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1 Department of Computer Architecture and Technology, Technical University of Madrid,
Madrid, Spain, {vrobles,jmpena,mperez,emenasalvas}@fi.upm.es,

vherves@datsi.fi.upm.es
2 Department of Computer Science and Artificial Intelligence, University of the Basque

Country, San Sebastián, Spain, ccplamup@si.ehu.es

Abstract. Recent work in supervised learning has shown that a surprisingly
simple Bayesian classifier called naı̈ve Bayes is competitive with state of the
art classifiers. This simple approach stands from assumptions of conditional
independence among features given the class. Improvements in accuracy of naı̈ve
Bayes has been demonstrated by a number of approaches, collectively named
semi naı̈ve Bayes classifiers. Semi naı̈ve Bayes classifiers are usually based on
the search of specific values or structures. The learning process of these classifiers
is usually based on greedy search algorithms. In this paper we propose to learn
these semi naı̈ve Bayes structures through estimation of distribution algorithms,
which are non-deterministic, stochastic heuristic search strategies. Experimental
tests have been done with 21 data sets from the UCI repository.

Keywords. Naı̈ve Bayes, semi Naı̈ve Bayes, heuristic search, estimation of dis-
tributions algorithms.

1 Introduction

The naı̈ve Bayes classifier [5,12] is a probabilistic method for classification. It can be
used to determine the probability that an example belongs to a class given the values of the
predictor variables. The naı̈ve Bayes classifier guarantees optimal induction given a set
of explicit assumptions [3]. However, it is known that some of these assumptions are not
compliant in many induction scenarios, for instance, the condition of variable indepen-
dence respecting to the class variable. Improvements of accuracy has been demonstrated
by a number of approaches, collectively named semi naı̈ve Bayes classifiers, which try
to adjust the naı̈ve Bayes to deal with a-priori unattended assumptions.

Previous semi naı̈ve Bayes classifiers can be divided into three groups, depending on
different pre/post-processing issues: (i) to manipulate the variables to be employed prior
to application of naı̈ve Bayes induction [16,18,23], (ii) to select subsets of the training
examples prior to the application of naı̈ve Bayes classification [14,17] and (iii) to correct
the probabilities produced by the standard naı̈ve Bayes [8,10,26].

The learning process of the semi naı̈ve Bayes classifiers is usually based on greedy
search algorithms. In this paper we propose to learn these semi naı̈ve Bayes structures
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through estimation of distribution algorithms, which are non-deterministic, stochastic
heuristic search strategies.

All the algorithms evaluated in this paper are shown on table 1. In the left column
we have the greedy based algorithms, which are: Iterative Bayes [10], Pazzani [23]
and Adjusted Probability naı̈ve Bayes (APNBC) [26]. In the right column we have
their corresponding heuristic based algorithms, which are: Interval Estimation Naı̈ve
Bayes IENB [24], Pazzani-EDA and APNBC-EDA. These last two algorithms have
been developed as part of the contribution of this paper.

Table 1. Evaluated algorithms

Greedy algorithm Corresponding heuristic algorithm
Iterative Bayes [10] Interval Estimation Naïve Bayes [24]
Pazzani [23] Pazzani-EDA
APNBC [26] APNBC-EDA

The outline of this paper is as follows: Section 2 presents the naı̈ve Bayes classifier.
Section 3 is a brief introduction to estimation of distribution algorithms. Section 4
presents the algorithms evaluated in this paper. Section 5 illustrates the experimental
results obtained with the UCI datasets. To conclude, section 6 gives the conclusions and
discusses further future work.

2 Naı̈ve Bayes

The naı̈ve Bayes classifier [5,12] is a probabilistic method for classification. It performs
an approximate calculation of the probability that an example belongs to a class given the
values of predictor variables. The simple naı̈ve Bayes classifier is one of the most suc-
cessful algorithms on many classification domains. In spite of its simplicity, it is shown
to be competitive with other more complex approaches in several specific domains.

This classifier learns from training data the conditional probability of each variable
Xk given the class label c. Classification is then done by applying Bayes rule to compute
the probability of C given the particular instance of X1, . . . , Xn,

P (C = c|X1 = x1, . . . , Xn = xn)

Naı̈ve Bayes is based on the assumption that variables are conditionally independent
given the class. Therefore the posterior probability of the class variable is formulated as
follows,

P (C = c|X1 = x1, . . . , Xn = xn) ∝ P (C = c)
n∏

k=1

P (Xk = xk|C = c) (1)

This equation is highly appropriate for learning from data, since the probabilities
pi = P (C = ci) and pi

k,r = P (Xk = xr
k|C = ci) may be estimated from training data.

The result of the classification is the class with highest posterior probability.
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3 Estimation of Distributions Algorithms

3.1 Introduction

EDAs [22,20] are non-deterministic, stochastic heuristic search strategies that form part
of the evolutionary computation approaches, where number of solutions or individuals
are created every generation, evolving once and again until a satisfactory solution is
achieved. In brief, the characteristic that differentiates most EDAs from other evolution-
ary search strategies such as GAs is that the evolution from a generation to the next one is
done by estimating the probability distribution of the fittest individuals, and afterwards
by sampling the induced model. This avoids the use of crossing or mutation operators,
and the number of parameters that EDAs require is considerably reduced.

EDA

D0← Generate M individuals (the initial population) randomly

Repeat for l = 1, 2, . . . until a stopping criterion is met

DN
l−1← Select N ≤M individuals from Dl−1 according to

a selection method

ρl(x) = ρ(x|DN
l−1)← Estimate the probability distribution

of an individual being among the selected individuals

Dl← Sample M individuals (the new population) from ρl(x)

Fig. 1. Pseudocode for the EDA approach

In EDAs, individuals are not said to contain genes, but variables which dependen-
cies have to be analyzed. Also, while in other heuristics from evolutionary computation
the interrelations between the different variables representing the individuals are kept in
mind implicitly (e.g. building block hypothesis), in EDAs the interrelations are explicitly
expressed through the joint probability distribution associated with the individuals se-
lected at each iteration. The task of estimating the joint probability distribution associated
with the database of the selected individuals from the previous generation constitutes
the hardest work to perform, as it requires the adaptation of methods to learn models
from data developed in the domain of probabilistic graphical models.

Figure 1 shows the pseudocode of a generic EDA algorithm, in which we distinguish
four main steps in this approach:

1. At the beginning, the first population D0 of M individuals is generated, usually by
assuming an uniform distribution (either discrete or continuous) on each variable,
and evaluating each of the individuals.

2. Secondly, a number N (N ≤ M ) of individuals are selected, usually the fittest.
3. Thirdly, the n–dimensional probabilistic model that better expresses the interdepen-

dencies between the n variables is induced.
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4. Next, the new population of M new individuals is obtained by simulating the prob-
ability distribution learnt in the previous step.

Steps 2, 3 and 4 are repeated until a stopping condition is verified. The most important
step of this new paradigm is to find the interdependencies between the variables (step
3). This task will be performed using techniques from the field of probabilistic graphical
models.

3.2 EDAs in Discrete Domains

In the particular case where every variable is discrete, the probabilistic graphical model
is called Bayesian network.

All the EDAs are classified depending on the maximum number of dependencies
between variables that they accept (maximum number of parents that any variable can
have in the probabilistic graphical model):

– Without interdependencies
The Univariate Marginal Distribution Algorithm (UMDA) [21] is the most repre-
sentative example of this category.

– Pairwise dependencies
An example of this category is the greedy algorithm called MIMIC (Mutual Informa-
tion Maximization for Input Clustering) [2]. The main idea in MIMIC is to describe
the true mass joint probability as closely as possible by using only one univariate
marginal probability and n − 1 pairwise conditional probability functions.

– Multiple interdependencies
EBNA (Estimation of Bayesian Network Algorithm) will be used as an example of
this category. The EBNA approach firstly introduced in [6], where the authors use
the Bayesian Information Criterion (BIC) as the score to evaluate the goodness of
each structure found during the search.

3.3 EDAs in Continuous Domains

In the particular case where every variable in the individuals are continuous and follows
a gaussian distribution, the probabilistic graphical model is called Gaussian network,
and the EDA algorithms are named CEDAs Continuous EDAs.

Next, an analogous classification of continuous EDAs as for the discrete domain is
done, in which these continuous EDAs are also classified depending on the number of
dependencies they take into account:

– Without dependencies
In this case, the joint density function is assumed to follow a n–dimensional nor-
mal distribution, and thus it is factorized as a product of n unidimensional and
independent normal densities. UMDAc [19] is an example of continuous EDAs.

– Bivariate dependencies
MIMICG

c [19] is a representative example of this type of algorithms, which is basi-
cally an adaptation of the MIMIC algorithm [2] to the continuous domain.



248 V. Robles et al.

– Multiple dependencies
Algorithms in this section are approaches of EDAs for continuous domains in which
there is no constraint in the learning of the density function every generation.
EGNABGe (Estimation of Gaussian Network Algorithm) [19] is a clear example of
this category. The method used to find the Gaussian network structure is a Bayesian
score+search. In EGNABGe a local search is used to search for good structures.

4 Algorithms

In this section all the algorithms evaluated in the next section are described.

4.1 Iterative Bayes and Interval Estimation Naı̈ve Bayes

The Iterative Bayes [10] algorithm begins with the a priori conditional probabilities
obtained by naı̈ve Bayes. Those probabilities are iteratively updated in order to improve
the probability class distribution associated with each training example.

The iterative procedure uses a hill-climbing algorithm. At each iteration, all the
examples in the training set are classified using the current conditional probabilities. The
evaluation of the actual set of conditional probabilities is done by the next expression:

1
n

n∑

i=1

(1.0 − argmaxj p(C = cj |X1 = x1, . . . , Xn = xn)) (2)

where n represents the number of instances and j the number of classes. The iterative
procedure proceeds while the evaluation function decreases till the maximum of 10
iterations.

To update the conditional probabilities, it is used the following heuristic:

1. The value of each conditional probability never goes below 0.01.
2. If an example is correctly classified then the increment is positive, otherwise it is

negative. The value of the increment is 1.0 − p(Predict|X1 = x1, . . . , Xn =
xn)/num.classes. That is, the increment is a function of the confidence on predict-
ing class Predict and the number of classes.

3. For all attribute-values observed in the given example, the increment is added to
all the entries for the predicted class and half of the increment is subtracted to the
entries of all the other classes.

The conditional probabilities are incrementally updated each time a training example
is presented. This implies that the order of the training examples could influence the
final results.

Iterative Bayes tries to improve the conditional probabilities of naı̈ve Bayes in an
iterative way with a hill-climbing strategy. On the other hand, we have the algorithm
Interval Estimation naı̈ve Bayes (IENB) [24], that belongs to the approaches that correct
the probabilities produced by the standard naı̈ve Bayes.
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In this approach, instead of calculating the point estimation of the conditional proba-
bilities from data, as simple naı̈ve Bayes makes, confidence intervals are calculated.After
that, by searching for the best combination of values into these intervals, it is aimed to
relieve the assumption of independence among variables the simple naı̈ve Bayes makes.
This search is carried out by EDAs and is guided by the accuracy of the classifiers.

There are three main important aspects in IENB algorithm:

1. Calculation of Confidence Intervals
Given the dataset, the first step is to calculate the confidence intervals for each
conditional probability and for each class probability. For the calculation of the
intervals first the point estimations of these parameters must be computed.
This way, each conditional probability pi

k,r = P (Xk = xr
k|C = ci), that has

to be estimated from the dataset must be computed with the next confidence interval.

For k = 1, . . . , n; i = 1, . . . , r0; r = 1, . . . , rk the next formula:

(
p̂i

k,r − zα

√
p̂i

k,r(1 − p̂i
k,r)

Ni
; p̂i

k,r + zα

√
p̂i

k,r(1 − p̂i
k,r)

Ni

)
(3)

denotes the interval estimation for the conditional probabilities pi
k,r, where,

rk denotes the possible values of variable Xk

r0 represents the possible values of the class
p̂i

k,r denotes the point estimation of the conditional probability P (Xk = xr
k|C = ci)

zα denotes the (1 − α
2 ) percentil in the N (0,1) distribution

Ni is the number of cases in dataset where C = ci

Also, in a similar way, the probabilities for the class values pi = P (C = ci), are
estimated with the next confidence interval,

(
p̂i − zα

√
p̂i(1 − p̂i)

N
; p̂i + zα

√
p̂i(1 − p̂i)

N

)
(4)

where, p̂i
i is the point estimation of the probability P (C = ci)

zα is the (1 − α
2 ) percentil in the N (0,1) distribution

N is the number of cases in dataset

2. Search Space Definition
Once the confidence intervals are estimated from the dataset, it is possible to generate
as many naı̈ve Bayes classifiers as needed. The parameters of these naı̈ve Bayes
classifiers must only be taken inside theirs corresponding confidence intervals.
In this way, each naı̈ve Bayes classifier is going to be represented with the next tupla
of dimension r0(1 +

∑n
i=1 ri)

(p∗
1, . . . , p∗

r0
, p∗1

1,1, . . . , p∗r0
1,1 , . . . , p∗r0

1,r1
, . . . , p∗r0

n,rn
) (5)

where each component in the tupla p∗ represents the selected value inside its corre-
sponding confidence interval.
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Thus, the search space for the heuristic optimization algorithm is composed of all
the valid tuplas. A tupla is valid when it represents a valid naı̈ve Bayes classifier.
Formally,

r0∑

i=1

p∗
i = 1; ∀k∀i

rk∑

r=1

p∗i
k,r = 1 (6)

Finally, each generated individual must be evaluated with a fitness function. This
fitness function is based on the percentage of successful predictions on each dataset,
which means that we are carrying out one wrapper approach.

3. Heuristic Search for the Best Individual
Once the individuals and the search space are defined, one heuristic optimization
algorithm is ran in order to find the best individual.

4.2 Pazzani and Pazzani-EDA

Pazzani [23] tries to improve the naı̈ve Bayes classifier by searching for dependencies
among attributes. He proposes two algorithms for detecting dependencies among at-
tributes: Forward Sequential Selection and Joining (FSSJ) and Backward Sequential
Elimination and Joining.

The FSSJ algorithm initializes the set of attributes to be used by the naı̈ve Bayes
classifier to the empty set.A naı̈ve Bayes with no attributes simply classifies all examples
to the most frequent class that occurs in the training data. Next, two operators are used
to generate new classifiers:

1. To add a given attribute (not used by the current classifier) as a new attribute condi-
tionally independent of all the others attributes (used by the classifier).

2. To join a given attribute (not used by the current classifier) with another possible
attribute (currently used by the classifier).

At each step in the classifier, every addition and every joining of an unused attribute
with a used attribute is considered and evaluated using leave-one-out on the training
data. If no change makes an improvement, the current classifier is returned. Otherwise,
the change that makes the most improvement is retained and the process of modifying
the classifier is repeated.

The BSEJ algorithm initially creates a naı̈ve Bayes classifier treating all attributes
as conditionally independent. It uses two operators for considering new hypotheses:

1. To replace a given pair of attributes (used by the classifier) with a new attribute that
joins the pair of attributes.

2. To delete one attribute (used by the classifier).

Like the FSSJ algorithm, the BSEJ algorithm considers all possible single-step
operators, evaluates these using leave-one-out cross validation in the training data and
permanently makes the change with the greatest improvement. If no changes results in
an improvement, the current classifier is returned.
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In this paper, we propose to make a heuristic search of the Pazzani structure with the
target of maximize the percentage of successful predictions. We will do this heuristic
search with EDAs.

The figure 2 contains two Pazzani structures and their corresponding individuals.

Clase

X & X
1 3

X
4

Clase

X & X & X & X
1 2 3 4

(1,0,1,2) (1,1,1,1)

Fig. 2. Two Pazzani structures and their corresponding individuals

Thus, for a dataset with n attributes, individuals will have n genes, each one with a
integer value between 0 an n. The value 0 represents that the corresponding attribute is
not part of the Pazzani structure. A value between 1 an n means that the corresponding
attribute belongs to that group in the Pazzani structure.

4.3 APNBC and APNBC-EDA

Adjusted probability naı̈ve Bayes induction (APNBC) [26] is just a simple extension to
the naı̈ve Bayes classifier. A numeric weight is inferred for each class. During discrimi-
native classification, the naı̈ve Bayes probability of a class is multiplied by its weight to
obtain an adjusted value. The lineal adjust proposed by the authors can be expressed as:

P (C = ci|X1 = x1, . . . , Xn = xn) ∝ wiP (C = ci)
n∏

k=1

P (Xk = xk|C = ci) (7)

In a two class case, it is only necessary to find an adjustment value for one of the
classes. This is because for any combination of adjustments a1 and a2 for the classes c1
and c2, the same effect will be obtained by setting the adjustment for c1 to a1/a2 and
the adjustment for c2 to 1. In the multiple class case, the search for suitable adjustments
is similar, setting one value to 1 and making a search for the rest of the other values.
In this context, a simple hill-climbing search is employed. All adjustment values are
initialized to 1, and a single adjustment that maximizes resubstitution accuracy is found.
It is important to emphasize that the APNBC approach can achieve worsen results than
naı̈ve Bayes classifiers.

In the case of the use of CEDAs (continuous EDAs) for the search of the adjustment
values, it is necessary to define the individuals format. In CEDAs, for each gen, we must
define a maximum (real) value and a minimum (real) value. The search will be made
between these values. In APNBC, for a dataset of n classes, we will use an individual
with n−1 genes –the last class will be adjusted to 1– and each individual gen will have a
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Table 2. Description of the data sets used in the experiments

Attributes Instances
Name Total Continuous Nominal Classes Learning Validation
breast 10 10 - 2 699 -
chess 36 - 36 2 3196 -
cleve 13 6 7 2 303 -
corral 6 - 6 2 128 -
crx 15 6 9 2 692 -
flare 10 2 8 2 1066 -
german 20 7 13 2 1000 -
glass 9 9 - 7 214 -
glass2 9 9 - 2 163 -
hepatitis 19 6 13 2 155 -
iris 4 4 - 3 150 -
lymphography 18 3 15 4 148 -
m-of-n-3-7-10 10 - 10 2 300 1024
pima 8 8 - 2 768 -
satimage 36 36 - 6 6435 -
segment 19 19 - 7 2310 -
shuttle-small 9 9 - 7 5800 -
soybean-large 35 - 35 19 683 -
vehicle 18 18 - 4 846 -
vote 16 - 16 2 435 -
waveform-21 21 21 - 3 300 4700

value between 0 and 5. Besides, each individual will be validated with the leave-one-out
method.

5 Experimentation Results

5.1 Datasets

Results are compared for 21 classical datasets –see table 2–, also used by other authors
[9].All the datasets belong to the UCI repository [1], with the exception of m-of-n-3-7-10
and corral. These two artificial datasets, with irrelevant and correlated attributes, were
designed to evaluate methods for feature subset selection [13].

5.2 Experimental Methodology

To estimate the prediction accuracy for each classifier our own implementation of a naı̈ve
Bayes classifier has been implemented. This implementation uses the Laplace correction
for the point estimation of the conditional probabilities [11,13] and deals with missing
values as recommended by [3].

However, our new algorithm does not handle continuous attributes. Thus, a dis-
cretization step with the method recommended in [4] has been performed using MLC++
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Table 3. Experiment results for Iterative Bayes and IENB

Dataset NB IENB Improvement Iterative Bayes Improvement
breast 97.14 97.71 ± 0.00 † 0.57 -0.16
chess 87.92 93.31 ± 0.10 † 5.39
cleve 83.82 86.29 ± 0.17 † 2.47 0.1
corral 84.37 93.70 ± 0.00 † 9.33
crx 86.23 89.64 ± 0.10 † 3.41
flare 80.86 82.69 ± 0.13 † 1.83
german 75.40 81.57 ± 0.10 † 6.17 -0.05
glass 74.77 83.00 ± 0.20 † 8.23 -1.19
glass2 82.21 88.27 ± 0.00 † 6.06
hepatitis 85.16 92.60 ± 0.34 † 7.44 1.41
iris 94.67 95.97 ± 0.00 † 1.30 1.4 †
lymphography 85.14 94.56 ± 0.00 † 9.42
monf-3-7-10 86.33 95.31 ± 0.00 † 8.98
pima 77.73 79.84 ± 0.09 † 2.11
satimage 82.46 83.88 ± 0.32 † 1.42 3.59 †
segment 91.95 96.38 ± 0.08 † 4.43 1.5 †
shuttle-small 99.36 99.90 ± 0.00 † 0.54
soybean-large 92.83 95.67 ± 0.10 † 2.84
vehicle 61.47 71.16 ± 0.25 † 9.69 4.39 †
vote 90.11 95.07 ± 0.19 † 4.96 1.45 †
waveform-21 78.85 79.81 ± 0.10 † 0.96

tools [15]. This discretization method is described by Ting in [25] that is a global variant
of the method of Fayyad and Irani [7].

Nineteen of the datasets have no division between training and testing sets. On
these datasets the results are obtained by a leave-one-out method inside of the heuristic
optimization loop.

On the other hand, two out of these twenty one datasets include separated training and
testing sets. For these cases, the heuristic optimization algorithm uses only the training
set to tune the classifier. A leave-one-out validation is performed internally inside of the
optimization loop, in order to find the best classifier. Once the best candidate is selected,
it is validated using the testing set.

All the heuristic experiments were ran in aAthlon 1700+ with 256MB of RAM mem-
ory. The parameters used to run EDAs or CEDAs were: population size 500 individuals,
selected individuals for learning 500, new individuals on each generation 1000, learn-
ing type UMDA (Univariate Marginal Distribution Algorithm) or UMDAC (UMDA
continuous) [21], depending on the algorithm, and elitism. Each experiment has been
ran 10 times.

5.3 Results

This section present the experimental results of the evaluation of the different semi naı̈ve
Bayes approaches presented above.
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Table 4. Experimental results for APNBC-EDA and APNBC

Dataset NB APNBC-EDA Eval. Improvement APNBC Improvement
breast 97.14 97.57 ± 0.00 † 2600 0.43 -0.20
chess 87.92 88.14 ± 0.00 † 11300 0.22
cleve 83.82 84.16 ± 0.00 † 7500 0.34 -1.00
corral 84.37 90.63 ± 0.00 † 1500 6.26
crx 86.23 86.96 ± 0.00 † 10400 0.73 -0.20
flare 80.86 83.77 ± 0.00 † 4000 2.91
german 75.40 75.90 ± 0.00 † 30600 0.50
glass 74.77 79.44 ± 0.00 † 7500 4.67
glass2 82.21 88.34 ± 0.00 † 2200 6.13
hepatitis 85.16 88.39 ± 0.00 † 3300 3.23
iris 94.67 96.00 ± 0.00 † 3200 1.33 0.60
lymphography 85.14 86.49 ± 0.00 † 3500 1.35 1.40
monf-3-7-10 86.33 98.24 ± 0.04 † 5500 11.91
pima 77.73 79.43 ± 0.00 † 5500 1.70 -0.50
satimage 82.46 85.19 ± 0.00 † 25500 2.73
segment 91.95 92.68 ± 0.00 † 11400 0.73
shuttle-small 99.36 99.47 ± 0.00 † 6500 0.11
soybean-large 92.83 93.70 ± 0.00 † 13700 0.87 -1.50
vehicle 61.47 65.25 ± 0.17 † 6600 3.78
vote 90.11 90.57 ± 0.00 † 5400 0.46
waveform-21 78.85 80.21 ± 0.05 † 3100 1.36 5.00

Iterative Bayes vs. IENB. Results for IENB and Iterative Bayes approaches are shown
in table 3. In IENB the results are calculated for the 0.95 percentile (zα = 1.96).
Columns in the table (as they appear from left to right) are: first, the value obtained by
the simple naı̈ve Bayes algorithm, second, the mean value ± standard deviation from
IENB, third, the improvement respect to naı̈ve Bayes (IENB-Naı̈ve Bayes) and finally the
improvement respect to naı̈ve Bayes obtained by Iterative Bayes (Iterative Bayes-Naı̈ve
Bayes).

Results are really interesting. Respect to naı̈ve Bayes, using IENB, we obtained
an average improvement of 4.30%. Besides, although this is not always true, better
improvements are obtained in the datasets with less number of cases, as the complexity
of the problem is lower. Iterative Bayes is not so good, being better than IENB only in
one dataset, satimage.

The non-parametric tests of Mann-Whitney were used to test the null hypothesis of
the same distribution between these approaches and naı̈ve Bayes. This task was done
with the statistical package S.P.S.S. release 11.50. The results for the tests applied to all
the algorithms are:

– Respect to naı̈ve Bayes algorithm:

• Naı̈ve Bayes vs. IENB. Fitness value: p < 0.001 for all datasets.
• Naı̈ve Bayes vs. Iterative Bayes. Fitness value: p < 0.001 only in 5 of 10

datasets.
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Table 5. Experimental results for Pazzani FSSJ and BSEJ algorithms

FSSJ BSEJ
Dataset FSSJ Eval. (Att,Groups) Impr BSEJ Eval. (Att,Groups) Impr
breast 97.42 80 ( 3 , 2 ) 0.28 97.56 200 ( 10 , 9 ) 0.42
chess 94.33 396 ( 5 , 1 ) 6.41 97.06 14256 ( 35 , 26 ) 9.14
cleve 85.10 169 ( 4 , 3 ) 1.28 85.43 676 ( 12 , 10 ) 1.61
corral 74.80 18 ( 1 , 1 ) -9.57 93.70 108 ( 6 , 4 ) 9.33
crx 86.79 195 ( 5 , 2 ) 0.56 88.10 1125 ( 14 , 11 ) 1.87
flare 84.04 90 ( 3 , 2 ) 3.18 84.04 500 ( 6 , 6 ) 3.18
german 77.18 500 ( 7 , 3 ) 1.78 77.68 2400 ( 19 , 15 ) 2.28
glass 76.53 153 ( 5 , 3 ) 1.76 76.53 162 ( 9 , 8 ) 1.76
glass2 87.04 99 ( 4 , 2 ) 4.83 87.04 162 ( 9 , 8 ) 4.83
hepatitis 91.56 456 ( 7 , 3 ) 6.40 88.96 1083 ( 18 , 17 ) 3.80
iris 95.97 12 ( 1 , 1 ) 1.30 95.97 32 ( 3 , 3 ) 1.30
lymphography 84.35 252 ( 4 , 3 ) -0.79 90.48 972 ( 18 , 16 ) 5.34
monf-3-7-10 77.32 30 ( 1 , 1 ) -9.01 88.27 200 ( 9 , 9 ) 1.94
pima 79.79 72 ( 4 , 1 ) 2.06 79.79 192 ( 6 , 6 ) 2.06
satimage 86.17 828 ( 7 , 3 ) 3.71 86.84 12914 ( 36 , 22 ) 4.38
segment 96.32 589 ( 7 , 4 ) 4.37 95.89 3971 ( 18 , 10 ) 3.94
shuttle-small 99.74 72 ( 3 , 2 ) 0.38 99.90 324 ( 9 , 6 ) 0.54
soybean-large 93.40 3010 ( 13 , 8 ) 0.57 94.57 7350 ( 34 , 30 ) 1.74
vehicle 70.77 162 ( 4 , 1 ) 9.30 72.66 3240 ( 17 , 9 ) 11.19
vote 96.77 128 ( 3 , 2 ) 6.66 94.47 1792 ( 15 , 10 ) 4.36
waveform-21 69.65 189 ( 4 , 1 ) -9.20 79.70 89 ( 21 , 19 ) 0.85

These results show that the differences between naı̈ve Bayes and Interval Estimation
naı̈ve Bayes are significant in all the datasets, meaning that the behavior of selecting
naı̈ve Bayes or IENB is very different. On the other hand, results for Iterative Bayes are
statistically significant only in 5 of 10 datasets.

The symbols † in the table show that the result is statistically significant respect to
naı̈ve Bayes.

APNBC vs. APNBC-EDA. The experimental results of APNBC –extracted from the
original paper [26]– and the results of APNBC-EDA are shown on table 4. The column
contents are (from left to right): first, the percentage of correct classification using naı̈ve
Bayes; second mean and standard deviation of classification accuracy using APNBC-
EDA; third, average number of evaluations to reach the solution; fourth, improvement
compared to naı̈ve Bayes classifier; fifth and last columns represent the classifier accuracy
and solution improvement using either APNBC-EDA or standard APNBC (the last one
has been taken from the original source mentioned above).

There are only eight out of the twenty-one cases with results forAPNBC algorithm. In
six of these problemsAPNBC-EDA clearly outperformsAPNBC, in one (lymphography)
results are almost the same. In waveform-21 APNBC improves 5,00% while APNBC-
EDA only reaches 1,36%.

It is remarkable to emphasize that in the eight datasets APNBC-EDA gets a mean
improvement of 1.01%, and APNBC only achieves 0.45%. Considering all the twenty-
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Table 6. Experimental results for Pazzani-EDA

Dataset Pazzani-EDA Eval. (Att,Groups) Impr
breast 97.82 ± 0.06 † 20650 ( 10 , 7 ) 0.68
chess 97.93 ± 0.24 † 44900 ( 26 , 15 ) 10.01
cleve 86.98 ± 1.18 † 49600 ( 9 , 5 ) 3.16
corral 100.00 ± 0.00 † 7400 ( 5 , 3 ) 15.63
crx 89.23 ± 0.07 † 80200 ( 12 , 7 ) 3.00
flare 84.04 ± 0.00 9700 ( 5 , 4 ) 3.18
german 78.41 ± 0.06 † 90900 ( 17 , 11 ) 3.01
glass 77.93 ± 0.00 † 40200 ( 7 , 5 ) 3.16
glass2 87.04 ± 0.00 7700 ( 6 , 5 ) 4.83
hepatitis 93.64 ± 0.29 † 55800 ( 11 , 7 ) 8.48
iris 95.97 ± 0.00 3600 ( 1 , 1 ) 1.30
lymphography 93.88 ± 0.00 † 48900 ( 15 , 7 ) 8.74
monf-3-7-10 100.00 ± 0.00 † 39600 ( 8 , 2 ) 13.67
pima 79.82 ± 0.28 7300 ( 7 , 4 ) 2.09
satimage 86.94 ± 0.12 105300 ( 12 , 7 ) 4.48
segment 96.15 ± 0.06 † 24300 ( 14 , 7 ) 4.20
shuttle-small 99.90 ± 0.00 30200 ( 7 , 5 ) 0.54
soybean-large 95.67 ± 0.17 † 32 ( 20 , 15 ) 2.84
vehicle 76.50 ± 0.32 † 61300 ( 12 , 7 ) 15.03
vote 96.77 ± 0.13 † 30200 ( 7 , 4 ) 6.66
waveform-21 79.72 ± 0.07 † 89200 ( 17 , 9 ) 0.87

one problems APNBC-EDA performs an average of 2.46% better than naı̈ve Bayes. It
is very significative that APNBC only gets better accuracy than naı̈ve Bayes in three out
of the eight cases experimented by [26], APNBC-EDA improves in all of the datasets.
These results show a clear difference for APNBC-EDA against standard APNBC.

As well as in the previous experimentation a non-parametric Mann-Whitney test has
been performed to evaluate the significance of the improvements. The values obtained
are:

– Respect to naı̈ve Bayes algorithm:
• Naı̈ve Bayes vs. APNBC-EDA. Fitness value: p < 0.001 for all datasets.

These values show a significative difference between naı̈ve Bayes and APNBC-EDA
results for all the datasets.

Pazzani (FSSJ/BSEJ) vs. Pazzani-EDA. The experimental results achieved by the
greedy algorithms FSSJ and BSEJ are presented on table 5. The four columns on the
left-hand side show the results of FSSJ and the four on the right-hand side show the
results of BSEJ. Results of Pazzani-EDA algorithm are shown on table 6. Each of the
algorithms have the following values: percentage of instances classified correctly, num-
ber of necessary evaluations, number of selected attributes and groups of attributes; and
the improvement comparing to naı̈ve Bayes.

Considering all the datasets, FSSJ algorithm shows an average improvement of
1.25% (comparing to naı̈ve Bayes), BSEJ 3.61% and Pazzani-EDA improves 5.51%.
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Labelled with the symbol † on table 6 in 15 of the 21 datasets the difference between
Pazzani-BSEJ and Pazzani-EDA is statistically significative.

As a summary, another benefit in using heuristic search with EDAs is that Pazzani
structures are simpler: less number of attributes (recall, Pazzani performs an attribute
selection strategy) and few groups of attributes. BSEJ uses 15 attributes and 12 groups
(in average), Pazzani-EDA uses only 12 attributes and 7 groups.

6 Conclusion and Further Work

The experimental results presented on this paper show a clear advantage in the use of
heuristical search methods, rather than greedy approaches, as an optimization tool for
semi naı̈ve Bayes classifiers.

The better improvements have been achieve using Pazzani-EDA (5.50%) and IENB
(4.65%). Both strategies can be combined in the following way: (a) looking for the best
Pazzani structure and (b) tuning the probabilities of each group using the IENB approach.

The only drawback of this approach is the increment of the number of tentative
naı̈ve Bayes classifier required to find the optimal parameters. For large problems with
significative evaluation times each of the individuals could take several seconds to be
computed. As a solution for this problem a parallel implementation of these algorithms
is an open issue we are working on.
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