
HOW TO USE

INTELLIGENT L.C.D.S

Part One
By Julyan Ilett

This paper was originally published as the first half of a two-part
article in the February 1997 issue of Everyday Practical Electronics
magazine (www.epemag.wimborne.co.uk), and is reproduced here
with their kind permission.

© Copyright 1997, 1998 Wimborne Publishing Ltd., publishers of
Everyday Practical Electronics Magazine. All rights reserved.

Recreated in Adobe Acrobat PDF format for your web-based reading pleasure by
Maxfield & Montrose Interactive Inc.

www.maxmon.com

How to use
Intelligent L.C.D.s
By Julyan Ilett

An utterly “practical” guide to interfacing
and programming intelligent liquid crystal
display modules.

Recently, a number of projects using intelligent liquid crystal display (l.c.d.) modules
have been featured in EPE. Their ability to display not just numbers, but also letters,
words and all manner of symbols, makes them a good deal more versatile than the
familiar 7-segment light emitting diode (l.e.d.) displays.

Although still quite expensive when purchased new, the large number of surplus modules
finding their way into the hands of the “bargain” electronics suppliers, offers the hobbyist
a low cost opportunity to carry out some fascinating experiments and realise some very
sophisticated electronic display projects.

Basic Reading
This article deals with the character-based l.c.d. modules which use the Hitachi HD44780
(or compatible) controller chip, as do most modules available to the hobbyist. Of course,
these modules are not quite as advanced as the latest generation, full size, full colour, back-
lit types used in today's laptop computers, but far from being “phased out,” character-based
l.c.d.s are still used extensively in commercial and industrial equipment, particularly where
display requirements are reasonably simple.

The modules have a fairly basic interface, which mates well with traditional micro-
processors such as the Z80 or the 6502. It is also ideally suited to the PIC microcontroller,
which is probably the most popular microcontroller used by the electronics hobbyist.

However, even if, as yet, you know nothing of microcontrollers, and possess none of the
PIC paraphernalia, don't despair, you can still enjoy all the fun of experimenting with
l.c.d.s, using little more than a handful of switches!

Shapes and Sizes
Even limited to character-based modules, there is still a wide variety of shapes and sizes
available. Line lengths of 8, 16, 20, 24, 32 and 40 characters are all standard, in one, two
and four-line versions.

Part One

Several different liquid crystal technologies exist. “Supertwist” types, for example, offer
improved contrast and viewing angle over the older “twisted nematic” types. Some modules
are available with back-lighting, so that they can be viewed in dimly-lit conditions. The
back-lighting may be either “electro-luminescent,” requiring a high voltage inverter circuit,
or simpler l.e.d. illumination.

Few of these features are important, however, for experimentation purposes. All types are
capable of displaying the same basic information, so the cheaper types are probably the
best bet initially.

Connections
Most l.c.d. modules conform to a standard interface specification. A 14-pin access is
provided (14 holes for solder pin insertion or for an IDC connector) having eight data
lines, three control lines and three power lines. The connections are laid out in one of
two common configurations, either two rows of seven pins, or a single row of 14 pins.
The two layout alternatives are displayed in Figure 1.

14 13 12 11 10 9 8 7 6 5 4 3 2 1

14 13

12 11

10 9

8 7

6 5

4 3

2 1

Figure 1: Pinouts of the two basic l.c.d formats.

On most displays, the pins are numbered on the l.c.d.'s printed circuit board, but if not, it
is quite easy to locate pin 1. Since this pin is connected to ground, it often has a thicker
p.c.b. track connected to it, and it is generally connected to the metalwork at some point.

The function of each of the connections is shown in
Table 1. Pins 1 and 2 are the power supply lines, Vss
and Vdd. The Vdd pin should be connected to the
positive supply, and Vss to the 0V supply or ground.

Although the l.c.d. module data sheets specify a 5V
d.c. supply (at only a few milliamps), supplies of 6V
and 4.5V both work well, and even 3V is sufficient
for some modules. Consequently, these modules can
be effectively, and economically, powered by
batteries.

Pin 3 is a control pin, Vee, which is used to alter the
contrast of the display. Ideally, this pin should be
connected to a variable voltage supply. A preset
potentiometer connected between the power supply
lines, with its wiper connected to the contrast pin is
suitable in many cases, but be aware that some
modules may require a negative potential; as low as
7V in some cases. For absolute simplicity, connecting
this pin to 0V will often suffice.

Pin 4 is the Register Select (RS) line, the first of the
three command control inputs. When this line is low, data bytes transferred to the display
are treated as commands, and data bytes read from the display indicate its status. By
setting the RS line high, character data can be transferred to and from the module.

Pin 5 is the Read/Write (R/W) line. This line is pulled low in order to write commands or
character data to the module, or pulled high to read character data or status information
from its registers.

Pin 6 is the Enable (E) line. This input is used to initiate the actual transfer of commands
or character data between the module and the data lines. When writing to the display,
data is transferred only on the high to low transition of this signal. However, when
reading from the display, data will become available shortly after the low to high
transition and remain available until the signal falls low again.

Pins 7 to 14 are the eight data bus lines (D0 to D7). Data can be transferred to and from
the display, either as a single 8-bit byte or as two 4-bit “nibbles.” In the latter case, only
the upper four data lines (D4 to D7) are used. This 4-bit mode is beneficial when using a
microcontroller, as fewer input/output lines are required.

Table 1. Pinout functions for
all the l.c.d. types.

Prototype Circuit
For an l.c.d. module to be used effectively in any piece of equipment, a microprocessor or
microcontroller is usually required to drive it. However, before attempting to wire the
two together, some initial (and very useful) experiments can be performed, by connecting
up a series of switches to the pins of the module. This can be quite a beneficial step, even
if you are thoroughly conversant with the workings of microprocessors.

X1 LCD Module

D7 D6 D5 D4 D3 D2 D1 D0 E R/W RS Vee Vdd Vss

+5V

R1
4k7

R2
4k7

R3
4k7

R4
4k7

R5
4k7

R6
4k7

R7
4k7

R8
4k7

R9
4k7

R10
4k7

14 13 12 11 10 9 8 7 6 5 4 3 2 1

0V

S1 S2 S3 S4 S5 S6 S7 S8

8-WAY D.I.L. SWITCH

S9 S10
VR1
5k CW

Figure 2: Circuit diagram for an l.c.d. experimental rig.

In Figure 2 is shown the circuit diagram of an l.c.d. experimentation rig. The circuit can
be wired-up on a “plug-in” style prototyping board, using d.i.l. (dual-in-line) switches for
the data lines (S1 to S8), a toggle switch for the RS input (S10), and a momentary action
switch (or microswitch) for the E input (S9). The R/W line is connected to ground (0V),
as the display is only going to be written to for the time being.

All of the resistors (R1 through R10) are 4K7 ohms. It is probably most convenient to use a
s.i.l. (single-in-line) resistor pack for the eight pull-up resistors (R1 to R8) on the data lines.
The other two resistors, R9 and R10, can be discrete types. Preset potentiometer VR1
(5K ohms) is used for the contrast control and is shown with one end left disconnected.
If desired, this end can be connected to the positive line via a resistor of about 47K ohms
(it should be connected to a negative supply, via a similar resistor, for those modules
which require negative biasing).

All the switches should be connected so that they are “on” when in the “down” position,
so that “down” generates a logic 0 (low) and “up” provides a logic 1 (high). The switches
should also be arranged so that data bit D7 is on the left, and data bit D0 is on the right. In
this way, binary numbers can be entered the right way round.

Initially, the contrast control should be adjusted fully clockwise, so that the contrast
control input (Vee) is connected to ground. The initial settings of the switches are

unimportant, but it is suggested that the RS switch (S10) is “up” (set to logic 1), and the
E switch (S9) is left unpressed. The data switches, S1 to S8, can be set to any value at
this stage. All is now prepared to start sending commands and data to the l.c.d. module.

The experimental circuit can be built on plug-in prototyping boards.

Experiment 1: Basic Commands
When powered up, the display should show a series of dark squares, possibly only on part
of the display. These character cells are actually in their off state, so the contrast control
should be adjusted anti-clockwise (away from ground) until the squares are only just visible.

The display module resets itself to an initial state when power is applied, which curiously
has the display blanked off, so that even if characters are entered, they cannot be seen. It
is therefore necessary to issue a command at this point, to switch the display on.

A full list of the commands that can be sent is given in Table 2, together with their binary
and hexadecimal values. The initial conditions of the l.c.d. after power-on are marked
with an asterisk.

Throughout this article, emphasis will be placed on the binary value being sent since this
illustrates which data bits are being set for each command. After each binary value, the
equivalent hexadecimal value is quoted in brackets, the $ prefix indicating that it is
hexadecimal.

The Display On/Off and Cursor command turns on the display, but also determines the
cursor style at the same time. Initially, it is probably best to select a Blinking Cursor with
Underline, so that its position can be seen clearly, i.e. code 00001111 ($0F).

Command

Clear Display 0

Display & Cursor Home

Character Entry Mode

Display On/Off & Cursor

Display/Cursor Shift

Function Set

Set CGRAM Address

Set Display Address

Hex

01

02 or 03

04 to 07

08 to 0F

10 to 1F

20 to 3F

40 to 7F

80 to FF

0 0 0 0 00 1

0 0 0 0 0 10 x

0 0 0 0 10 S

0 0 0 1 D

U:

0 B

0 0 1 x0 x

0 1 x0 x

1 A A A A A0 A

A A A A A A1 A

D6 D5 D4 D3 D2 D1D7 D0

Binary

1 / D

D / C R / L

8 / 4 2 / 1 10 / 7

1 / D:

S:

D:

B:

D / C:

R / L:

8 / 4:

2 / 1:

10 / 7:

U

1=Increment*, 0=Decrement

1=Display shift on, 0=Off*

1=Display on, 0=Off*

1=Cursor underline on, 0=Off*

1=Cursor blink on, 0=Off*

1=Display shift, 0=Cursor move

1=Right shift, 0=Left shift

1=8-bit interface*, 0=4-bit interface

1=2 line mode, 0=1 line mode*

1=5x10 dot format, 0=5x7 dot format*

x = Don't care * = Initialization settings

Table 2. The command control codes.

Set the data switches (S1 to S8) to 00001111 ($0F) and ensure that the RS switch (S10) is
“down” (logic 0), so that the device is in Command mode. Now press the E switch (S9)
momentarily, which “enables” the chip to accept the data, and Hey Presto, a flashing
cursor with underline appears in the top left hand position!

If a two-line module is being used, the second line can be switched on by issuing the
Function Set command. This command also determines whether an 8-bit or a 4-bit data
transfer mode is selected, and whether a 5 x 10 or 5 x 7 pixel format will be used. So, for
8-bit data, two lines and a 5 x 7 format, set the data switches to binary value 00111000
($38), leave RS (S10) set low and press the E switch, S9.

It will now be necessary to increase the contrast a little, as the two-line mode has a
different drive requirement. Now set the RS switch to its “up” position (logic 1),
switching the chip from Command mode to Character mode, and enter binary value
01000001 ($41) on the data switches. This is the ASCII code for a capital A.

Press the E switch, and marvel as the display fills up with capital A's. Clearly, something
is not quite right, and seeing your name in pixels is going to have to wait a while.

Bounce
The problem here is contact bounce. Practically every time the E switch is closed, its contacts
will bounce, so that although occasionally only one character appears, most attempts will result
in 10 or 20 characters coming up on the display. What is needed is a “debounce” circuit.

But what about the commands entered earlier, why didn't contact bounce interfere with
them? In fact it did, but it doesn't matter whether a command is entered (“enabled”) just
once, or several times, it gets executed anyway. A solution to the bounce problem is
shown in Figure 3.

Here, a couple of NAND gates are cross-
coupled to form a set-reset latch (or flip-flop)
which flips over and latches, so that the contact
bounce is eliminated. Either a TTL 74LS00 or a
CMOS 74HC00 can be used in this circuit. The
switch must be an s.p.d.t. (single-pole, double-
throw) type, a microswitch is ideal.

After modifying the circuit, the screen full of
A’s can be cleared using the Clear Display
command. Put binary value 00000001 ($01) on
the data switches, set the RS switch to the
“down” position and press the new modified E
switch. The display is cleared.

Note that the output of the “de-bounce” circuit is
high when the switch is pressed and low when the
switch is released. Since it is the high to low transition that actually latches data into the
l.c.d. module, it will be observed that characters appear on the display, not when the
button is pressed, but when it is released.

Experiment 2: Entering Text
First, a little tip: it is manually a lot easier to enter characters and commands in hexadecimal
rather than binary (although, of course, you will need to translate commands from binary
into hex so that you know which bits you are setting). Replacing the d.i.l. switch pack with a
couple of sub-miniature hexadecimal rotary switches is a simple matter, although a little bit
of re-wiring is necessary.

The switches must be the type where On = 0, so that when they are turned to the zero
position, all four outputs are shorted to the common pin, and in position “F”, all four
outputs are open circuit.

All the available characters that are built into the module are shown in Table 3. Studying
the table, you will see that codes associated with the characters are quoted in binary and
hexadecimal, most significant bits (“left-hand” four bits) across the top, and least
significant bits (“right-hand” four bits) down the left.

Most of the characters conform to the ASCII standard, although the Japanese and Greek
characters (and a few other things) are obvious exceptions. Since these intelligent
modules were designed in the “Land of the Rising Sun,” it seems only fair that their
Katakana phonetic symbols should also be incorporated. The more extensive Kanji
character set, which the Japanese share with the Chinese, consisting of several thousand
different characters, is not included!

Figure 3. Switch debounce circuit.

Table 3. Standard l.c.d character table.

Using the switches, of whatever type, and referring to Table 3, enter a few characters
onto the display, both letters and numbers. The RS switch (S10) must be “up” (logic 1)
when sending the characters, and switch E (S9) must be pressed for each of them. Thus

the operational order is: set RS high, enter character, trigger E, leave RS high, enter
another character, trigger E, and so on.

The first 16 codes in Table 3, 00000000 to 00001111, ($00 to $0F) refer to the CGRAM.
This is the Character Generator RAM (random access memory), which can be used to
hold user-defined graphics characters. This is where these modules really start to show
their potential, offering such capabilities as bargraphs, flashing symbols, even animated
characters. Before the user-defined characters are set up, these codes will just bring up
strange looking symbols.

Codes 00010000 to 00011111 ($10 to $1F) are not used and just display blank characters.
ASCII codes “proper” start at 00100000 ($20) and end with 01111111 ($7F). Codes
10000000 to 10011111 ($80 to $9F) are not used, and 10100000 to 11011111 ($A0 to
$DF) are the Japanese characters.

Codes 11100000 to 11111111 ($E0 to $FF) are interesting. Although this last block
contains mainly Greek characters, it also includes the lower-case characters which have
“descenders.” These are the letters g, j, p, q and y, where the tail drops down below the
base line of normal upper-case characters. They require the 5 x 10 dot matrix format,
rather than the 5 x 7, as you will see if you try to display a lower-case j, for example,
on a 5 x 7 module.

Some one-line displays have the 5 x 10 format facility, which allows these characters
to be shown unbroken. With 5 x 7 two-line displays, the facility can be simulated by
borrowing the top three pixel rows from the second line, so creating a 5 x 10 matrix.

For this simulation, set line RS low to put the chip into Command mode. On the data
switches, enter the Function Set command using binary value 00110100 ($34). Press
and release switch E. Return RS to high, and then send the character data for the last
32 codes in the normal way (remembering to trigger line E!).

Experiment 3: Addressing
When the module is powered up, the cursor is positioned at the beginning of the first line.
This is address $00. Each time a character is entered, the cursor moves on to the next
address, $01, $02 and so on. This auto-incrementing of the cursor address makes entering
strings of characters very easy, as it is not necessary to specify a separate address for
each character.

It may be necessary, however, to position a string of characters somewhere other than at
the beginning of the first line. In this instance, a new starting address must be entered as
a command. Any address between $00 and $7F can be entered, giving a total of 128
different addresses, although not all these addresses have their own display location.
There are in fact only 80 display locations, laid out as 40 on each line in two-line mode,
or all 80 on a single line in one-line mode. This situation is further complicated because
not all display locations are necessarily visible at one time. Only a 40-character, two-line
module can display all 80 locations simultaneously.

To experiment with addressing, first set the l.c.d. to two-line mode (if two lines are
available), 8-bit data and 5 [P3] 7 format using the Function Set command, i.e. code
00111000 ($38). Note that the last two bits of this command are unimportant, as indicated
by the x in the columns of Table 2, and either of them may be set to 0 or 1.

(From now on, we won't constantly remind you that RS must be set appropriately before
Command or Character data is entered, or that E must be triggered after data has been
entered you should know by now!)

Using the Display On/Off and Cursor command, set the display to On, with Underline and
Blinking Cursor, code 00001111 ($0F). Now set the cursor to address 00001000 ($08).
This is done by sending a Set Display Address command, binary value 10001000 ($88).

The cursor will jump to the ninth position on the display, at which point text can now be
entered. The Set Display Address command is always 10000000 ($80) greater than the
display address itself.

Experiment with different display addresses and note their display locations. Be aware
that display addresses 00101000 to 00111111 ($28 to $3F) and 01101000 to 01111111
($68 to $7F) cannot be used on any of the display types.

The relationship between addresses and display locations varies, depending on the type
of module being used, but some typical examples are shown in Figure 4.

Figure 4: Examples of the relationship between addresses
and display locations for typical module formats

Most are laid out conventionally, with two lines of characters, the first line starting at
address 00000000 ($00) and the second line at address 01000000 ($40).
Two interesting exceptions were discovered during this article's research. The single-line
module shown in Figure 4 is actually a two-line type, with the second line placed to the
right of the first. In one-line mode, only the first 10 characters were visible.

The rather magnificent 4-line module is, actually, also a two-line type, with the two lines
split and interlaced. This complicates the addressing a little, but can be sorted out with a
bit of software.

Experiment 4: Shifting the Display
Regardless of which size l.c.d. module is being used, there are always 80 display
locations that can be written to. On the smaller devices, not all 80 fit within the visible
window of the module, but can be brought into view by shifting them all, either left or
right, “beneath” the window area. This process must be carried out carefully, however,
as it alters the relationship between addresses and their positions on the screen.

To experiment with shifting, first issue suitable Function Set, Display On/Off and Cursor
commands, and, if necessary, the Clear Display command (you've met their codes above).
Then enter all 26 letters of the alphabet as character data, e.g. 01000001 ($41) to
01011010 ($5A).

On a 16-character display, only A to P will be visible (the first 16 letters of the alphabet),
and the cursor will have disappeared off the right-hand side of the display screen.

The Cursor/Display Shift command can now be used to scroll all the display locations to
the left, “beneath” the l.c.d. window, so that letters Q to Z can be seen. The command is
binary 00011000 ($18). Each time the command is entered (and using the E switch), the
characters shift one place to the left. The cursor will re-appear from the right-hand side,
immediately after the Z character.

Carry on shifting (wasn't that a film title? Ed!), and eventually the letters A, B, C, and so
on, will also come back in from the right-hand side. Shifting eventually causes complete
rotation of the display locations.

The binary command 00011100 ($1C) shifts the character locations to the right. It is
important to note that this scrolling does not actually move characters into new addresses,
it moves the whole address block left or right “underneath” the display window.

If the display locations are not shifted back to their original positions, then address $00
will no longer be at the left-hand side of the display. Try entering an Address Set
command of value 10000000 ($80), after a bit of shifting, to see where it has moved to.

The Cursor Home command, binary 00000010 ($02), will both set the cursor back to
address $00, and shift the address $00 itself back to the left-hand side of the display.
This command can be used to get back to a known good starting position, if shifting
and address setting gets a bit out of control.

The Clear Display command does the same as Cursor Home, but also clears all the
display locations.

One final word about the Cursor/Display Shift command; it is also used to shift the
cursor. Doing this simply increments or decrements the cursor address and actually has
very little in common with shifting the display, even though both are achieved using the
same command.

Experiment 5: Character Entry Mode
Another command listed in Table 2 is Character Entry Mode. So far, characters have
been entered using auto-incrementing of the cursor address, but it is also possible to use
auto-decrementing. Furthermore, it is possible to combine shifting of the display with
both auto-incrementing and auto-decrementing.

Consider an electronic calculator. Initially, a single zero is located on the right-hand side
of the display. As numbers are entered, they move to the left, leaving the cursor in a fixed
position at the far right. This mode of character entry can be emulated on the l.c.d.
module. Time for another experiment:

Send suitable Function Set, Display On/Off and Cursor commands as before. Next, and
assuming a 16-character display, set the cursor address to 00010000 ($10). Then send the
Character Entry Mode command, binary 00000111 ($07). This sets the entry mode to
auto-increment/display shift left.

Finally, enter a few numbers from 0 to 9 decimal, i.e. from 00110000 to 00111001 ($30
to $39). Characters appear on the right-hand side and scroll left as more characters are
entered, just like a normal calculator.

As seen in Table 2, there are four different Character Entry modes, 00000100 to
00000111 ($04 to $07), all of which have their different uses in real life situations.

Experiment 6: User-Defined Graphics
Commands 01000000 to 01111111 ($40 to $7F) are used to program the user-defined
graphics. The best way to experiment with these is to program them “on screen.” This is
carried out as follows:

First, send suitable Function Set, Display On/Off and Cursor commands, then issue a
Clear Display command. Next, send a Set Display Address command to position the
cursor at address 00000000 ($00). Lastly, display the contents of the eight user character

locations by entering binary data 00000000 to 00000111 ($00 to $07) in turn. These
characters will initially show up as garbage, or a series of stripes.

Now, send a Set CGRAM Address command, to start defining the user characters.
Any value between 01000000 and 01111111 ($40 and $7F) is valid, but for now, use
01000000 ($40). The cursor will jump to the beginning of the second line, but ignore
this, as it is not important.

Data entered from now on will build up the user-defined graphics, row by row. Try the
following sequence of data: 00001110, 00010001, 00001110, 00000100, 00011111,
00000100, 00001010, 00010001 ($0E, $11, $0E, $04, $1F, $04, $0A, $11). A little
“stick man” will appear on the display, with his feet in the gutter (the cursor line)!

By entering another set of eight bytes, the second user character can be defined, and so on.

How the CGRAM addresses correspond to the individual pixels of the user-defined
graphics characters is illustrated in Figure 5. Up to eight graphics can be programmed,
which then become part of the character set and can be called up using codes 00000000
to 00000111 ($00 to $07), or codes 00001000 to 00001111 ($08 to $0F), both of which
produce the same result, i.e. 64 command codes available for user programming.

Address
hex

Data
hex

0E
11
0E
04
1F
04
0A
11

40
41
42
43
44
45
46
47

(00001110)
(00010001)
(00001110)
(00000100)
(00011111)
(00000100)
(00001010)
(00010001)

(binary)
Address

hex

48
49
4A
4B
4C
4D
4E
4F

Address
hex

78
79
7A
7B
7C
7D
7E
7F

User-defined
graphic #1

User-defined
graphic #2

User-defined
graphic #7

Figure 5: Showing how the CGRAM addresses correspond to individual pixels.

It can be seen that the basic character cell is actually eight pixels high by five pixels wide,
but most characters just use the upper seven rows. The bottom row is generally used for
the underline cursor. Since each character is only five pixels wide, only data bits 0 to 4
are used, bits 5 to 7 (the three “left-hand” bits) are ignored.

The CGRAM is volatile memory, which means that when the power supply is removed
from the l.c.d. module, the user-defined characters will be lost. It is necessary for the
microprocessor to load up the user-defined characters, by copying data from its own
EPROM, early on in the program, certainly before it intends to display them.

Experiment 7: 4-Bit Data Transfer
The HD44780 l.c.d. control chip, found in most l.c.d. modules, was designed to be
compatible with 4-bit microprocessors. The 4-bit mode is still very useful when
interfacing to microcontrollers, including the PIC types.

Microcontroller input/output (I/O) pins are often at a premium and have to be rationed
carefully between the various switches, displays and other input and output devices in
a typical circuit. Bigger microcontrollers are available, which have more I/O pins, but
miniaturisation is a key factor these days, along with cost, of course.

Once the display is put into 4-bit mode, using the Function Set command, it is a simple
matter of sending two “nibbles” instead of one byte, for each subsequent command or
character.

Nibble is a name devised by early computer enthusiasts in America, for half a byte, and
is one of the more frivolous terms that has survived. By the time the 16-bit processors
arrived, computing was getting serious, and the consumption analogies “gobble” and
“munch” were never adopted!

When using 4-bit mode, only data lines D4 to D7 are used. On the prototype test rig,
set the switches on the other lines, D0 to D3, to logic 0, and leave them there. Another
experiment is now imminent.

In normal use, the unused data I/O lines D0 to D3 should either be left floating, or tied to
one of the two power rails via a resistor of somewhere between 4k7[C24] and 47k[C24].
It is undesirable to tie them directly to ground unless the R/W line is also tied to ground,
preventing them from being set into output mode. Otherwise the device could be
programmed erroneously for 8-bit output, which could be unkind to lines D0 to D3,
even though current limiting exists.

After power on, the l.c.d. module will be in 8-bit mode. The Function Set command must
first be sent to put the display into 4-bit mode, but there is a difficulty. With no access to
the lower four data lines, D0 to D3, only half the command can be applied.

Fortunately, or rather, by clever design, the 8-bit/4-bit selection is on data bit D4, which,
even on the modified test rig, remains accessible. By sending a command with binary
value 00100000 ($20), the 4-bit mode is invoked.

Now, another Function Set command can be sent, to set the display to two-line mode.
Binary value 00101000 ($28) will do the trick. The value 00111000 ($38) may be a more
familiar number, but it cannot be used now, or the display would be put straight back into
8-bit mode! Also, from now on, all commands and data must be sent in two halves, the
upper four bits first, then the lower four bits.

Start by setting data lines D7, D6, D5 and D4 to 0010 ($2), the left-hand four bits of the
8-bit code, and press the E switch. Then we set the same four data lines to 1000 ($8), the
right-hand four bits of the 8-bit code, and press the E switch again. It's a lot more
laborious for a human being, but to a microcontroller, it's no problem!

Finish off by experimenting with other commands in 4-bit mode, and then try putting a
few characters on the display.

A Final Note
The data sheets warn that under certain conditions, the l.c.d. module may fail to initialise
properly when power is first applied. This is particularly likely if the Vdd supply does not
rise to its correct operating voltage quickly enough.

It is recommended that after power is applied, a command sequence of three bytes of value
0011XXXX ($3X) is sent to the module. The value $30 is probably most convenient. This
will guarantee that the module is in 8-bit mode, and properly initialised. Following this,
switching to 4-bit mode (and indeed all other commands) will work reliably.

That’s it −− For Now!
Well, that's about it, really. You've made it this far, so now you know everything there is
to know about l.c.d. modules. Well, almost everything!

The next step, of course, is to connect the display up to a controller of some sort, such as
a PIC microcontroller, as will be seen next month. Then we shall also consider such
things as signal timing and instruction delays.

Acknowledgement
The author expresses his gratitude to Bull Electrical in Hove and Greenweld Electronics
in Southampton for their help in connection with this article.

	Part 1
	Introduction
	Basic Reading
	Shapes and Sizes
	Connections
	Prototype Circuit
	Experiment 1: Basic Commands
	Bounce
	Experiment 2: Entering Text
	Experiment 3: Addressing
	Experiment 4: Shifting the Display
	Experiment 5: Character Entry Mode
	Experiment 6: User-Defined Graphics
	Experiment 7: 4-Bit Data Transfer
	A Final Note
	That’s it - - For Now!
	Acknowledgement

	Part 2

