DAMISYS: An Overview

M.C.Ferndndez, O.Delgado, J.I.L6pez, M.A.Luna, J.F.Martinez, J.F.B.Pardo,
and J.M.Pena

Department of Computer Science, Universidad Politécnica de Madrid,
Boadilla del Monte, 28660 Madrid, Spain

cfbaizan@fi.upm.es, rsdm-group@nova.ls.fi.upm.es

Abstract. Since KDD first appeared the research has been mainly fo-
cused on the development of efficient algorithms to extract hidden knowl-
edge. As a result, a lot of systems have been implemented during the last
decade. A common feature of these systems is that they either implement
a specific algorithm or they are specific for a certain domain. As new al-
gorithms are designed, existing systems have to be adapted, which means
both redesigning and recompiling. Consequently, there is an urgent need
to design and implement systems in which adding new algorithms or en-
hancing existing ones does not require recompiling and/or redesigning
the whole system. In this paper we present the design and implemen-
tation of DAMISYS (DAta MIning SYStem). The innovative factor of
DAMISYS is that it is an engine of KDD algorithms which means that it
is able to run different algorithms that are loaded dynamicly during run-
time. Another important feature of the system is that it makes possible
to interact with any Data Warehouse, due to the connection subsytem
that has been added.

1 DAMISYS

The lack of easibily extendible systems integrated with Data Warehouses mo-
tivated out research in which the main goal was to design a system that had the
features of Extensibility, Code reusability, GUI independence, DBMS
independence, Data base integration and Optimization support.

In this context, the term extensibility means the capability to add, delete
and/or update the set of algorithms the system can execute. DAMISYS is a
system in which adding new algorithms does not involve either redesigning or
compilating the system.

Studying in detail data mining algorithms [4] it is straightforward to see that
they share some functions. Division of algorithms in basic operations makes it
possible to interchange operations among different algorithms. This allows us to
provide code reusability. Another goal DAMISYS achieves is GUI indepen-
dence. This means that functions like user query requests, administrative tasks
and system monitorization are controled by different applications using the same
communication protocol.

DBMS independence allows DAMISYS to use multiple data repository
architectures. rom now on the term data repository will be used to name the

Mukesh Mohaniaand A Min Tjoa (Eds.): DaWwaK’99, LNCS 1676, pp. 313-317, 1999
[Springer-Verlag Berlin Heidelberg 1999

314 M.C. Fernandez et al.

element that holds and manages (data storage, recovery, update and query) the
data we want to analyze.

Data repository services give DAMISYS the capability to use these systems
to store final/intermediate results permanently/temporally. There is also other
useful information, like different preprocessing results from the same original
data, that can be stored to reduce system response time and to rise system per-
formance. We have called this use of data repositories data base integration.
DAMISYS also implements a series of mechanisms to support future optimiza-
tion policies. Some of these mechanisms are: algorithm division in basic opera-
tions, intermediate result management, parallel algorithm execution, to name a
few. [2].

2 Architecture

DAMISYS architecture has two levels of division. The first level defines a number
of subsystems. Each of these subsystems is subdivided, in a second level, into
different modules. We call subsystem to each of the components of our design
that is executed in parallel with other subsystems and performs some general
system functions. Any of these subsystems could be run concurrently in multiple
processors in a parallel shared-memory computer.

DW Request
User

Validation
Module

User

k‘

Sent ence
Query
Parser

User Connection Subsystem

Internal

User
Representati on

Command

Query
Analyzer
Module

Interface
Communic.
Module

Execut i on
‘Algorithm P an

Adni ni stration Admin. DW Request
y’ Engine
oM
%\‘ Compiler
Module
Execution Plan Constructor

(b) Execution Plan Constructor Subsytem Algorithm
% Desciption

(. Query ‘

uer)
NG Query Comnecion
Repository, Manager

Working W Request mme:h Result %&sul(
Area Reception
Module

Data Warehouse Access Subsystem
.

I nf
Repr e

ter nal
sentat i on

DW Request

Execution Plan

(a) User Connection Subsystem
—
T am/ p—

Virtual
Machine
Dynamic
Loader

Engine Subsystem

() Engine Subsystem (d) Data Warehouse Access Subsystem

Fig. 1. User Connection Subsystem

On the other hand, modules achieve specific operations. The aim of this
group of specific operations is to perform the general functions provided by the
subsystem to others subsystems or to any external program. The differences
between subsystem and module concept is that the former must be executed

DAMISYS:; An Overview 315

in parallel with other subsystems and performs general features; the modules
are not necessary concurrent components and they deal with specific opera-
tions. Each of the modules belongs to a unique subsystem and provides specific
mechanisms to achieve final subsystem tasks. The architecture proposed divides
DAMISYS system in four different subsystems: User Connection Subsystem,
Ezecution Plan Constructor, Engine Subsystem, Data Warehouse Access
Subsystem As a new user query is received by the User Connection Subsystem
it is translated into an internal DAMISY'S format (Internal Representation).
The Ezecution Plan Constructor processes the query and defines how to solve
it by means of a structure called Ezecution Plan. Esecution Plans describe
which algorithms will be used to solve the query and the values of algorithm
parameters. The Engine Subsystem takes an Execution Plan and executes it.
The tasks described in an Ezecution Plan are divided into a series of specific
transformations and functions that are called Basic Operations. Finally, any
of the subsystems may require data from the Data Warehouse supporting the
system (in order to execute algorithms) This service is provided by the Data
Warehouse Access Subsystem that makes it possible to connect DAMISYS to
any Data Warehouse system.

2.1 User Connection Subsystem

It provides communication services to GUI external applications and it trans-
forms messages sent by these applications into an Internal Representation
This subsystem also provides user validation and role checking each time a user
connection is established. User interfaces do not need to be executed on the same
machine where the DAMISYS is running, as its communication interface is able
to provide remote request submission, as well as concurrent user interfaces con-
nection. User Comnection Subsystem has been divided into three modules (see
Figure 1(a)):

User Interface Communication Module controls the information exchanged
between DAMISYS and remote GUIs. It provides abstract interface functions
that hides protocol-dependent implementations. On the other hand, Query Par-
ser analyses and checks lexical and syntax sentence construction and translates
it into a DAMISYS format. Semantical checking is performed by another module.

2.2 Execution Plan Constructor

This subsystem creates Ezecution Plans from the Internal Representation
of user sentences using a high description of the algorithm. The Ezecution Plan
Constructor has been structured in three modules (see Figure 1(b)):

The service offered by this subsystem starts when an Internal Represen-
tation from User Connection Subsystem is submitted to Query Analyzer
Module: In case of an administration command, it is sent to the Administrati-
on Engine, otherwise it is compiled by the Algorithm Compiler Module that
uses a high level description of the appropriate algorithm, sets the values of the

316 M.C. Fernandez et al.

algorithm parameters, and finally, this module submits an Ezecution Plan to

the Engine Subsystem and requests its execution service!.

2.3 Engine Subsystem

This is the most important component of DAMISYS architecture because this
subsystem deals with the resolution of Ezecution Plans. This function is achieved
by translating them into a chain of transformations that are implemented in
components that are loaded dynamicly. These component executions are called
instances. This subsystem is composed by the following modules: Virtual Ma-
chine, Dynamic Loader and Working Area.

Once the Ezecution Plan is obtained, the engine performs a series of steps
in order to get a chain of Basic Operations ready to be started to run inside
Virtual Machine module the engine. Thus, in this module, Ezecution Plans
are read and interpreted, to obtain the group of Basic Operation which are
needed to execute the algorithm. All this process requires the next steps: Ezecu-
tion Plan interpretation; Construction of Basic Operations chain; Execution
of the chain; and Result returning. The Working Area contains the internal
data compoments and their manager as well as different system resources. In
order to be able to manage the amounts of data used and created into Engine
Subsystem some structures are required. These structures are called Inter-
nal Tables, and represent data base tables, which are read and written by the
Basic Operations chains. The Internal Tables are stored in the Working A-
rea. The main feature of Internal Tables, from the point of view of memory
usage, is the pages division. Dynamic Loader module offers instances of Basic
Operations of algorithms. The load of basic components of an algorithm is done
when system needs its execution. Loader module disposes of a Basic Components
Cache where it sets those components loaded at that moment into system.

2.4 Data Warehouse Access Subsystem

This module provides a common communication method between DAMISYS
and any Data Warehouse system. This subsystem is divided into four main mod-
ules: Query Submission Module, Query Result Receiver, Query Result
Repository and Connection Manager. Query Submission Module receives
the requests and processes them before sending commands to the Data Ware-
house system. Queries are temporally stored in the Query Result Repository
Query Submission Module runs without interruption and it does not wait for
query results. As a consequence, multiples queries could be solved in parallel.

When an answer is received from the Data Warehouse Query Result Re-
ception Module matchs this answer with the request stored in Query Result
Repository and submits the message to the requester subsystem.

! In order to apply a specific algorithm this module has to compile its high level
description. This algorithm description is defined using DAMISYS/ALG language.
DAMISYS/ALG grammar has a C++-like syntax with some simplifications. Detailed
syntax of this language is a broad topic to be completely described in this paper.

DAMISYS:; An Overview 317

Finally, Connection Manager provides a series of functionalities that allow
to the other modules to access the Data Warehouse services. This module im-
plements the abstract interface between DAMISYS system and the data source.
This function avoids direct interaction among the rest of the modules of this
subsystem and the specific protocol required for a particular Data Warehouse
architecture in a concrete configuration?.

3 Conclusions and Future Work

All the objectives proposed in the section 1 has been completely achieved.

Although optimization mechanisms are implemented, there are only some
naive optimization policies developed. Our research is now focused on provide
more complex and useful policies that may enhance DAMISYS system perfor-
mance. The addition of new policies does not require a new design of any of the
subsystems, because new policies only need subsystem mechanisms to perform
their action, and these mechanisms are already available.

TCP/IP protocol may be translated into CORBA communication. This change
could be performed to interconnect DAMISYS system with GUI applications and
Data Warehousing system, as well as, to distribute DAMISY'S subsystems among
different computers.

References

1. Fayyad, U.M.; Djorgovski, S.G.: Automating the Analysis and Cataloging of Sky
Surveys. Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press,
1.996: 471-493

2. Graefe, G.: Volcano, an Extensible and Parallel Dataflow Query Processing System.
IEEE Trans. on Knowledge and Data Eng., 1.994: 120-135

3. Holsheimer, M.; Kersten, M.L.: Architectural Support for Data Mining. Technical
Report, CWI, Number CS-R9429, 1.994

4. Menasalvas, E.: Integrating Relational Databases and KDD Process: Mathemati-
cal Modelization of the Data Mining Step of the Process. Phd Thesis, disserted
Politachnical University (UPM), Spain, 1.998

5. Matheus, C.J.; Piatesky-Shaphiro, G.: Selecting and Reporting What is Interesting:
The KEFIR Application to Heatlhcare Data. Advances in Knowledge discovery and
Data Mining, AAAI/MIT Press, 1.996: 399421

2 The basic protocol calls are implemented by specific Data Warehouse Drivers
(DWD).

	1 DAMISYS
	2 Architecture
	2.1 User Connection Subsystem.
	2.2 Execution Plan Constructor
	2.3 Engine Subsystem
	2.4 Data Warehouse Access Subsystem

	3 Conclusions and Future Work
	References

