Colegio Pío IX Taller de Radio Armado Realizado por Gerardo S. Rodríguez (gerardonet98.yahoo.com)

Diseño de circuitos impresos por computadora

EAGLE 3.55

Para Windows 95/NT

Introducción

El programa posee un panel de control a partir del cual se puede generar o editar: Un circuito teórico (archivos .sch) Un circuito impreso (archivos .pcb) Una librería de componentes (archivos .lbr) De esta manera el programa permite dibujar circuitos y generar cada una de las caras de un circuito impreso como así también plantilla de perforaciones y máscaras de soldadura. El programa provee una amplia gama de librerías de componentes, conectores, sensores, etc. y permite la generación de nuevas librerías y la edición de las librerías existentes. La versión de prueba del programa que está disponible en forma gratuita en internet (www.cadsoft.com) tiene las siguientes limitaciones:

- Tamaño máximo de plaqueta : 100 x 80mm.
- Cantidad de caras de circuito impreso disponibles : 2 (bottom y top)

Circuitos teóricos (Schematics)

Desde el panel de control se accede al módulo del programa que permite la edición de circuitos con la simbología utilizada normalmente en electrónica.

Para ello en "file" de la barra de comando seleccionar "new" o "open" (si se desea abrir un archivo ya existente) y luego "schematic".

Para incluir un componente en el dibujo se deberá previamente abrir una librería. Para esto se puede utilizar el ícono presente en la barra superior (función "**USE**").

Si en componente necesario no se encuentra en ninguna librería habrá que editarlo y generar una nueva librería (Ver apartado de "Creación y edición de una librería").

El programa trabaja con una grilla que le permite obtener fácilmente íneas rectas simetrías en los dibujos. Para editar esta grilla el ícono correspondiente es:

y permitirá hacer que la misma sea visible o no, modificar el tamaño de su trama, que sea representada por líneas o por puntos y finalmente elegir la unidad de medida.

Para realizar el coneccionado de los componentes se utiliza la barra de tareas y las opciones de visualización:

- **DISPLAY**: Permite seleccionar las capas de diseño (layers) que se desean aparezcan visibles en el diseño en curso. Cabe aclarar que en el momento e la impresión solo se imprimirán los elementos visibles en pantalla.
- MARK: Permite elegir el origen de coordenadas para la presentación de posición relativa indicada en la parte superior de la pantalla.

- **ADD**: con esta función se puede agregan al dibujo los componentes que incluye la librería previamente abierta.
- **NAME**: Permite modificar el nombre que el programa le asignó a los componentes y cables utilizados.
- VALUE: permite modificar el valor de un componente. Cabe aclarar que el valor asignado a un componente solo tiene sentido para la *pesentación* del circuito teórico ya que el circuito impreso no sufre modificación alguna y el programa no simula el funcionamiento del circuito.
- GROUP: activando esta función se podrá encerrar con un cuadro un conjunto de componentes formando con ellos un grupo que podrá ser editado en conjunto con las funciones CUT, PASTE, MOVE, DELETE, etc. mediante el botón derecho del mouse, mientras que con el izquierdo se editan los componentes por separado.
- CUT y PASTE: con CUT se puede cargar en el clipboard un componente o grupo y PASTE permite recuperarlo y pegar dicho objeto en el área de trabajo. A diferencia de otros programas que funcionan en entorno Windows, al aplicar la función CUT los objetos no se eliminan del área de trabajo.
- MOVE: permite desplazar un componente, cable o grupo seleccionado con el botón izquierdo del mouse en el área de trabajo. Con ésta función activa, con el botón derecho del mouse se puede rotar el objeto 90°, 180°, 270° y 360° (lo cual también puede hacerse con la función "ROTATE").
- MIRROW: genera la imagen especular de objetos y grupos respecto del eje Y.
- DELETE: permite eliminar un componente, cable o grupo del área de trabajo.
- ERC: ésta es una herramienta que realiza una verificación eléctrica del circuito. El programa corrobora que no halla terminales de componentes discretos o pines de entrada de integrados sin conexión o pines de salida utilizados como de entrada (con una tensión forzada por ejemplo).
- **TEXT**: permite agregar etiquetas de texto a un elemento o diseño.

Diseño de circuitos impresos (PCB)

Existen 2 formas diferentes de generar un circuito impreso:

- 1. Desde el panel de control. Para ello en "file" de la barra de comando seleccionar "new" o "open" (si se desea abrir un archivo ya existente) y luego "board".
- 2. A partir del circuito teórico con el ícono:

ubicado en la parte superior del módulo antes visto. Al pulsarlo se abrirá el módulo del programa para la generación de circuitos impresos con un recuadro blanco (que es el área de trabajo de 10cm. x 8 cm.) y a un lado el mismo los componentes utilizados en el teórico (con su encapsulado correspondiente) y con finas líneas amarillas las conexiones entre ellos. Es necesario llevar los componentes al interior de dicha área de trabajo pues fuera de ella el programa en su versión "light" no ejecuta ninguna función.

Cuando se inicia el diseño del circuito impreso a partir del teórico, el programa no permite la inclusión de nuevos componentes ni conexiones que no figuren en el teórico, para mantener la correspondencia entre ellos. Además interconecta automáticamente entre sí los pines de alimentación de los integrados de la misma familia.

Más allá de estas diferencias, el resto del diseño es el mismo para el caso 1. que para el caso 2.

Mediante el siguiente ícono:

se puede acceder al módulo de edición de circuitos teóricos (schematics), pero el programa no genera el circuito teórico a partir del impreso.

Las funciones USE, DISPLAY, MARK, MOVE, MIRROW, ROTATE, CUT, PASTE, DELETE, ADD, NAME, VALUE, SPLIT, WIRE y TEXT como así también las que sirven para dibujar figuras geométricas como CIRCLE, ARC, RECTANGLE y POLYGON, son las mismas que en el módulo de circuitos teóricos.

Veremos entonces algunas funciones propias de éste módulo.

Info	1	Show	WIDE, parmita dibujar lípaga. La función sa trabaja
Display		Mark	igual que en el módulo de circuitos teóricos con la particularidad que éstas líneas serán pistas en las
Move	↔ <u>₹</u> ₹ ₹	Сору	caras (layers) llamadas "top" (lado componentes) y
Mirror	E3 P	Rotate	"bottom" (lado de abajo o lado cobre para plaquetas
Group		Change	simple faz).
Cut	* >	Paste	componentes (pads). Estas conexiones deberán ser
Delete		Add	luego ruteadas manualmente (ROUTE) o en forma
Name		Value	automática (AUTO).
Smash	ı.	•	conexión (SIGNAL) va prestablecida. Al activar ésta
Pinswap	\$‡} 0+0	Replace	función se incorpora en la parte superior de la pantalla
Split	14	Optimize	un menú que permite elegir la cara (top o bottom), el
Route	N	Ripup	tormato de la línea, espesor y los parámetros
Wire		Text	desee trasladar una pista desde una cara a la otra de la plagueta.
Circle	<u>o</u>	Arc	RIPUP : Permite convertir una pista en una conexión
Rectangle		Polygon	no ruteada (SIGNAL).
Via		Signal	VIA: Permite insertar una isla. Al activar ésta función
Hole			menú que permite elegir la forma de la isla, el
Ratsnest	X	Auto	diámetro de la misma y el diámetro de la perforación correspondiente (DRILL)
ERC		DRC	
Errors	<u>•</u>		

- HOLE: Genera una perforación en la plaqueta para, por ejemplo, la sujeción de la misma dentro de un gabinete. Al activar ésta función se incorpora en la parte superior de la pantalla un menú que permite elegir el diámetro de dicha perforación.
- CHANGE: si bien esta función también existe en el módulo anterior, aquí es donde tiene mayor • aplicación. Sirve para modificar todos los parámetros de los objetos ya dibujados.
- **REPLACE**: se utiliza para cambiar el encapsulado a un componente por otro de la misma • librería. Se mantiene el conexionado prestablecido.

NOTA: Al insertar un componente, una isla, pista, agujero, etc. los elementos guedan dibujados en las caras correspondientes (layers) de forma tal que si se desea por ejemplo imprimir solo los componentes esto se pueda hacer dejando visible sólo la cara (layer) correspondiente.

RATSNETS: Esta función calcula la mínima distancia entre los puntos a conectar indicados con SIGNAL.

 DCR: Esta es una herramienta que permite verificar si se cruzaron pistas en el dibujo (overlap) y además si se respetaron normas de diseño establecidas en un menú que aparece al activar la función.

Design Rule Che	ck.	×
Checks	nin	max
P Dil	0.6096	6.4770
🔽 Width	0.2540	6.4770 condiciones o
Diameter	1.0160	6.4770 normas de diseño
Distance	0.2032	
Pad Pad	0.2032	
🔽 Smd	0.2540	
I Overlap		
Angle	MaxEnors:	50 Max. cantidad de
C OlfGrid	Signat	errores a analizar
Clear	Select	Errors
ОК	Cancel	Help

- **ERRORS**: indica la lista de errores calculados con DRC y mediante una flecha muestra la ubicación de los mismos.
- AUTO: esta función realiza en forma automática el ruteo de las conexiones (signals) ya prestablecidas. Al hacer click en el ícono correspondiente se activa un menú que permite determinar distintos parámetros o condicionamientos para éste ruteo.

Autorouter Setup				×
Layer	Costs	- Maximum	- Minimum Distance	;
1 Тор 🗓 🛛	Via 8	Vias 20	Wire	Via
	NonPref Para de mínin	eterminar las distancias nas entre los distintos	Wire 0.00800	
	ChangeD of	ojetos del impreso	Pad 0.00800	0.00800
	OrthStep 2	RipupLevel II	Via 0.00800	0.00800
• $0 = $ No rutear en esa ca	ara.	RipupSteps 1	Dim 0.04000	0.04000
 *=Rutear en esa cara, 	sin restricciones.	RipupTotal 100	Restr 0.00800	0.00800
 = El ruteo en esa cará preferentemente horiza 	ontal.			
 I = El ruteo en esa can preferentemente vertis 	a debe ser	-Pass	- Track	
• $/ o \setminus = El ruteo en esa d$	cara debe ser	🔿 Busses 🛛 💌	Grid 🔽	0.05000
preferentemente diago	nal	Route	Wire Width 🛛 🖸	0.01600
	BusImpact 0	🖸 Optimize1 🛛 🔽	Via Diameter 🛛 🖸	0.04000
	Hugging	Para determinar los	Via Drill 🛛 🖸	0.02400
	Avoid par	ámetros de los objetos	Via Shape 🛛 🛛	Round 💌
	Continue e	que va a generar el autorruteo		
7				
16 Bottom - 0	Create Job	Select Start	Cancel	Help

<u>NOTA</u>: Es importe darle a los componentes la mejor ubicación posible tal que sea simple el ruteo de las pistas debido a que puede ocurrir que el programa no encuentre como rutear determinadas conexiones con lo que el autorruteo será solo parcial.

Creación y edición de una librería.

Desde el panel de control se puede acceder a un módulo especial del programa que permite la edición o la creación de una nueva librería de componentes. En "file" de la barra de comando seleccionar "new" o "open" (si se desea abrir un archivo ya existente) y luego "library". Para generar un nuevo componente hay que definir 3 cosas:

- El símbolo (symbol) correspondiente al circuito teórico.
- El encapsulado (package) y sus islas (PADS) correspondientes al circuito práctico (circuito impreso).
- El dispositivo (device), es decir, la asignación de un encapsulado a determinados símbolos y la correspondencia entre los terminales de los símbolos y los " pads" del encapsulado.

Así, al acceder al módulo de librería en la barra superior aparecerán 3 íconos que permitirán editar cada una partes antes mencionadas.

Al hacer click sobre cualquiera de éstos íconos se abrirá un menú que permitirá elegir componentes de la librería abierta o generar un nuevo componente con la opción "new".

Cuando se accede a la edición del símbolo aparecerán del lado izquierdo de la pantalla una serie de íconos (cuyas funciones ya fueron mencionadas en otros módulos) que permitirán dibujar el símbolo del componente que de desea aparezca en el circuito teórico. A estos íconos se le agrega al final uno llamado " PIN" que permite indicar en el dibujo cuáles son los terminales de conexión del dispositivo. Al activar ésta función aparecerá en la parte superior el siguiente menú:

Para que el nombre y valor del símbolo sean visibles en el plano teórico, con la función "TEXT" se escribe ">NAME" en la cara (layer) 95 (names) y ">VALUE" en la cara 96 (values). De esta manera, cuando se esté editando un circuito teórico se podrán modificar dichos parámetros con las funciones ya explicadas.

Cuando se accede a la edición del encapsulado aparecerán del lado izquierdo de la pantalla una serie de íconos (cuyas funciones ya fueron mencionadas en otros módulos) que permitirán dibujar el componente y sus puntos de soldadura (PADS). A estos íconos se les agregan los siguientes:

PAD: Sirve para ubicar las islas para la soldadura de los terminales de los componentes. Al activar ésta función aparece en el lado superior de la pantalla un menú donde se puede elegir la forma de la isla, su diámetro y el diámetro del agujero correspondiente (Drill).

<u>NOTA</u>: El mismo ícono que en el módulo de diseño de circuito impreso activaba la función VIA (isla), acá activa la función PAD. La diferencia entre "PAD" y "VIA" es que éste último no permite definir una conexión con la función SIGNAL.

SMD PAD: Idem anterior pero para componentes de montaje superficial

Cuando se accede a la edición del dispositivo, aparecen del lado izquierdo de la pantalla, además de algunas herramientas ya vistas, los siguientes íconos:

PREFIX: Sirve para definir el prefijo del nombre que le asignará el programa a este dispositivo cuando sea utilizado (por ejemplo "IC" para los integrados, "R" para las resistencias, etc.).

PACKAGE: Asigna un encapsulado a los símbolos que estén presentes en la pantalla (incorporados a ésta con "ADD") y que van a formar parte del dispositivo que deseamos generar. De esta manera se pueden incorporar más de un símbolo en un solo encapsulado (por ejemplo para integrados de compuertas, o arrays de transistores).

CONNECT: Permite asignarle a cada terminal de los símbolos un PAD del encapsulado.

Connect				×
Pin	Pad	Cgr	nection	
A. I0 A. I1 A.O B. I0 B. I1 B.O C. I0 C. I0 C. I1 C.O D. I0 D. I1 D.O P.GND F VCC	× 1 23 45 67 89 10 111 122 13	*		×
<u> </u>	2	2		<u>e</u>
	⊑onnect		isconnect Io	ggle view
		OK.	Cancel	Help

Contenido de las librerías

Librería	Pack	Dev	Contenido
19тысн	20	23	Furocards with VG connectors
40XX	3	73	CMOS 40xx-Series CMOS Logic,
40XXSMD	3	72	Same as above, but with SMD packages
41XX	1	7	CMOS 41xx-Series CMOS Logic,
41XXSMD	1	7	Same as above, but with SMD packages
45XX	4	59	CMOS 45xx-Series CMOS Logic,
45XXSMD	4	59	Same as above, but with SMD packages

74XX	11	342	TTL 74xx-Series TTL Logic,
74XXSMD	8	342	Same as above, but with SMD packages
751XX	3	11	TTL 75xx-Series TTL Logic,
751XXSMD	3	11	Same as above, but with SMD packages
ACL	8	72	Texas Inst. ACL Logic,
BATTERY	38	51	Lithium batteries, NC accumulators
BURR	53	318	Burr-Brown components
BUSBAR	18	18	Schroff bus bars
BUZZER	33	33	Buzzers, SMD
CAP	56	33	Capacitors
CAP-FE	25	24	Interference suppression capacitors
CAP-TANT	38	38	Tantal capacitors
CAP-WI	50	49	Capacitors from WIMA
CON-DIL	10	20	DIL connectors for ribbon cables
CON-LSTA	46	47	Pinhead connectors, female
CON-LSTB	39	40	Pinhead connectors, male
CON-ML	21	36	MI, connectors
CON-MSF	16	16	MSE connectors grid 2 5mm
CON-MT	40	38	MT connectors from AMP
CON-MT6	12	12	MTE crimp connectors from AMP
CON_RIB	15	15	Pibbon cables 2 8 / 4 8 / 6 3mm
CON_VC	21	35	VC connectors from HAPTINC
CONNETMM	2 I Q	30	CIMM connectors from AMD
CONDUTOR	20	50	Quick connectors from MD
CONQUICK	50 6	00	DG DG genuerterg
DC-DC	10	1 /	De-De converters
DEMO	10 20	14	Dello Ilpiary
DIL	3 <u>4</u> 22	0	DIL packages, Octagon 65 MII/drill 52 MII
DIL-E	32	0	DIL packages, YLongUCt
DILSWISCH	120	83	Did switches, encoder switches
DIODE	138	153	Diodes
DISCRETE	44	66	Discrete components (R,C)
DISP-HP	26	42	Display components from HP
DISP-LCD	9	9	LCDS FROM DATA MODUL
DRAM	2	10	DRAMS from Motorola
ECL	3	54	ECL components from Texas Instr. and Motorola
EXAR	3	108	Exar components
F.E.L.	25	52	FETS
FIB-HP	5	12	Fiber optic components, HP
FIB-SI	3	4	Fiber optic components, Siemens
F,TE,O	7	15	FIFO components
FRAMES	0	10	Drawing frames for schematics
FUJITSU	25	71	Fujitsu
FUSE	21	21	Fuses
HARRIS	11	43	Microprocessor products from Harris
HEATSINK	30	30	Heatsinks
HIRSCHM	22	22	Hirschmann diodes; LS, Scart connectors etc.
HOLES	37	7	Assembly holes
IC	50	0	DIL packages, Octagon 55 Mil
IDTCMOS	51	300	IDT products
IND-A	69	69	Inductors, Trafo ETD29
IND-B	39	15	Ferrite cores, Siemens
INTEL	15	72	Microprocessor products from Intel
INTELPLD	5	7	PLDs from Intel
JUMPER	19	18	Bridges for single layer boards, SMD sold.
bridges			
JUMPS	21	25	Jumpers and jumper connectors
KEY	30	29	Keys from RAFI and ITT

KEYOMRON	9	9	OMRON keys
LED	27	27	LEDs
LINEAR	20	213	Analog components
м68000	11	18	68000 family components
MARKS	18	0	Crop marks, reference marks
MAXTM	23	339	MAXIM components
MEMHITCH	13	51	Hitachi memory components
MEMNEC	10	29	NFC memory components
MEMODV	9	50	Conoria momory componenta
	ע ר	55	Meterola migroprogoggor producta
MOTOROLA	7	51 100	NDN there is the set
NPN	27	100	NPN transistors
OPTO-TRA	12	12	Optotransistors from Siemens
OPTOCPL	9	71	Opto couplers
PAL	3	45	PALs, Monolithic Memories
PHO500	5	8	PHOENIX clamp connectors
PHO508A	28	20	PHOENIX clamp connectors
PHO508B	11	11	PHOENIX clamp connectors
PHO508C	9	7	PHOENIX clamp connectors
PHO508D	26	21	PHOENIX clamp connectors
PHO508E	46	40	PHOENIX clamp connectors
PIC	13	154	Microchip PIC controllers
PINH-H	11	18	Pinhead connectors with lever, horizontal
PINH-V	11	18	Pinhead connectors with lever, vertical
PINHEAD	85	47	Pinhead connectors
PLCCPACK	11	0	PLCC packages
DND	27	58	DND transistors
DOLCAD	56	56	Polarized capacitors
	10	11	PUTALIZED CAPACITOIS
PIC-NIC	10	11	PICS and NICS
PTR500	33	33	PTR clamp connectors
QUARTZ	25	27	Quartzes, generators, SMD
R	40	27	Resistors
R-DIL	2	8	Resistor networks, DIL
R-PWR	32	33	Power resistors
R-SIL	11	45	Resistor networks, SIL
RECTIF	33	33	Rectifier bridges
RELAIS	47	43	Relais
RIBCON	20	20	PC board connectors
RIBCON4	6	6	4-row pc board connectors
SIEMENS	28	45	Siemens components
SMD	26	0	SMD packages
SMD-IC	76	0	SMD packages
SMD-SPC	27	0	SMD packages
SOLPAD	16	16	Soldering pads
SPECTAL	74	26	Special devices, transformer, fuse, lamp, etc
SRAM	6	21	Static RAMs from Motorola
SILAN SILBD_A	30	64	Sub-D connectors 9 to 37 ping
	0	0 -	Sub D connectors, 5 to 37 pins
	0	0	Sub-D connectors, 50 prins
SUPPLYI	0	14	Supply symbols
SUPPLYZ	0	44	Supply symbols
SWITCH	22	20	Rotary switches, toggle switches
TESTPAD	12	12	Test areas, test pins
TRAFO-B	47	51	BLOCK transformers
TRAFO-E	25	25	ERA transformers
TRAFO-R	3	3	Ring core transformers
TRANS-SM	64	52	Small power transformers
TRANS-PW	53	39	Power Transformers
TRIAC	32	19	Thyristors, triacs

TRIMPOT	43	42	Trimmpots
ULN	2	24	ULN ICs
V-REG	36	23	Voltage regulators
VARIST	78	78	Siemens varistors
WAGO500	11	11	WAGO clamp connectors, grid 5.00mm
WAGO508	17	16	WAGO clamp connectors, grid 5.08mm
WIREPAD	19	15	Pads for connecting wires
WSIPSD	8	83	WSI components
ZILOG	2	7	Zilog components

Detalle de la librería "DISCRETE"

CAP	Ceramic capacitors
CAPNP	Capacitor No Polarity
CAPTRIM	Trim Capacitors
CAPUS	U.S. symbol version
DIODE	Diodes
ELC	Tantalum capacitors or Electrolytic
L	Inductor
POT	Potentionometers EURO
POTUS	Potentionometers U.S. symbol
POT-TRIM	Potentionometer for multiple turns, i.e. 20 turn POT
RESEU	Resistor EURO symbol
RESUS	Resistor U.S. symbol
RESVAR	Resistor variable
RN	Resistor networks
THERM	Thermistors
VARIST	Varistors
ZDIO	Zener diodes

La función XPAD.EXE

Este programa puede usarse para cambiar la forma y las dimensiones de las islas de los componentes (PADS) de una librería (*.lbr) o un diseño de plaqueta (*.brd).

Sintaxis:

XPAD options filename

Opciones:

-os old pad shape -od old pad diameter -or old drill diameter -ns new pad shape -nd new pad diameter -nr new drill diameter

Los parámetros "-o..." selecciona los "PADS" a ser modificados. Los parámetros "-n..." determina los nuevos valores de los "PADS" seleccionados.

Todos los valores pueden darse en pulgadas (x ej. 0.05in) o en milímetros (x ej. 0.8mm). Default: inch.