
Bayesian Methods to Estimate Future Load in Web
Farms

José M. Peña1, Vı́ctor Robles1, Óscar Marbán2, and Marı́a S. Pérez1

1 DATSI, Universidad Politécnica de Madrid, Madrid, Spain
{jmpena, vrobles, mperez}@fi.upm.es

2 DLSIS, Universidad Politécnica de Madrid, Madrid, Spain
omarban@fi.upm.es

Abstract. Web Farms are clustered systems designed to provide high availability
and high performance web services. A web farm is a group of replicated HTTP
servers that reply web requests forwarded by a single point of access to the ser-
vice. To deal with this task the point of access executes a load balancing algorithm
to distribute web request among the group of servers. The present algorithms pro-
vides a short-term dynamic configuration for this operation, but some corrective
actions (granting different session priorities or distributed WAN forwarding) can-
not be achieved without a long-term estimation of the future web load. On this
paper we propose a method to forecast web service work load. Our approach
also includes an innovative segmentation method for the web pages using EDAs
(estimation of distribution algorithms) and the application of semi-naı̈ve Bayes
classifiers to predict future web load several minutes before. All our analysis has
been performed using real data from a world-wide academic portal.

Keywords. Web farms, web load estimation, naı̈ve Bayes, EDAs

1 Introduction

Today’s commerce is, in many cases, fought on the web arena. Form marketing to on-
line sales, many tasks are supported by a web architecture. Even several internal proce-
dures of a company are achieved using a web-based application. On this scenario, the
quality of the services, or at least the way the user observes how these services are been
performed, depends on some characteristics of the web server itself. Subjective values,
like page design, are tackled by specific methodologies [16]. But, there are other fac-
tors that are also very important in terms of client satisfaction when he/she navigates
the site. One of these factors is web service response time. There are different strategies
to speed-up this response time. Proxy servers and web caches are intermediate storages
of the most frequent pages. Another innovative alternative is what has been called web
farms.

1.1 Web Farms

For high performance services, when it grows beyond the capabilities of a single ma-
chine, groups of machines are often employed to provide the service. In the case of web

J. Favela et al. (Eds.): AWIC 2004, LNAI 3034, pp. 217–226, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

218 José M. Peña et al.

servers, this is often referred to a Web Farm. Web farms typically employ both high
availability and scalability technologies in order to provide a highly available service
spread across multiple machines, with a single point of contact for clients.

The architecture of these systems is divided into three different layers: (i) a first
layer, the front-end of the web service, is a single point of access, (ii) a second layer of
distributed web servers, which perform the actual HTTP service and (iii) a third layer
of a shared data storage, like a back-end database or distributed/replicated file system.

The service provided by a web far is performed as follows. When a request is re-
ceived by the point of access, this one redirects the request towards the most suitable
web server on the second layer. Usually, the response sent by the web server is addressed
directly to the client (not using the point of access as a relay).

There are different types of web farms depending on the topology of the architecture
itself:

– Cluster web farms: All the web servers are inside of the same local area network.
In many cases these machines serving on the second layer are connected using a
virtual private network (VPN). On this architecture, the point of access selects the
most appropriate server depending on short-term load-balancing algorithm. [2]

– Globally distributed web farms: In this cases, web servers are connected at dif-
ferent points on a wide area network (like the Internet). On these geographically
distributed web farms the point of access decides the server taking into account
other aspects like closest web server or interconnection speed. [9]

– Hybrid approaches: Sometimes both architectures coexist, a first step of redirec-
tion forwards the request to the closest cluster web farm. A second stage is per-
formed inside of the cluster to select the server with less work. A very good exam-
ple of this approach is Google3.

1.2 Web Load Balancing

In order to achieve the most important task of this process, request forwarding, there
have been done many efforts to perform this operation in the most flexible and efficient
way. NCSA [19] provides a scalable web server using server-side Round-Robin DNS
[6]. LVS (Linux Virtual Server) [3] provides many different methods to redirect request
inside of a cluster web farm, like NAT (Network Address Translation), IP Tunneling
and Direct Routing. There are also application level solutions, like Reverse-proxy [25]
or SWEB [2]. Other techniques available is Load Sharing with NAT (LSNAT) [27].

Although, these are different techniques to forward client requests (at different lev-
els of the IP protocol stack), another open issues is to get the best selection for each
of these incoming requests. Cluster web farms and many DNS-based approaches select
the next web server are Round-Robin scheduling with additional features like, weighted
least-connection correction [30] (also Round-robin DNS). Other approaches select the
most responsive web server for a ping package. Other approaches consider QoS (qual-
ity of service) algorithms to estimate load distribution in replicated web servers [9]. In
[14] a client-based approach is presented.

3 http://www.google.com

Bayesian Methods to Estimate Future Load in Web Farms 219

There are two possible load balancing strategies, depending on how far the status of
the system could be forecasted.

– Immediate load balancing: Load balancing decisions take into account present or
very near past situations to perform corrective and balancing actions. On this schema
cluster web farms forwards messages towards the least overloaded server.

– Long-term load balancing: Although the past strategy is quite efficient and pro-
vides dynamic adaptability, there are important limitations due to: (1) a single ses-
sion from the same user should be forwarded to the same web farm server, since
important information held by the server, like session cookies, are stored locally,
and (2) high level forwarding technique (like IP Tunneling) performs better if the
tunnel that supports the redirection is used several times, or other techniques like
DNS-Round Robin once the first message from a user is addressed to one server
the next ones will follow the same path.
Since under these circunstances the load balancing algorithms take some actions
with a stable application frame of several minutes, the most efficient way to per-
form these tasks is to estimate the future load of the system, with a time window
frame of at least 10-15 minutes.

2 Future Load Estimation Issues

Dealing with future estimation of a web service load has some specific aspect to be
taken into account.

First of all is to know what is exactly expected from the estimation. In order to
support load balancing algorithms the most important aspect to be known is the future
number of requests or the amount of information to be sent. Being able to predict how
many bytes should be served in advance provides the possibility to forward clients to
other mirror site or discard some requests, in order to provide an acceptable response
time for most of the user.

The amount of information requested is a continuous value, but for the objective
we are tackling is not necessary to deal with the attribute in the continuous form. A
load balancing algorithm uses discrete data input, for most of the algorithms they work
with intervals of low, medium or high load. On the other hand, a significant number
of classification methods are based on discrete or nominal classes. There are several
methods to build these discretization intervals, but, in order to be appropriate with the
usage the values are hardware or architecture restrictions from the current system, like
network band-width or memory capacity.

Other important issue is to select the appropriate input attributes. The main source
of information we have is the server web log. This log records all the connections re-
quested to the web server. For each record we have the requested page, from which
page it was accessed, and when it was requested. Very simple methods use the time of
the day to predict web load, while others also consider previous load (amount of bytes
transferred) to estimate future requests. These approaches (as we will see in section 5.3
are limited and unaccurated). It is very important to have some background knowledge
from the application field of these techniques. On our approach an academic portal4

4 http://www.universia.es

220 José M. Peña et al.

was used. This portal stores web pages from courses, universities, grants, an so on. The
information on this service is addressed both to students, teachers, and people working
on the industry. Pages represent news and important notes updated daily. A detailed
description of these datasets in commented in section 5.1. These characteristics imply
two important hints:

– The patterns from different users or the accesses to different pages on the web site is
more intense depending on the contents of the pages. Page subject has an important
influence on when this pages is accessed and the range of users interested on it.

– The structure of the web site changes daily. Any page-based analysis using data
form several days before will not consider new pages (which are also the most
popular visit in the web site).

One important aspect of this method is the segmentation of the pages hosted by the
web site, among the different techniques (based on the contents of the page) we have
proceeded with this segmentation considering the relationships between the pages (how
many times one pages is addressed from other) as discriminant criteria to group similar
pages.

According to these assertions we have considered the following method to proceed,
(1) the attribute to classify is a discretized value defined over the amount of requested
information, (2) accesses to the groups of pages (in a previous time frames) are input
data, and (3) only information for few days before the prediction is used in order to
support dynamic changes on the contents of the web site.

This method will be compared with simple approaches that only takes into account
the time an previous web load.

3 General Process Overview

To be able to estimate the future load in a Web Farm we need to do the following steps
(see figure 1):

1. Starting with the log files from www.universia.es of four different days (see sec-
tion 5.1) we create a Site Navigation Graph. In this graph, vertices represent Web
pages, edges represent links and edges weight represent the number of times the
corresponding link was clicked by the users.

2. Partition the Site Navigation Graph. We have decided to split the graph in ten differ-
ent partitions. In this way we will be able to collect users click information for each
partition, given us more useful information. This process segmentates web pages
based on the relationships among them. Pages visited together will be clustered in
the same group.

3. Once data has been partitioned, time windows of 15 minutes have been defined. For
each of these windows a new instance is created with the following information:

– Current time.
– Clicks and bytes transferred for each of the groups during the las two time

frames (15 and 30 minutes before).
– The amount of information requested to the web site during this period. This is

the actual value to be predicted.

Bayesian Methods to Estimate Future Load in Web Farms 221

Log Files:

4 days

~3GBytes

~25000 clicks

Site Navigation Graph Graph Partitioning

1 2

3

Instances (1 instance each 15 minutes)

Time | For every partition (t-2) | For every partition (t-1) | Future Load [partition](t)

(num. clicks & total bytes) (num. clicks & total bytes) (total bytes)

4

Discretized instances

5

Datasets

(4 fold cross

validation)
Training Test Training Test Training Test Training Test

1 2 3 4

Training and TestingTraining and Testing

6

Log Files:

4 days

~3GBytes

~25000 clicks

Site Navigation Graph Graph Partitioning

1 2

3

Instances (1 instance each 15 minutes)

Time | For every partition (t-2) | For every partition (t-1) | Future Load [partition](t)

(num. clicks & total bytes) (num. clicks & total bytes) (total bytes)

4

Discretized instances

5

Datasets

(4 fold cross

validation)
Training Test Training Test Training Test Training Test

1 2 3 4

Training and TestingTraining and Testing

6

�

Fig. 1. Overall description of the process

4. Discretization:

– Class discretization: Rather than the number of bytes, we are interested on
the intervals, like idle state, low load, medium load, high load, very high load
or similar ranks. As we have said before, these intervals depend on hardware
constraints. A discretization method based on probability density with optimal
classes definition has been performed, using XLSTAT.

– Attribute discretization. In order to use the classification methods it is neces-
sary to discretice the instances of the datasets. Thus, a discretization step with
the method suggested by [11] has been performed using MLC++ tools. This
supervised discretization method is described by Ting in [28] that is a global
variant of the method of Fayyad and Irani [12].

5. Once we have created and discretized the instances, they must be splitted in four
different datasets, each one including a training set and a testing set. In this way, we
are going to make the training with the instances of 3 days, keeping the instances
of the last day for validation purposes. This means that we are doing a 4-Fold cross
validation.

6. The last step consist on apply all the classification methods (see section 4.2) to the
datasets. Experiment results are in section 5.3.

222 José M. Peña et al.

4 Detailed Experimentation

4.1 Graph Partitioning

The partitioning problem on an undirected graph G = (V, E), V being the set of ver-
tices and E the set of edges arises in many different areas such as VLSI design, test
pattern generation, data-mining or efficient storage of data bases. In general, the graph
partitioning problem consists of partitioning the vertices into k disjoint subsets of about
the same cardinality, such that the cut size, that is, the sum of edges whose endpoints
are in different subsets, is minimized.

The graph partitioning problem is NP-hard, and it remains NP-hard even when k is
equal to 2 or when some unbalancing is allowed [7]. For large graphs (with more than
100 vertices), heuristics algorithms which find suboptimal solutions are the only viable
option. Proposed strategies can be classified in combinatorial approaches [13], based on
geometric representations [26], multilevel schemes [29], evolutionary optimization [5]
and genetic algorithms [8]. We can find also hybrid schemes [4] that combines different
approaches.

To solve the graph partitioning problem in this paper, we have used a novel ap-
proach based on a heuristic optimization technique named EDA. EDAs [20] are non-
deterministic, stochastic heuristic search strategies that form part of the evolutionary
computation approaches, where number of solutions or individuals are created every
generation, evolving once and again until a satisfactory solution is achieved. In brief,
the characteristic that differentiates most EDAs from other evolutionary search strate-
gies such as GAs is that the evolution from a generation to the next one is done by
estimating the probability distribution of the fittest individuals, and afterwards by sam-
pling the induced model. This avoids the use of crossing or mutation operators, and the
number of parameters that EDAs require is considerably reduced.

To find the best partition we are going to use the next fitness function [5] to evaluate
each candidate s,

f(s) = α · ncuts(s) + β ·
K∑

k=1

2deviation(k) (1)

where, ncuts(s) is the sum of the edges whose endpoints are in different subsets, and
deviation(k) is the amount by which the number of nodes in the partition Gk varies
from the average number expected.

However, with the objective of partitioning the Site Navigation Graph we are going
to consider the number of cuts as an objective, while the deviation degree is going to be
a restriction. Thus, the fitness function will take the parameters α = 1 and β = 0; with
deviation(k) < 20 for k ∈ [1, K]. This means that we are allowing a deviation degree
of 20% in the partitions.

4.2 Learning Methods

We are using three different types of classification methods.

Bayesian Methods to Estimate Future Load in Web Farms 223

– Rule induction methods.
• 1R Algorithm. The 1R procedure [17] for machine learning is a very simple

one that proves surprisingly effective. The aim is to infer a rule that predicts
the class given the value of the attributes. The 1R algorithm chooses the most
informative single attribute and bases the rule on this attribute alone.

• NNGE. NNGE (Non-Nested Generalized Examplers) [21] is a promising ma-
chine learning approach that combines nearest neighbor with rule generation.

– Tree induction methods.

• J48. J48 is an improved version of C4.5 [23] that is implemented in the Weka
toolset [1], an open source machine learning software in Java.

• C5.0 with boosting. C5.0 is quite similar to C4.5 [23] but incorporates several
new facilities such as variable misclassification costs, new data types including
dates and facilities for defining new attributes as functions of other attributes.

– Bayesian methods.

• Naı̈ve Bayes. The naı̈ve Bayes classifier [15] is a probabilistic method for clas-
sification. It can be used to determine the probability that an example belongs
to a class given the values of the predictor variables. The naı̈ve Bayes classifier
guarantees optimal induction given a set of explicit assumptions [10].

• Pazzani-EDA. Pazzani [22] tries to improve the naı̈ve Bayes classifier by
searching for dependencies among attributes. He proposes two algorithms for
detecting dependencies among attributes: Forward Sequential Selection and
Joining (FSSJ) and Backward Sequential Elimination and Joining. However,
Pazzani-EDA [24] makes a heuristic search of the Pazzani structure with the
target of maximize the percentage of successful predictions.

The rule induction methods and the tree induction method J48 were run with Weka,
an open source machine learning software in Java. The method C5.0 with boosting
were run with the See5.0/C5.0 program. For the Bayesian methods we have used
our own developed programs.

5 Results

5.1 Data Set

For validating our approach we have used log files from www.universia.es. Universia
is a community portal about Spanish-speaking higher education that involves 379 uni-
versities world-wide. It contains information about education, organized in different
groups depending on the user profile.

We have used the log files from four different days. The total size of the logs files is
3 GBytes and they contain a total of 25000 user clicks in approx 5000 different pages.

5.2 Validation Method

As commented before we have used a 4 fold cross validation method. Thus, the learning
process is made with 3 days, validating with the remaining day.

224 José M. Peña et al.

Table 1. Experiment results with the simple dataset

Training Days 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4
Tested Day 4 3 2 1 Average

Naive Bayes 70.21 75.00 79.17 79.16 75.88
Pazzani-EDA 84.78 89.36 93.61 87.23 88.75
NNGE 64.89 63.54 71.88 71.87 68.05
1R 71.28 72.92 70.83 76.04 72.77
J48 64.89 72.92 73.96 76.04 71.95
C5.0 74.50 72.90 83.30 80.20 77.72

Table 2. Experiment results with the enriched dataset

Training Days 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4
Tested Day 4 3 2 1 Average

Naive Bayes 71.28 70.83 76.04 70.83 72.25
Pazzani-EDA 97.82 100.00 97.87 91.49 96.80
NNGE 74.47 67.71 78.13 72.91 73.31
1R 67.02 73.96 75.00 76.04 73.01
J48 72.34 69.79 72.91 76.04 72.77
C5.0 70.20 70.83 73.96 75.00 72.50

5.3 Experimental Results

One of the issues tackled by our approach is to evaluate any possible improvement ob-
tained when data are enriched with the segmentation the web pages. On table 1, results
based on a simple data input are presented. These simple data are just the number of
clicks an bytes requested during the last two time windows (15 and 30 minutes before).

Table 2 shows the results from enriched data including number of clicks and bytes
transferred for each of groups of pages clustered by the partitioned graph. On this table
we also consider the previous two time windows as in the case before.

We have experimented with simple 1R algorithm with the assumption that just one
attribute (either time or the previous requested clicks or bytes) is able to predict web
service load.

Induction tree algorithms, like C5.0, performs poorly with the extended input data
while complex bayesian classifiers, like Pazzani-EDA, get a significant advantage when
more and enriched information is provided. On this case Pazzani-EDA clearly outper-
forms any other of the classifiers evaluated.

Another interesting result is that 1R selects time as discriminant attribute only in
two out of the four experiments. With this we consider that time is not always the best
approach to estimate web server load.

6 Conclusion and Further Work

In this paper two innovative techniques have been introduced.

Bayesian Methods to Estimate Future Load in Web Farms 225

First, a new graph partitioning method has been perform using estimation of dis-
tribution algorithms. On this field new open issues arises that could be interesting to
explore in a further works.

Second, enriched information has been proved very useful to obtain significant im-
provements to estimate web service load. The segmentation of the pages using the re-
lationships among them, represented by the number of navigation clicks from one page
to the other (site navigation graph) is a very simple way to cluster similar pages without
the need to deal with semantic information about the contents of each page. Other sim-
ilar approaches use information about the subjects or topics related to one page make
them difficult to be performed on complex an not well-organized web sites.

Although time is not a discriminant attribute on this kind of analysis, it is very
significant. Thus, semi naı̈ve Bayes algorithms like NB-Tree [18] could achieve inter-
esting results as this classifiers is an hybrid method between decision trees and Bayesian
classification methods. This approach uses the more discriminant attributes to build a
decision tree with leaves that are Bayesian classifiers for solving the more complex
relationships.

7 Acknowledgement

We would like to thanks www.universia.es for the possibility of working with their log
files.

References

[1] Weka 3: Data mining with open source machine learning software in java.
http://www.cs.waikato.ac.nz/ml/weka/, 2003.

[2] Daniel Andresen, Tao Yang, and Oscar H. Ibarra. Towards a scalable distributed WWW
server on workstation clusters. In Proc. of 10th IEEE Intl. Symp. Of Parallel Processing
(IPPS’96), pages 850–856, 1996.

[3] Wensong Zhang andShiyao Jin and Quanyuan Wu. Creating Linux virtual servers. In
LinuxExpo 1999 Conference, 1999.

[4] R. Baños, C. Gil, J. Ortega, and F.G. Montoya. Multilevel heuristic algorithm for graph
partitioning. In Proceedings of the 3rd European Workshop on Evolutionary Computation
in Combinatorial Optimization. LNCS 2611, pages 143–153, 2003.

[5] R. Baños, C. Gil, J. Ortega, and F.G. Montoya. Partición de grafos mediante optimización
evolutiva paralela. In Proceedings de las XIV Jornadas de Paralelismo, pages 245–250,
2003.

[6] T. Brisco. RFC 1794: DNS support for load balancing, April 1995. Status: INFORMA-
TIONAL.

[7] T.N. Bui and C. Jones. Finding good approximate vertex and edge partitions is np-hard.
Information Processing Letters, 42:153–159, 1992.

[8] T.N. Bui and B. Moon. Genetic algorithms and graph partitioning. IEEE Transactions on
Computers, 45(7):841–855, 1996.

[9] Marco Conti, Enrico Gregori, and Fabio Panzieri. Load distribution among replicated Web
servers: A QoS-based approach. In Proceedings of the Workshop on Internet Server Per-
formance (WISP99), 1999.

226 José M. Peña et al.

[10] P. Domingos and M. Pazzani. Beyond independence: conditions for the optimality of the
simple Bayesian classifier. In Proceedings of the 13th International Conference on Machine
Learning, pages 105–112, 1996.

[11] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of
continuous features. In Proceedings of the 12th International Conference on Machine
Learning, pages 194–202, 1995.

[12] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for
classification learning. In Proceedings of the 13th International Conference on Artificial
Intelligence, pages 1022–1027, 1993.

[13] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network partitions.
In Proceedings of the 19th IEEE Design Automation Conference, pages 175–181, 1982.

[14] Vittorio Ghini, Fabio Panzieri, and Marco Roccetti. Client-centered load distribution: A
mechanism for constructing responsive web services. In HICSS, 2001.

[15] D.J. Hand and K. Yu. Idiot’s Bayes - not so stupid after all? International Statistical
Review, 69(3):385–398, 2001.

[16] Esther Hochsztain, Socorro Millán, and Ernestina Menasalvas. A granular approach for
analyzing the degree of affability of a web site. Lecture Notes in Computer Science,
2475:479–486, 2002.

[17] R.C. Holte. Very simple classification rules perform well on most commonly used datasets.
Machine Learning, 11:63–90, 1993.

[18] R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: a decision-tree hybrid. In
Proceedings of the 2nd International Conference on Knowledge Discovery and Data Min-
ing, pages 202–207, 1996.

[19] Thomas T. Kwan, Robert E. McGrath, and Daniel A. Reed. NCSA’s World Wide Web
server: Design and performance. IEEE Computer, pages 68–74, November 1995.

[20] P. Larrañaga and J.A. Lozano. Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation. Kluwer Academic Publisher, 2002.

[21] B. Martin. Instance-based learning: Nearest neigbour with generalisation. working paper
series 95/18 computer science. Technical report, Hamilton, University of Waikato.

[22] M. Pazzani. Constructive induction of Cartesian product attributes. Information, Statistics
and Induction in Science, pages 66–77, 1996.

[23] R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kauffman, 1993.
[24] V. Robles, P. Larrañaga, J.M. Peña, E. Menasalvas, M.S. Pérez, and V. Herves. Learning

semi naı̈ve Bayes structures by estimation of distribution algorithms. In Lecture Notes in
Computer Science (LNAI), volume 2902, pages 244–258, 2003.

[25] Ralf S.Engelschall. Load balancing your web site: Practical approaches for distributing
HTTP traffic. Web Techniques Magazine, 3(5), 1998.

[26] H.D. Simon and S. Teng. How good is recursive bisection? SIAM Journal of Scientific
Computing, 18(5):1436–1445, 1997.

[27] P. Srisuresh and D. Gan. RFC 2391: Load sharing using IP network address translation
(LSNAT), August 1998. Status: INFORMATIONAL.

[28] K.M. Ting. Discretization of continuous-valued attributes and instance-based learning.
Technical Report 491, University of Sydney, 1994.

[29] C. Walshaw and M. Cross. Mesh partitioning: a multilevel balancing and refinement algo-
rithm. SIAM Journal of Science Computation, 22(1):63–80, 2000.

[30] Wensong Zhang. Linux virtual server for scalable network services. In Ottawa Linux
Symposium, 2000.

	Introduction
	Future Load Estimation Issues
	General Process Overview
	Detailed Experimentation
	Results
	Conclusion and Further Work
	Acknowledgement

