
Parallel Data Mining Experimentation Using
Flexible Configurations

José M. Peña1�, F. Javier Crespo2, Ernestina Menasalvas1, and Victor Robles1

1 Universidad Politécnica de Madrid, Madrid, Spain
2 Universidad Carlos III de Madrid, Madrid, Spain

Abstract. When data mining first appeared, several disciplines related
to data analysis, like statistics or artificial intelligence were combined
toward a new topic: extracting significant patterns from data. The origi-
nal data sources were small datasets and, therefore, traditional machine
learning techniques were the most common tools for this tasks. As the
volume of data grows these traditional methods were reviewed and ex-
tended with the knowledge from experts working on the field of data
management and databases. Today problems are even bigger than be-
fore and, once again, a new discipline allows the researchers to scale up
to these data. This new discipline is distributed and parallel processing.
In order to use parallel processing techniques, specific factors about the
mining algorithms and the data should be considered. Nowadays, there
are several new parallel algorithms, that in most of the cases are exten-
sions of a traditional centralized algorithm. Many of these algorithms
have common core parts and only differ on distribution schema, paral-
lel coordination or load/task balancing methods. We call these groups
algorithm families. On this paper we introduce a methodology to imple-
ment algorithm families. This methodology is founded on the MOIRAE
distributed control architecture. In this work we will show how this ar-
chitecture allows researchers to design parallel processing components
that can change, dynamically, their behavior according to some control
policies.

1 Introduction

Distributed data mining (DDM) deals with retrieval, analysis and further usage
of data in a non-centralized scenario. The way this distribution is performed
depends on two different factors: (i) Whether the data are not stored in a single
site and the data sources are disperse and (ii) Whether data analysis process
requires high performance computation techniques (like parallel processing). If
any of these two factors is present traditional data mining has deep problems to
achieve the expected results. Collective data mining [4] deals with distributed
data source mining and parallel data mining tackles the second problem.
Modern data mining tools are complex systems in which extensiveness (new
� This research project is funded under the Universidad Politécnica de Madrid grant
program

J.J. Alpigini et al. (Eds.): RSCTC 2002, LNAI 2475, pp. 441–448, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

442 J.M. Peña et al.

algorithms) and performance (mining time) are key factors. If new problems
require these systems to be distributed, their complexity will also increase. The
new parallel algorithms are also more complex than the original version they
come from. Parameters like, network bandwidth, memory and processor usage
or data access schemas are considered when these algorithms are designed. Our
proposal presents a new method to design algorithms. Using this method, core
algorithm components are developed once, as efficient and compact elements, and
then they are combined and configured in many different ways. This method
not only allows the researchers to combine algorithm components in different
schemas, but also provides the mechanisms to change component behavior and
performance dynamically.
On this contribution we propose MOIRAE architecture as a tool to implement
flexible algorithms in a distributed computation environment.

2 Distributed Data Mining Systems and Algorithms

During the last two years, the first distributed and parallel data mining sys-
tems were developed. These systems can be divided into two different groups:
(i) Specific parallel/distributed algorithm implementations, like, JAM
[13], PADMA [5], BODHI [4] or Papyrus [2]. These systems implement only one
algorithm or a very restricted set of algorithms/techniques. The system archi-
tecture has been designed to deal with this specific technique and algorithm.
(ii) General purpose systems, for example Kensington [6], PaDDMAS [11] or
DMTools [1]. Provost [10] analyzed two main parallel and distributed schemas
(fine-grain and coarse-grain) and their application to distributed data mining
problems. Krishnaswamy defined cost models for distributed data mining [7].
Joshi et al. [3] provided an overview of different parallel algorithms for both
association and classification rules. Zaki also provides a very interesting analysis
in [14].

2.1 Flexible Optimization Environment

Much effort has been addressed on the development of efficient distributed al-
gorithms for data mining, nevertheless this is not the only way to outperform
existing data mining solutions. Although the specific distributed implementation
of a rule extraction algorithm plays an important role, distribution schema, task
scheduling and resource management are also key factors.
We propose the capability to plug-in and update control strategies and decisions
during the system run-time. As a consequence, we might have two or more sets of
system configurations and behavior decisions. If the system state changes or if a
different functional operation is expected the appropriate strategies is applied to
the system. Based on this idea a new architecture is proposed as the foundation
of the elementary parts of a system with these features. To develop this idea the
first stage is to present how the M/P paradigm is used.
Our contribution presents how MOIRAE generic architecture [8,9] can be used to

Parallel Data Mining Experimentation Using Flexible Configurations 443

implement algorithm families. These families are groups of algorithms based on
the same core process. Many algorithm variants share the same basic operations
and they only differ in terms of small features.

3 MOIRAE Architecture

MOIRAE architecture is a generic architecture that uses the Mechanism/Policy
(M/P) paradigm to design flexible systems. System tasks are divided into two
different levels:

❒ Operational level: Features provided by the system. This level contains all
the actions (operations) performed by the system as well as the functions
used to monitor its status and the environment.

❒ Control level: Decisions that rule the system. This second level defines the
control issues applicable to the operational level functions. These rules de-
scribe when and how the operations are performed.

This M/P paradigm is quite common under design phases of complex applica-
tions like operating systems (OS). MOIRAE architecture is one step ahead. This
architecture presents a run-time engine to manage control level decisions while
the system is running. This technique allows the user not only to change control
policies during execution time during the system design/implementation phases.
The option to configure complex systems without any re-design has two main
profits: (i) Research on new algorithms and techniques can easily test many dif-
ferent variations of the algorithm only defining new control policies, (ii) Complete
systems may be configured for specific installations and user requirements cus-
tomizing their control policies. As a drawback this control schema may include
additional overhead because of the separation of responsibilities into control and
operational elements. The effect of both benefits and drawbacks will be studied
in the next sections.

3.1 MOIRAE Components

The design of the MOIRAE architecture is founded on the concept of component,
as each of the software pieces of the distributed system. According to the division
of operational and control tasks, each component is also divided in two planes:

❒ Operational Plane: That provides all the functions required to
achieve the work performed by the component. The functions, their de-
sign/implementation and the exact elements included in the plane depend
on the task performed by the component. The responsibilities of this plane
heavily depend on the functions of the component.

❒ Control Plane: This plane interacts either with the control plane from
other components or with the operational part of their own component. The
control plane solves complex situations called conflicts, sending orders to the
operational plane. Inside of this component there exists Policy Engine, that

444 J.M. Peña et al.

manages the decisions taken by the control plane. When the control plane
is summoned the policy engine is activated. Inside of this element, there is a
Policy Database or p-DB. This database stores all the information applicable
to conflict solving and all possible control actions. The Policy Engine queries
p-DB to decide the control plans.

3.2 MOIRAE Architecture Model

The architecture model describes how multiple components are combined and
interconnected to deal with the tasks performed by any specific system. The net-
work of interconnected components is called interaction graph. This graph defines
the components and their relationships. For any system, there are two different
graphs: operational graph and control graph. The operational graph shows the
relations used by the operational planes of the components. This graph depends
on the task performed by the components and the services provided by the sys-
tem. MOIRAE does not define any specification on this graph. Control graphs
represent the control relationships among the components. This Model provides
a generic schema of this graph. Control interactions are based on a hierarchical
organization. This organization describes two types of components: (i) Control-
oriented components and (ii) Operational-oriented components. The first group
has few operational functions and the most important part of the component
is its control part. Operational-oriented components provide important opera-
tional functions and have very basic control features. The hierarchical structure
places operational-oriented components at the lower levels of the graph. These
components performs simple control tasks. Global control decisions and com-
plex configuration/optimization issues are managed in the upper levels by the
control-oriented components. Control and operational graphs are completely in-
dependent. A component can have relations with different components on the
control and on the operational plane.

3.3 MOIRAE Control Model

MOIRAE control model shows how control decisions are taken either locally or
as a contribution of different control planes. When the control plane is activated,
for example when a conflict is detected by the event sensor, the policy engine
evaluates the alternatives to solve the problem. As a result, the control plane
returns a sequence of actions to be performed to solve the conflict. For complex
problems the control plane would be unable to achieve an appropriate solution
by itself. Control Model specifies three different control actions that rule the
cooperative solution of complex problems:

❒ Control Propagation: When a control plane is unable to solve a problem
it submits the problem description (e.g.: the conflict) and any additional
information to the control plane immediately superior in the hierarchy.

❒ Control Delegation: After receiving a control propagation from a lower
element, the upper element may take three different alternatives:

Parallel Data Mining Experimentation Using Flexible Configurations 445

➀ If it is also unable to solve the problem it propagates up the conflict as
well.

➁ If it can solve the problem, it may reply to the original component with
the sequence of actions necessary to solve the problem. This original
component executes these actions.

➂ In the last situation it is also possible that the component, instead of
replying with the sequence of actions the component may provide the
p-DB information necessary to solve the problem in the lower compo-
nent. This information could be used also in any future situation. This
alternative is called Control Delegation.

❒ Control Revoke: This action is the opposite to the control delegation one.
Using this control action any upper component in the hierarchy may delete
information from the p-DB of any lower element. This action may be exe-
cuted anytime and not only as a response of a control propagation.

4 Association Rules: Distributed Generalized Calculation

Association rule extraction describes patterns present in OLTP databases. A
variant of this problem is what is called generalized associations. These associ-
ation patterns is related to a conceptual hierarchy. This hierarchy generalizes
the possible values of a transaction from less to more generic concepts in a tree
graph.
Shintani and Kitsuregawa [12] define different algorithms to extract generalized
associations from a transaction database using a cluster of workstations. The
basic steps in any association calculation are: (i) Candidate itemsets generation,
(ii) Counting and (iii) Large itemsets selection. For real world data many possi-
ble items may appear in the transaction base. This makes it impossible to handle
candidate itemsets in memory. Many distributed association strategies follow an
approach based on itemset space partitioning. The authors describe five different
association algorithms to deal with partitioned itemsets:

➀ H–HPGM (hash) (Hierarchical Hash Partitioned Generalized association
rule Mining).

➁ H–HPGM (stat) (H–HPGM with stats).
➂ H–HPGM–TGD (stat+) (H–HPGM with Tree Grain Duplication).
➃ H–HPGM–PGD (stat+) (H–HPGM with Path Grain Duplication).
➄ H–HPGM–FGD (stat+) (H–HPGM with Fine Grain Duplication).

Shintani and Kitsuregawa’s paper [12] has a complete description of these algo-
rithms and their comparative performance.

4.1 Algorithm Family Implementation

In our contribution we focus at how the five variants of the same algorithm
(and future versions) could be implemented in the component schema men-
tioned above. The M/P paradigm could be used at many different points of this

446 J.M. Peña et al.

problem, but itemset partitioning is the key problem of these algorithms. The
partitioning strategy is defined by the coordination node that gathers all the
itemsets at the end of each iteration. This node computes the most frequent
itemsets and then it distributes the next iteration candidates among the com-
putational nodes. The nodes also have the necessary information to locate the
appropriate node when a non-local itemset is counted.

❒ Data Partitioning : When candidate itemsets had to be distributed a control
decision should be taken. The control plane defines a partitioning schema
depending on which algorithm is selected.

❒ Itemset Counting : When the process component scans every transaction it
updates local itemset counters if they are present in the transaction. If an
itemset is not present a conflict event happened. This event is handled by the
control plane to select which component should be notified for this itemset.
The mechanism used to solve this conflict is previously unknown by the com-
ponent and when the first conflict arises a control propagation–delegation
is performed. At the beginning of each iteration this mapping information
is deleted (control revoke) because a different partitioning schema may be
selected.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 1 2 3 4 5

T
IM

E

ITERATION

H-HPGM (hash)

H-HPGM (stat)

H-HPGM (stat+)

(a) Programmed

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 1 2 3 4 5

T
IM

E

ITERATION

H-HPGM (hash)

H-HPGM (stat)

H-HPGM (stat+)

(b) Dynamic Policies

Fig. 1. Candidate distribution time

4.2 Experimental Results

The plots 1.a and 1.b show candidate distribution time spent by the coordina-
tion node. This measure represents only decision time, not the time necessary
for candidate sets re-transmission. In both cases, standard programmed solution
and dynamic policy solution kept a similar ratio. If the different algorithm im-
plementations (programmed vs. dynamic) are compared, different performance
rations can be observed. H–HPGM (hash) implementation (figure 2.a) is 240%
slower. In H–HPGM (stat) (figure 2.b) the performance difference is 107%.
And inH–HPGM (stat+) (figure 2.c) is only a 95% slower. This candidate dis-
tribution time is less representative, in terms of algorithm overall performance,

Parallel Data Mining Experimentation Using Flexible Configurations 447

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 1 2 3 4 5

T
IM

E

ITERATION

H-HPGM (hash) Programmed

H-HPGM (hash) Dynamic

(a) H-HPGM (hash)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 1 2 3 4 5

T
IM

E

ITERATION

H-HPGM (stat) Programmed

H-HPGM (stat) Dynamic

(b) H-HPGM (stat)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 1 2 3 4 5

T
IM

E

ITERATION

H-HPGM (stat+) Programmed

H-HPGM (stat+) Dynamic

(c) H-HPGM (stat+)

Fig. 2. Candidate distribution time: Programmed vs. Dynamic

than the time spent in each of the database scans. Once the candidate itemsets
are distributed, each node processes its partition of the database. For each of the
records read from the database the itemsets counters are updated. If the itemset
is stored locally it is updated immediately, otherwise the changes are queued in
a buffer. When this buffer is full it is broadcasted to all the nodes.

Table 1. Average control time: Programmed vs. Dynamic Reactive Policies

Phase Programmed Dynamic % Increment
First itemset location failure 12.11ms 198.12ms 1536.0033%
Next location failures 12.17ms 12.98ms 6.6557%

In this case, the control decisions performed by the operational plane have been
programmed as reactive control agents. These agents cannot handle complex
control decisions but their performance is much better. Table 1 presents the
average time of component operations1, comparing standard programmed im-
plementations and dynamic reactive policies.

5 Conclusions

We have presented an alternative for programming distributed data mining al-
gorithms. This alternative fills the lack of the flexibility of a traditional pro-
grammed solution allowing the user to manipulate algorithm behaviour in a
very configurable way. As a drawback, dynamic control represents an overhead
in terms of performance form the standard programmed implementations, but
this performance is minimal (∼ 6%) in record-by-record management and it
is only important between two iteration phases. If we take into account that
each iteration takes several minutes to be completed this performance loss is
insignificant if it is compared with the new flexibility opportunities offered.

1 first itemset location failure requires control propagation–delegation management

448 J.M. Peña et al.

References

1. Peter Christen, Ole M. Nielsen, and Markus Hegland. DMtools – open source
software for database mining. In PKDD’2001, 2001.

2. Robert L. Grossman, Stuart M. Bailey, Harinath Sivakumar, and Andrei L. Turin-
sky. Papyrus: A system for data mining over local and wide-area clusters and
super-clusters. In ACM, editor, SC’99. ACM Press and IEEE Computer Society
Press, 1999.

3. Mahesh V. Joshi, Eui-Hong (Sam) Han, George Karypis, and Vipin Kumar. CRPC
Parallel Computing Handbook, chapter Parallel Algorithms for Data Mining. Mor-
gan Kaufmann, 2000.

4. H. Kargupta, B. Park, D. Hershbereger, and E. Johnson. Advanced in Distributed
and Parallel Knowledge Discovery, chapter Collective Data Mining: A new per-
spective towards distributed data mining. AAAI Press / MIT Press, 2000.

5. Hillol Kargupta, Ilker Hamzaoglu, and Brian Stafford. Scalable, distributed data
mining – an agent architecture. page 211.

6. Kensingston, Enterprise Data Mining. Kensington: New generation enterprise data
mining. White Paper, 1999. Parallel Computing Research Centre, Department of
Computing Imperial College, (Contact Martin Khler).

7. S. Krishnaswamy, S. W. Loke, and A. Zaslavsky. Cost models for distributed data
mining. Technical Report 2000/59, School of Computer Science and Software En-
gineering, Monash University, Australia 3168, February 2000.

8. José M. Peña. Distributed Control Architecture for Data Mining Systems. PhD
thesis, DATSI, FI, Universidad Politécnica de Madrid, Spain, June 2001. Spanish
title: “Arquitectura Distribuida de Control para Sistemas con Capacidades de Data
Mining”.

9. José M. Peña and Ernestina Menasalvas. Towards flexibility in a distributed data
mining framework. In Proceedings of ACM-SIGMOD/PODS 2001, pages 58–61,
2001.

10. Foster Provost. Advances in Distributed and Parallel Knowledge Discovery, chapter
Distributed Data Mining: Scaling Up and Beyond, pages 3–28. AAAI Press/MIT
Press, 2000.

11. O.F. Rana, D.W. Walker, M. Li, S. Lynden, and M. Ward. PaDDMAS: Parallel
and distributed data mining application suite. In Proceedings of the Fourteenth
International Parallel and Distributed Processing Symposium, 2000.

12. T. Shintani and M. Kitsuregawa. Parallel algorithms for mining association rule
mining on large scale PC cluster. In Mohammed J. Zaki and Ching-Tien Ho, edi-
tors, Workshop on Large-Scale Parallel KDD Systems, San Diego, CA, USA, Au-
gust 1999. ACM. in conjunction with ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD99).

13. S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan. Cost-based modeling for
fraud and instrusion detection: Results from the JAM project. In DARPA Infor-
mation Survivability Conference and Exposition, pages 130–144. IEEE Computer
Press, 2000.

14. M. Zaki. Large-Scale Parallel Data Mining, volume 1759 of Springer Lecture Note
in Artificial Intelligence, chapter Parallel and Distributed Data Mining: An Intro-
duction. Springer Verlag, 1999.

	Introduction
	Distributed Data Mining Systems and Algorithms
	Flexible Optimization Environment

	MOIRAE Architecture
	MOIRAE Components
	MOIRAE Architecture Model
	MOIRAE Control Model

	Association Rules: Distributed Generalized Calculation
	Algorithm Family Implementation
	Experimental Results

	Conclusions

