to
measure the cost of letting an old task run or scheduling a new task,
according to some important parameters (e.g. time, resources, etc.)

GRASS is a combination of GS and RAS.
Depending on the cluster infrastructure size, but also on other parameters,

the scheduler could impose different limitations per user or workload. Among
others, it is common to place a limit on the number of concurrent running tasks.
The overall set of these simultaneous tasks per each user (or workload) is known
as wave. If a GRASS job requires many waves, then it starts with RAS and
finally, in the last two waves uses GS. If the jobs are short, it may use only GS.
This switching is mostly dependent on:

21



• Deadline-error bound.

• Cluster utilization.

• Estimation accuracy for two parameters, trem (remaining time for and old
job), and tnew (an estimated time for a new job).

Evaluations show that GRASS improves Hadoop and Spark, regardless of
the usage of LATE or Mantri, by 47% and 38% respectively, in production work-
loads of Facebook and Microsoft Bing. Apart from approximation analytics, the
speculative execution of GRASS also shows to be better for exact computations.

In [11], authors propose an optimized speculative execution algorithm called
Maximum Cost Performance (MCP) that is characterized by:

• Apart from the progress rate, it takes into consideration the process band-
width in a phase, in order to detect the slow tasks.

• It uses Exponentially Weighted Moving Average (EWMA), whose duty is
to predict the process speed and the task remaining time.

• It builds a cost-aware model that determines what task needs a backup
based on the cluster load.

In addition, the MCP contribution is based on the disadvantages of previous
contributions, which mainly rely on the task progress rate to predict stragglers,
inappropriate reaction on input data skews scenarios, unstable cost comparison
between the backup and ongoing straggler task, etc. Evaluation experiments
on a small-cluster infrastructure show MCP to have 39% faster completion time
and 44% improved throughput when compared to default Hadoop.

In [34], authors propose an optimized speculative execution algorithm that
is oriented to solving a single-job problem in MapReduce. The advantage of this
work is that takes into account two cluster scenarios, heavy and lightly loaded
cases. For the lightly loaded cluster, authors introduce two different speculative
execution policies, early cloning, and later speculative execution based on the
task progress rate. During the stage of heavily loaded cluster, the intuition is
to use a later backup task. In this case, an Enhanced Speculative Execution
(ESE) algorithm is proposed, which basically extends the work of [7]. Same
authors have also introduced an additional extended work that assumes to work
for multiple MapReduce jobs [35].

An important project related to Hadoop’s omission failures is presented in
[12]. In this work, authors have tried to build separate fault tolerance thresholds
in the UpRight library for omission and commission failures, because omission
failures are likely to be more common than commission failures. As we have
mentioned before, during omission failures, a process fails to send or receive
messages specified by the protocol. Commission failures exclude omission fail-
ures, including the failures upon which a process sends a message not specified
by the protocol. Therefore, in the case of omission failures, the library can be

22



fine-tuned in order to provide the liveness property (meaning that the system
is “up”) in scenarios with these failures.

The TaskTracker omission failures have also been indirectly addresses in
other works [14, 13].

Unlike all these approaches, our proposal focuses on the timeout service ad-
justment, taking into account the timing assumption heterogeneity of MapReduce-
based systems.

8. Conclusions and future work

This paper provides a formalization of a failure detection abstraction for
MapReduce-based systems. As part of this formalization, we have defined three
different algorithms. The first abstraction, called High Relax Failure Detec-
tor (HR-FD), is an alternative to the default timeout. The second abstraction,
called Medium Relax Failure Detector (MR-FD), dynamically modifies the time-
out, according to the progress score of each workload. Finally, the third abstrac-
tion, called Low Relax Failure Detector (LR-FD), is based on the intersection
between the MR-FD timeout service and an external monitoring system timeout
service, with the aim of achieving more efficient failure detections.

According to the performance evaluation, we have shown by simulation that
these abstractions outperform the default timeout service of Hadoop. Further-
more, we have also demonstrated the correctness of the three algorithms.

As future work, we will instantiate these abstractions for different data-
intensive computing systems, in order to enhance the behavior of these frame-
works in terms of failure detection and its relation with the default timeout.
This is particularly important in the case of production clouds. Indeed, many
SLAs are dependent on the timing assumptions of the data-intensive computing
systems. Any decision making process made in this scenario should be based
on the knowledge of the accuracy boundaries of these systems. This constitutes
an important challenge in order to achieve that the data-intensive computing
systems constitute a fierce competitor in some fields where relational database
systems have been ruling for many decades.

References

[1] Apache Hadoop NextGen MapReduce (YARN), http://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html (2015).

[2] The Apache Hadoop Project, http://hadoop.apache.org/ (2015).

[3] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,
D. Harlan, E. Harris, Scarlett: coping with skewed content popularity in
mapreduce clusters, in: Proceedings of the sixth conference on Computer
systems, EuroSys ’11, ACM, New York, NY, USA, 2011, pp. 287–300.
URL http://doi.acm.org/10.1145/1966445.1966472

23

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/
http://doi.acm.org/10.1145/1966445.1966472


[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, Effective straggler
mitigation: Attack of the clones, in: Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, nsdi’13,
USENIX Association, Berkeley, CA, USA, 2013, pp. 185–198.
URL http://dl.acm.org/citation.cfm?id=2482626.2482645

[5] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, I. Stoica, PACMan: Coordinated Memory Caching for Parallel
Jobs, in: Proceedings of the 9th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’12, USENIX Association, Berke-
ley, CA, USA, 2012, pp. 20–20.
URL http://dl.acm.org/citation.cfm?id=2228298.2228326

[6] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
M. Yu, GRASS: Trimming Stragglers in Approximation Analytics, in: Pro-
ceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, NSDI’14, USENIX Association, Berkeley, CA, USA,
2014, pp. 289–302.
URL http://dl.acm.org/citation.cfm?id=2616448.2616475

[7] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
E. Harris, Reining in the outliers in map-reduce clusters using Mantri, in:
Proceedings of the 9th USENIX conference on Operating systems design
and implementation, OSDI’10, USENIX Association, Berkeley, CA, USA,
2010, pp. 1–16.
URL http://dl.acm.org/citation.cfm?id=1924943.1924962

[8] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, A. Rowstron,
Scale-up vs Scale-out for Hadoop: Time to Rethink?, in: Proceedings of
the 4th Annual Symposium on Cloud Computing, SOCC ’13, ACM, New
York, NY, USA, 2013, pp. 20:1–20:13.
URL http://doi.acm.org/10.1145/2523616.2523629

[9] C. Cachin, R. Guerraoui, L. Rodrigues, Introduction to Reliable and Secure
Distributed Programming (2. ed.), Springer, 2011.

[10] T. D. Chandra, S. Toueg, Unreliable failure detectors for reliable dis-
tributed systems, J. ACM 43 (1996) 225–267.
URL http://doi.acm.org/10.1145/226643.226647

[11] Q. Chen, C. Liu, Z. Xiao, Improving mapreduce performance using smart
speculative execution strategy, Computers, IEEE Transactions on 63 (4)
(2014) 954–967.

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, T. Riche,
Upright cluster services, in: Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles, SOSP ’09, ACM, New York, NY,
USA, 2009, pp. 277–290.
URL http://doi.acm.org/10.1145/1629575.1629602

24

http://dl.acm.org/citation.cfm?id=2482626.2482645
http://dl.acm.org/citation.cfm?id=2228298.2228326
http://dl.acm.org/citation.cfm?id=2616448.2616475
http://dl.acm.org/citation.cfm?id=1924943.1924962
http://doi.acm.org/10.1145/2523616.2523629
http://doi.acm.org/10.1145/226643.226647
http://doi.acm.org/10.1145/1629575.1629602


[13] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, R. Sears,
MapReduce online, in: Proceedings of the 7th USENIX conference on Net-
worked systems design and implementation, NSDI’10, USENIX Associa-
tion, Berkeley, CA, USA, 2010, pp. 21–21.
URL http://dl.acm.org/citation.cfm?id=1855711.1855732

[14] P. Costa, M. Pasin, A. Bessani, M. Correia, Byzantine Fault-Tolerant
MapReduce: Faults are Not Just Crashes, in: Proceedings of the 3rd IEEE
Second International Conference on Cloud Computing Technology and Sci-
ence, CLOUDCOM ’11, IEEE Computer Society, Washington, DC, USA,
2010, pp. 17–24.
URL http://dx.doi.org/10.1109/CloudCom.2010.25

[15] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[16] J. Dean, S. Ghemawat, G. Inc, MapReduce: simplified data processing on
large clusters, in: Proceedings of the 6th conference on Symposium on Op-
erating Systems Design & Implementation, OSDI’04, USENIX Association,
2004.

[17] F. Dinu, T. E. Ng, Understanding the effects and implications of compute
node related failures in Hadoop, in: HPDC ’12: Proceedings of the 21st
international symposium on High-Performance Parallel and Distributed
Computing, ACM, New York, NY, USA, 2012, pp. 187–198.

[18] F. Dinu, T. S. E. Ng, Hadoop’s Overload Tolerant Design Exacerbates Fail-
ure Detection and Recovery, in: Proceedings of the 9th USENIX conference
on Operating systems design and implementation, NetDB’11, ACM, New
York, NY, USA, 2011, pp. 1–7.

[19] K. Elmeleegy, Piranha: Optimizing Short Jobs in Hadoop, Proc. VLDB
Endow. 6 (11) (2013) 985–996.
URL http://dl.acm.org/citation.cfm?id=2536222.2536225

[20] F. C. Freiling, R. Guerraoui, P. Kuznetsov, The failure detector abstraction,
ACM Comput. Surv. 43 (2011) 9:1–9:40.
URL http://doi.acm.org/10.1145/1883612.1883616

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed
data-parallel programs from sequential building blocks, in: Proceedings of
the 2nd ACM SIGOPS/EuroSys 2007, EuroSys ’07, ACM, New York, NY,
USA, 2007, pp. 59–72.
URL http://doi.acm.org/10.1145/1272996.1273005

[22] J. Kephart, D. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41–50.

25

http://dl.acm.org/citation.cfm?id=1855711.1855732
http://dx.doi.org/10.1109/CloudCom.2010.25
http://dl.acm.org/citation.cfm?id=2536222.2536225
http://doi.acm.org/10.1145/1883612.1883616
http://doi.acm.org/10.1145/1272996.1273005


[23] S. Y. Ko, I. Hoque, B. Cho, I. Gupta, Making cloud intermediate data fault-
tolerant, in: Proceedings of the 1st ACM symposium on Cloud computing,
SoCC ’10, ACM, New York, NY, USA, 2010, pp. 181–192.
URL http://doi.acm.org/10.1145/1807128.1807160

[24] B. Memishi, S. Ibrahim, M. S. Pérez, G. Antoniu, On the Dynamic Shifting
of the MapReduce Timeout, in: R. Kannan, R. U. Rasool, H. Jin, S. Bala-
sundaram. (eds.), Handbook of Research on Managing and Processing Big
Data in Cloud Computing, IGI Global, Hershey, Pennsylvania (USA), 2016.

[25] B. Memishi, M. S. Pérez, G. Antoniu, Diarchy: An Optimized Management
Approach for MapReduce Masters, Procedia Computer Science 51 (2015)
9 – 18, international Conference On Computational Science, {ICCS} 2015
Computational Science at the Gates of Nature.
URL http://www.sciencedirect.com/science/article/pii/

S1877050915009874

[26] G. Mone, Beyond Hadoop, Commun. ACM 56 (1) (2013) 22–24.
URL http://doi.acm.org/10.1145/2398356.2398364

[27] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, G. Antoniu, GMonE: A
Complete Approach to Cloud Monitoring, Future Gener. Comput. Syst.
29 (8) (2013) 2026–2040.
URL http://dx.doi.org/10.1016/j.future.2013.02.011

[28] K. Morton, M. Balazinska, D. Grossman, ParaTimer: A Progress Indicator
for MapReduce DAGs, in: Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’10, ACM, New
York, NY, USA, 2010, pp. 507–518.
URL http://doi.acm.org/10.1145/1807167.1807223

[29] K. Morton, A. Friesen, M. Balazinska, D. Grossman, Estimating the
progress of MapReduce pipelines, in: Data Engineering (ICDE), 2010 IEEE
26th International Conference on, 2010, pp. 681–684.

[30] M. Nami, K. Bertels, A Survey of Autonomic Computing Systems, in:
Autonomic and Autonomous Systems, 2007. ICAS07. Third International
Conference on, 2007, pp. 26–26.

[31] J. S. Plank, M. Allen, R. Wolski, The Effect of Timeout Prediction and
Selection on Wide Area Collective Operations, in: Proceedings of the
IEEE International Symposium on Network Computing and Applications
(NCA’01), NCA ’01, IEEE Computer Society, Washington, DC, USA, 2001,
pp. 320–329.
URL http://dl.acm.org/citation.cfm?id=580585.883098

[32] A. Sánchez, J. Montes, M. S. Pérez, T. Cortes, An autonomic framework
for enhancing the quality of data grid services, Future Generation Comp.
Syst. 28 (7) (2012) 1005–1016.
URL http://dx.doi.org/10.1016/j.future.2011.08.016

26

http://doi.acm.org/10.1145/1807128.1807160
http://www.sciencedirect.com/science/article/pii/S1877050915009874
http://www.sciencedirect.com/science/article/pii/S1877050915009874
http://doi.acm.org/10.1145/2398356.2398364
http://dx.doi.org/10.1016/j.future.2013.02.011
http://doi.acm.org/10.1145/1807167.1807223
http://dl.acm.org/citation.cfm?id=580585.883098
http://dx.doi.org/10.1016/j.future.2011.08.016


[33] T. White, Hadoop - The Definitive Guide: Storage and Analysis at Internet
Scale (3. ed., revised and updated), O’Reilly, 2012.

[34] H. Xu, W. C. Lau, Speculative execution for a single job in a mapreduce-
like system, in: Cloud Computing (CLOUD), 2014 IEEE 7th International
Conference on, 2014, pp. 586–593.

[35] H. Xu, W. C. Lau, Optimization for speculative execution in a MapReduce-
like cluster, in: 2015 IEEE Conference on Computer Communications, IN-
FOCOM 2015, Kowloon, Hong Kong, April 26 - May 1, 2015, 2015, pp.
1071–1079.
URL http://dx.doi.org/10.1109/INFOCOM.2015.7218480

[36] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Sto-
ica, Delay scheduling: a simple technique for achieving locality and fairness
in cluster scheduling, in: Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, ACM, New York, NY, USA, 2010, pp.
265–278.
URL http://doi.acm.org/10.1145/1755913.1755940

[37] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica, Improving
MapReduce performance in heterogeneous environments, in: Proceedings
of the 8th USENIX conference on Operating systems design and imple-
mentation, OSDI’08, USENIX Association, Berkeley, CA, USA, 2008, pp.
29–42.
URL http://dl.acm.org/citation.cfm?id=1855741.1855744

[38] H. Zhu, C. Haopeng, Adaptive failure detection via heartbeat under
Hadoop, in: Proceedings of the 2011 IEEE Asia-Pacific Services Computing
Conference, ApSCC’11, IEEE, New York, NY, USA, 2011, pp. 231–238.

27

http://dx.doi.org/10.1109/INFOCOM.2015.7218480
http://doi.acm.org/10.1145/1755913.1755940
http://dl.acm.org/citation.cfm?id=1855741.1855744

	Introduction
	Problem statement
	System model
	High relax failure detector
	Correctness
	Performance

	Medium relax failure detector
	Correctness
	Performance

	Low relax failure detector
	Correctness
	Performance

	Related work
	Conclusions and future work

