
MAPFS-Grid: A Flexible Architecture
for Data-Intensive Grid Applications

Marı́a S. Pérez1, Jesús Carretero2, Félix Garcı́a2, José M. Peña1, and Vı́ctor Robles1

1 DATSI, FI, Universidad Politécnica de Madrid, Spain
2 Departamento de Informática, Universidad Carlos III de Madrid, Spain

Abstract. Grid computing constitutes one of the most important computing para-
digms appeared in the last decade. Data grids are grid system, whose main concern
is the efficient and reliable management of data. These systems have had a growing
interest due to the increasing number of applications using a huge amount of data,
known as data-intensive applications. They present problems related to both grid
systems and I/O systems. This paper describes MAPFS-Grid, a flexible and high-
performance platform for data grid applications.

1 Introduction

I/O system constitutes a bottleneck in most of the current computing systems, due to
its poor performance. The usage of parallel file systems is one of the most widely used
alternative for avoiding this problem, traditionally known as I/O crisis.

Because of the improvements in hardware and, moreover, the decreasing prices of
computer components, clusters have become an appropriate alternative in parallel and
distributed computing. Nevertheless, the high demand of both computation and storage,
needed by a great number of applications, which manage a huge amount of data, requires
the usage of new technologies, such as grid computing.

Grid computing becomes one of the most important computing paradigms appeared
in the last decade. This kind of computing allows applications to use low-load periods of
all the nodes connected to a high-speed network. Unlike a conventional cluster, a high-
performance grid infrastructure involves a heterogenous set of computing nodes, situated
in different locations, and using different structures and policies. Grid technology allows
hard-computing problems demanding huge storage facilities to be solved in an efficient
way. In fact, one of the major goals of grid computing is to provide an efficient access
to data, being data-intensive grid applications (or data grids, in short) one of the most
relevant grid architectures [6]. Data-intensive applications usually make use of data
management systems, by means of data mining and data warehousing techniques or
other information management algorithms, which require efficient information retrieval
capacities and a global and broad storage space. A data grid can fulfill the needs of these
environments.

This paper presents MAPFS-Grid, a multiagent architecture, based on MAPFS [12],
whose main goal is the deployment of MAPFS capabilities in a grid environment.

The outline of this paper is as follows. Section 2 describes the role of I/O access in grid
computing. Section 3 presents MAPFS-Grid as a flexible infrastructure for data-intensive

F. Fernández Rivera et al. (Eds.): Across Grids 2003, LNCS 2970, pp. 111–118, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



112 M.S. Pérez et al.

grid applications. Section 4 describes MAPFS-Grid architecture. Section 5 describes
how MAPFS-Grid can interact with other data grid infrastructures. Section 6 shows the
results obtained for the evaluation of applications using MAPFS in a grid environment.
Section 7 shows the related work. Finally, section 8 summarizes our conclusions and
suggests further future work.

2 The Role of I/O Access in Grid Computing

Nowadays, there are a huge number of applications creating and operating on large
amounts of data, e.g. data mining systems extracting knowledge from large volumes of
data. Existing data-intensive applications have been used in several domains, such as
physics, climate modeling, biology or visualization.

As we mentioned previously, data-intensive grid applications try to tackle the prob-
lems originated by the needs of a performance-full I/O system in a grid infrastructure. In
these architectures, data sources are distributed among different nodes. Also, a typical
data grid requires access to terabyte or higher sizes datasets. For example, high-energy
physics may generate terabytes of data in a single experiment. Accesses to data repos-
itories must be made in an efficient way, in order to increase the performance of the
applications used in the grid. Furthermore, data-intensive grid applications have several
functional requirements and access patterns.

Currently, there are different systems that offer services to access resources in a data
grid. Accessing heterogeneous resources with interfaces and different functionalities is
solved, in most of the cases, by means of new services that offer a uniform access to
different types of systems. Examples of this kind of systems are Storage Resource Broker
(SRB) [1], DataCutter [3], DPSS [16], and BLUNT [9]. All these systems use replication
to improve the I/O performance and reliability.

In any case, the I/O system must be flexible enough to match data-intensive appli-
cations demands. The usage of hints, caching and prefetching policies or different data
distribution configurations can reduce latency and increase I/O operations performance.

3 MAPFS-Grid Features

As we mentioned previously, a key feature of data grids infrastructures is the flexibility.
MAPFS is a multiagent architecture, which provides this property mainly by means of
three approaches:

1. System topology configuration: Ability to change system topology, setting the I/O
nodes and their relationships. This feature is achieved by means of storage groups.

2. Access pattern specification: Although MAPFS is a general purpose I/O system,
it can be configured in order to adapt to different I/O access patterns. The main
configuration parameters of the MAPFS system are: (i) I/O caching and prefetching,
approaches that increases the I/O operations efficiency, because of the optimal usage
of disk caches, and (ii) usage of hints on future access patterns. MAPFS offers an
independent API, different from the I/O operations API, which allows applications
to configure the access patterns, which are translated to hints by the I/O system. All
these features can be configured through the usage of control user operations.



MAPFS-Grid: A Flexible Architecture for Data-Intensive Grid Applications 113

3. There are different reasons to allow some functionalities (such as caching or prefetch-
ing) to run in parallel on different nodes and even in data servers. Moving executions
to data servers may reduce network latency and traffic. The agent technology is a
suitable framework for integrating these functions in the storage system, because of
its adaptability to different domains and the agents autonomy.

MAPFS-Grid takes advantage of all these features with the aim of building a flexible
and powerful infrastructure for data grids.

3.1 MAPFS-Grid Storage Groups

A storage group is defined in MAPFS as a set of servers clustered as groups. These
groups take the role of data repositories. These groups can be built applying several
policies, trying to optimize accesses to storage groups. Some significant policies are:

– Grouping by server proximity: Storage groups are built based on the physical distri-
bution of data servers. Storage groups are composed of servers in close proximity to
each other. This policy optimizes the queries addressed to a storage group because
of the similar latency of messages sent to servers.

– Grouping by server similarity: Storage groups are composed of servers with similar
processing capacity. This policy classifies storage groups in different categories,
depending on their computational and I/O power.

The system topology can be changed dynamically. In this case, data must be recon-
structed, degrading the performance of the I/O system. In order to avoid data reconstruc-
tion, MAPFS defines two types of storage groups, main storage groups and secondary
groups, which form a lattice structure between them [14]. This approach postpones data
reconstruction until the system schedules a defragmentation operation, which is used
for deleting secondary groups and simplifying the storage system description.

3.2 Applications Access Pattern Specifications in MAPFS-Grid

Hints are structures known and built by the I/O system, which are used for improving
the read and write operations performance. MAPFS uses these hints to access data. For
example, storage systems using hints may provide greater performance since they use
this information to decrease cache faults and to prefetch data most probably used in next
executions. In other words, the more information it has been used, the less uncertainty
in the future access guesses and, therefore, the better prefetching and caching results.
In MAPFS, hints can be obtained in two ways: (i) given by the user, that is, the user
application provides the necessary specifications to I/O system, and (ii) built by the
multiagent subsystem. If this option is selected, the multiagent system must analyze the
access pattern of the applications in order to build hints for improving data access. This
feature can be achieved using statistical methods or historical logs.

If hints are provided by the user application, it is necessary for the system to provide
syntactic rules for setting the system parameters, which configure the I/O system. On
the other hand, if the multiagent subsystem creates the hints, it is also necessary to store



114 M.S. Pérez et al.

them in a predefined way. In any case, lexical and syntactic rules must be introduced in
the system.

The system is configured through several operations, which are independent of the
I/O operations, although these last ones use the former operations. The configuration
operations are divided into: (i) Hints Setting Operations, operations for establishing the
hints of the system (they can set and get the values of the different fields of the hints),
and (ii) Control User Operations, higher level operations that can be used directly by the
user applications to manage system performance.

We refer the reader to [13] for a more detailed description of this interface.

3.3 MAPFS-Grid Agents Hierarchy

MAPFS uses an agent hierarchy, which solves the information retrieval problem in a
transparent and efficient way. The taxonomy of agents used in MAPFS is composed of:

– Extractor agents: They are responsible for information retrieval, invoking parallel
I/O operations.

– Distributor agents: They distribute the workload to the extractor agents. These agents
are placed at the higher level of the agents hierarchy.

– Caching and prefetching agents: They are associated with one or more extractor
agents, caching or prefetching their data.

– Hints agents: They must study applications access patterns to build hints for im-
proving data access.

4 MAPFS-Grid Architecture

MAPFS file system uses as underlying hardware infrastructure a cluster of workstations
[12]. Clusters are, in some sense, the predecessors of the grid technology.

Supercomputers have been replaced by clusters of workstations in a huge number
of research projects. A relevant sample of this fact is the evolution of particle physics
computation in CERN (European Organisation for Nuclear Research). Experiments over
its previous LEP accelerator were made in IBM and CRAY supercomputers. In the early
1990’s, the experimentation environment was replaced by tens of RISC processors. In
the late 1900’s, clusters of hundreds of Linux PCs were used in the accelerator. The
new LHC accelerator will be used by 2007. This accelerator demands new solutions,
since it has to manage several petabytes of data. 200,000 interconnected nodes are
said to be necessary for the LHC accelerator, which arises both financial and technical
difficulties. The solution involves resource sharing of a huge number of geographical
distributed institutions, by means of grid computing. Analogously, MAPFS has modified
its architecture aiming at the achievement of the grid computing advantages.

MAPFS is based on a client-server architecture using general purpose servers, pro-
viding all the MAPFS management tasks as specialized clients. In the first prototype,
we use NFS servers. NFS has been ported to different operating systems and machine
platforms and is widely used by many servers worldwide. Therefore, it is very easy to
add new data repositories to the data grid infrastructure. The only requirement of these



MAPFS-Grid: A Flexible Architecture for Data-Intensive Grid Applications 115

data servers is to use NFS and export a directory tree to data grid users. Data is distributed
through the servers belonging to a storage group, using a stripe unit.

On the client-side, it is necessary to install MAPFS client, which provides a parallel
I/O interface to the servers. This module is implemented with MPI (Message Passing In-
terface)[10], the standard message passing interface, widely used in parallel computing.
MPI allows different processes to run in parallel over MAPFS. Nevertheless, this tech-
nique is not suitable for the dynamic interconnection of heterogeneous nodes, because
MPI is a static solution, which must know a priori the IP address of all the nodes of the
topology. Thus, MAPFS-Grid requires grid technology, interoperable with MPI, because
MAPFS is based on this interface. In order to fulfill these requirements, MAPFS-Grid
uses MPICH-G2 [4], such as described in next section.

5 Interoperability with Other Grid Architectures

One of the major goals of a data grid infrastructure is to provide access to a huge
number of heterogeneous data sources. In this sense, it is important that MAPFS-Grid
can interoperate with other grid architectures, giving access to their data repositories.
Because MAPFS is implemented with MPI, its integration with other grid infrastructures
is relatively simple, using MPICH-G2, a grid-enabled implementation of the MPI, which
makes possible running MPI programs across multiple computers at different sites.

Applications can use MAPFS-Grid together with other grid architectures. In this
case, it is possible to extend storage groups with other nodes accessible through the
Globus services. Concretely, the Global Access Secondary Storage (GASS) service [2]
is used in order to stage programs to remote machines and to support efficient communi-
cation in dynamic grid environments. The integration between MAPFS and GASS is not
redundant, because GASS does not provide the full functionality of a parallel file system.
MAPFS provides a rich parallel interface, which can be used in wide area computing
with the aid of GASS and other Globus services.

6 MAPFS-Grid Evaluation

In our implementation, we need to evaluate the performance of: (i) storage groups,
(ii) control user operations, and (iii) multiagent subsystem.

In order to measure the performance of the first aspect, experiments were run in two
different storage groups, which use the server similarity grouping policy, because of the
technical differences of both groups. The first storage group (G1) is composed of four
nodes Athlon 650MHz, with 256 MB of RAM memory, connected by a Gigabit network.
The second storage group (G2) has six nodes Intel Xeon 2.40GHz, with 1GB of RAM
memory with a Gigabit network. The storage group G2 provides better performance.
However, the storage group G1 offers bigger storage capacity. These two storage groups
constitutes a possible topology of our data grid. Our experiment consists in a process
per node running a multiplication of two matrices, where the matrices are stored in the
grid, using MAPFS-Grid as underlying platform. The resultant matrix is also stored in
a distributed fashion. A prefetching multiagent subsystem is used, which is responsible
for prefetching rows and columns of the matrices. In this case, hints provided by the



116 M.S. Pérez et al.

applications are the indexes of the matrix row and the matrix column of the element
calculated in every iteration. It is possible to prefetch data to be used later in the execu-
tions, using this information. The multiagent subsystem obtains optimum values for the
prefetching phase. In this way, we evaluate the usage of control user operations and the
performance of the multiagent subsystem.

This experiment was compared to another one, which consists in multiplying the
same matrices stored in the local disk through the usage of a traditional I/O system. The
size of the matrices is 100 MB.

Figure 1 shows the speedup of the MAPFS solution for the group G1 versus local
solution, varying the access size used in the I/O operations. As can be seen, the speedup
is very close to the maximum speedup. Figure 2 represents the execution time of the
groups G1 y G2 for the matrix multiplication. As we previously mentioned, the storage
group G2 provides better results, although the storage group G1 provides higher storage
capacity. The usage of different policies in MAPFS-Grid allows applications to take
advantage of the flexibility of this infrastructure, depending on their current needs.

3

3.5

4

4.5

1K 2K 4K 8K

S
pe

ed
up

Access size (bytes)

MAPFS vs Local

Fig. 1. Speedup of the MAPFS-Grid solution (group G1) versus Local solution.

400

1400

2400

3400

1K 2K 4K 8K

T
im

e 
(m

in
s)

Access size (bytes)

MAPFS Time G1
MAPFS Time G2

Fig. 2. Comparison between different storage groups.



MAPFS-Grid: A Flexible Architecture for Data-Intensive Grid Applications 117

7 Related Work

Grid technology provides a framework in which heterogeneous and distributed com-
puting resources can be shared among several organizations and institutions, through
high-speed networks, with the aim of solving high-cost and data-intensive problems.
Foster et al. [5] compares grid technology to electrical power grid, in the sense that a
user must be able to use computational resources in the same way than electrical power,
that is, everywhere, with a reliable service, and having an acceptable cost.

Distributed scientific applications running in a high-speed network of 17 USA re-
search centers were shown in SuperComputing’95 congress. This demonstration consti-
tuted the starting poing of several research projects related to the distributed resource-
sharing. One of the first grid projects was the NASA Information Power Grid (IPG),
which allows NASA resources to be integrated and managed.

Grid owns a de facto standard, knows as Globus. Globus [7] provides a software
infrastructure, which includes basic protocols and services for grid applications.

Additionally, several researchers and commercial companies are investigating topics
related to data-intensive grids and I/O systems used in computational grids. The problems
tackled by these research lines are similar to those discussed in this paper. Armada
[11] is a framework that allows grid applications to access datasets distributed across
a computational grid. Applications combine modules called ships into graphs called
armadas.

The Remote I/O (RIO) library [8] is a tool for accessing to files located on remote
file systems. RIO follows the MPI-IO interface. MAPFS also provides this feature.

Kangaroo [15] belongs to the Condor grid project and it is a reliable data move-
ment system that keep applications running. Kangaroo service continues to perform I/O
operations even if the process that initiated these requests fails.

Legion is an object-oriented infrastructure used in distributed computing. LegionFS
[17] provides UNIX-style I/O operations, using Legion services such as naming or
security. Unlike LegionFS, MAPFS provides a rich parallel I/O interface.

MAPFS-Grid allows applications to access remote data in an efficient way, making
possible access to storage groups belonging to other data grids, by means of the usage
of MPICH-G. Furthermore, data access patterns configuration provides flexibility to
applications using MAPFS-Grid. This last characteristic is different from the rest of the
systems previously described.

8 Conclusions and Future Work

In this work we have presented MAPFS-Grid as an extension of the MAPFS I/O ar-
chitecture for data-intensive grid applications. MAPFS-Grid constitutes a new data grid
infrastructure, which provides flexibility and dynamic reconfiguration to applications
mainly by means of three approaches: (i) storage groups, (ii) access patterns specifi-
cations, and (ii) a multiagent subsystem responsible of running specific functionalities.
These features have been evaluated through the implementation of a scientific applica-
tion, achieving a speedup very close to the maximum one.

As future work, it would be interesting to evaluate the performance of the system
with other topologies and other kind of applications.



118 M.S. Pérez et al.

References

1. C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC storage resource broker. In Pro-
ceedings of CASCON’98, Toronto, Canada, 1998.

2. Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven Tuecke. GASS: A data
movement and access service for wide area computing systems. In Proceedings of the Sixth
Workshop on Input/Output in Parallel and Distributed Systems. ACM Press, 1999.

3. M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz. DataCutter: Middleware for
filtering very large scientific datasets of archival storage systems. In Proceedings of the 2000
Mass Storage Systems Conference. IEEE Computer Society Press, Mar 2000.

4. I. Foster and N. Karonis. A grid-enabled MPI: Message passing in heterogeneous distributed
computing systems. In Proceedings of SC’98. ACM Press, 1998.

5. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

6. Ian Foster. Computational Grids. 1999. Chapter belonging to [5].
7. Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. The In-

ternational Journal of Supercomputer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

8. Ian T. Foster, David Kohr, Rakesh Krishnaiyer, and Jace Mogill. Remote I/O fast access to
distant storage. In Proceedings of the IOPADS 1997, pages 14–25, 1997.

9. M.R. Martinez and N. Roussopoulos. MOCHA:A self-extensible database middleware system
for distributed data sources. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Dallas, TX, May 2000.

10. The Message Passing Interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi
11. Ron Oldfield and David Kotz. Armada: a parallel I/O framework for computational grids.

Future Generation Computer Systems, 18(4):501–523, 2002.
12. Marı́a S. Pérez, Jesús Carretero, Félix Garcı́a, José M. Peña, andVı́ctor Robles.A flexible mul-

tiagent parallel file system for clusters. International Workshop on Parallel I/O Management
Techniques (PIOMT’2003) (Lecture Notes in Computer Science), June 2003.

13. Marı́a S. Pérez, Ramón A. Pons, Félix Garcı́a, Jesús Carretero, and Vı́ctor Robles. A pro-
posal for I/O access profiles in parallel data mining algorithms. In 3rd ACIS International
Conference on SNPD, June 2002.

14. Marı́a S. Pérez, Alberto Sánchez, José M. Peña, Vı́ctor Robles, Jesús Carretero, and Félix
Garcı́a. Storage groups: A new approach for providing dynamic reconfiguration in databased
clusters. In 2004 IASTED Conference on PDCN (To appear), February 2004.

15. Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny. The Kangaroo approach to data
movement on the grid. In Proceedings of the Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC10), August 2001.

16. B. Tierney, J. Lee, W. Johnston, B. Crowley, and M. Holding. A network-aware distributed
storage cache for data-intensive environments. In Proceedings of the Eighth IEEE Interna-
tional Symposium on High Performance Distributed Computing, pages 185–193, Redondo
Beach, CA, Aug 1999.

17. Brian S. White, Michael Walker, Marty Humphrey, and Andrew S. Grimshaw. LegionFS: A
secure and scalable file system supporting cross-domain high-performance applications. In
Proceedings of the IEEE/ACM Supercomputing Conference (SC2001), November 2001.


	1 Introduction
	2 The Role of I/O Access in Grid Computing
	3 MAPFS-Grid Features
	3.1 MAPFS-Grid Storage Groups
	3.2 Applications Access Pattern Specifications in MAPFS-Grid
	3.3 MAPFS-Grid Agents Hierarchy

	4 MAPFS-Grid Architecture
	5 Interoperability with Other Grid Architectures
	6 MAPFS-Grid Evaluation
	7 Related Work
	8 Conclusions and Future Work
	References

