
Design and Evaluation of an Agent-Based
Communication Model for a Parallel File System

Marı́a S. Pérez1, Alberto Sánchez1, Jemal Abawajy2, Vı́ctor Robles1, and
José M. Peña1

1 DATSI. FI. Universidad Politécnica de Madrid. Spain
2 School of Computer. Carleton University. Ottawa, Canada

Abstract. Agent paradigm has become one of the most important topics appeared
and widely developed in computing systems in the last decade. This paradigm
is being sucessfully used in a large number of fields. MAPFS is a multiagent
parallel file system, which takes advantage of the semantic concept of agents in
order to increase its modularity and performance. This paper shows how to use
agent theory as conceptual framework in the design and development of MAPFS.
MAPFS implementation is based on nearer technologies to system programming,
although its design makes usage of the abstraction of a multiagent system.

Keywords: Agent, multiagent system, parallel file system, prefetching.

1 Introduction

Agent technology constitutes a new computing paradigm. Despite agents are very related
to the Distributed Artificial Intelligence (DIA) area [2], some works have demonstrated
that the agent technology can be used in fields totally different to the DIA. In the last
decade, a large number of applications have appeared in business [6], electric manage-
ment [11], control [3], or industrial applications in general [10].

Agent technology provides several concepts, which allow programmers to analyze
and design applications in a way close to the natural language. Furthermore, agents give
applications a set of useful features for tackling complex and dynamic environments.

On the other hand, there are important differences between system programming and
agent technology. Firstly, agent paradigm interacts with the system at a higher level than
system programming. Furthremore, the efficiency is a very strict requirement in the case
of the system programming. Agent technology introduces an abstraction layer and, thus,
it involves a lost of efficiency. Nevertheless, these disadvantages can be avoided, since
the agent paradigm differ clearly agent theory, which provides the concepts, and agents
architectures, which provides concrete solutions and implementations.

This paper shows how to use agent theory as conceptual framework in the design
and development of a parallel multiagent system, called MAPFS (MultiAgent Parallel
File System), using nearer technologies to system programming, but taking advantage
of the semantic concepts of agents.

The outline of this paper is as follows. Section 2 presents the overview of MAPFS,
focusing on the multiagent subsystem of such file system, and describes the related work.

A. Laganà et al. (Eds.): ICCSA 2004, LNCS 3044, pp. 87–96, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

88 M.S. Pérez et al.

Section 3 describes our proposal for the generic structure of an agent in MAPFS. Section
4 shows the implementation and evaluation of MAPFS, in order to measure the influence
of the agents in the parallel file system. Finally, Section 5 summarizes our conclusions
and suggests further future work.

2 Problem Statement and Related Work

2.1 MAPFS Overview

MAPFS is a multiagent parallel file system for clusters, which provides a file system
interface that includes traditional, advanced, collective, caching, and hints operations
[14]. MAPFS consists of two subsystems with two clearly defined tasks: (i) MAPFS FS,
which provides the parallel file system functionality and (ii) MAPFS MAS, responsible
for the information retrieval. In order to provide data to MAPFS FS, MAPFS MAS is
constituted by a set of agents which interact among them, that is, a multiagent system
(MAS). The use of a MAS implies coordination among their agents. The cooperation
model of MAPFS is defined in [15].Agents must be reconfigured because of the dynamic
and changing environment in which they coexist. These agents adapt their behavior
depending on the response of the medium and their own learning. MAPFS uses an
agent hierarchy, which solves the information retrieval problem in a transparent and
efficient way. The taxonomy of agents used in MAPFS is composed of: (i) Extractor
agents, responsible for information retrieval; (ii) distributor agents, which distribute the
workload to extractor agents; (iii) caching and prefetching agents, associated with one
or more extractor agents, caching or prefetching their data; and (iv) hints agents, which
must study applications access patterns to build hints for improving data access.

Files are stored finally in several servers, which constitute the server-side of the
underlying architecture. The grouping of servers from a logical point of view in MAPFS
is named storage group.

2.2 Related Work

Nowadays, most of the frameworks are influenced by their environment, so that the
environment conditions affect their performance in a dynamic way. For this reason,
the usage of the agent technology is being widely used, since this paradigm adapts to
changing and dynamic environments. The agent paradigm is usually implemented on
distributed systems.

In a complex system, the interaction of several agents is required and, thus, a mech-
anism of communication between agents is necessary. For achieving agents communi-
cation and interoperability, it is necessary to use: (i) A common language; (ii) common
ideas about the knowledge agents interchange; and (iii) capacity for interchanging this
information. For standardizing this way of communication, a common or standard lan-
guage is used. In this sense, KSE (Knowledge Sharing Effort) has several research lines
[1]. This paper focuses on the ability of agents for communicating among them and
developing a specific task within MAPFS.

As it is shown in [13], the usage of agents simplifies the distribution and optimizes
the messages interchange among them. The idea of using agents to access data is not

Design and Evaluation of an Agent-Based Communication Model 89

an innovating idea. Nowadays, a great number of agents platforms are widely deployed
for accesing web databases. Different access methods are used, such as JDBC. The web
popularity has created the need for developing Web Distributed Database Management
Systems (DBMS), obtaining simple data distribution, concurrency control and reliability.
However, DBMS offer limited flexibility, scalability, and robustness. Some suggestions
propose the use of agents to solve this problem [16]. With respect to file accesses, several
approaches have been made. Two paradigmatic approaches are described next.

MESSENGERS [4] is a system based on agents used for the development and de-
ployment of distributed applications from mobile agents, called messengers. This system
is composed of a set of daemons distributed in every node an used for managing received
agents, supervising their execution and planning where agents must be sent. Several fea-
tures are defined in [8] in order to measure the system performance. Some of them are
load balancing, agent code optimization and availability and efficient sharing of available
resources.

DIAMOnDS [17] stands for Distributed Agents for MObile and Dynamic Services,
a system built under Java/Jini. This system is composed of a client module that accesses
data of a remote file system, where an agent is responsible of managing this interaction.

Other research projects about agent systems for accesing files have been developed.
Nevertheless, there are not agent systems focused on the development of parallel file
systems features. MAPFS constitutes a new approach of this kind of systems.

3 Generic Structure of an Agent in MAPFS

Agents provide a set of very interesting properties. Some of these characteristics are
autonomy, reactivity and proactivity, which makes the system flexible for adapting to
changing environments. Furthermore, an aditional characteristic very related to agents
and useful in the case of the MAPFS system is the intelligence. Intelligent agents usually
take decisions in the system. In this context, MAPFS agents are responsible for building
hints dynamically, modifying them according to the acquired knowledge in the process
of analysis of data patterns.

On the other hand, as is described in the previous section, there are different kind
of agents. Therefore, it is necessary to identify the role of every agent in the system.
This method have been already identified and used in some agent architectures, such as
MADKIT architecture [9]. This architecture defines theAGR model (Agent-Group-Role),
in which the role or task of an agent constitutes one of the key concept. This role is the
abstract representation of a function or service provided by the agent. Analogously, in
MAPFS the role is used for setting the specific function of an agent.

Definition 1 In MAPFS, an agent is defined in a formal way as the following tuple:

< Ag Id, Group, Role, Int Net >

where:

– Ag Id: Agent identification, which is used in order to identify every agent of the
system.

90 M.S. Pérez et al.

– Group: Storage group which the agent belongs to.
– Role: This field represents the kind of agent, taking values in the following do-

main: [Cache, Distributor, Extractor, Hint]. This domain can be in-
creased with other values, if other kind of service must be implemented.

– Int Net: This field represents the interaction network of an agent with other agents
of its storage group. This network can be implemented as a vector or relations
between the agent Ag Id and the rest of agents of the same storage group.

A key aspect of a multiagent system is the communication among agents. There
are specific agent languages, oriented to communication of agents. KQML (Knowledge
Query Manipulation Language) [7], is one of the most known agent communication
languages. This language is composed of a set of messages, known as performatives,
which are used for specifying agent communication elements. In [12], Labrou and Finin
widely describe the KQML reserved performatives. Some of them are used in MAPFS.

According to the MAPFS cooperation model, a set of performatives has been defined.
In order to define MAPFS performatives, several sets of elements are defined for a
concrete storage group: (DA: Set of distributor agents, EA: Set of extractor agents, CA:
Set of cache agents, HA: Set of hints agents). Next section defines KQML performatives
for the interaction among agents.

3.1 MAPFS Performatives

When an element d is requested, a distributor agent is responsible of asking data to
several extractor agents. Let x be a distributor agent of a storage group Gx. Figure 1(a)
includes the KQML performative of the distributor agent. If the extractor agent has the
element d, then such agent does the performative of Figure 1(b), indicating that the data
item d is available in the storage group Gx.

On the other hand, if the extractor agent has not the element d, that is, the element is
not in the cache structure, the extractor agent does the performative of Figure 2, asking
required data to all the cache agents. The predicate ask(d,z) in the cache agent z
involves the execution of the MAPFS function obtain(d) (read operation).

Next, the cache agent sends information about the completion of the operation to the
distributor agent, through the extractor agent, indicating that the element d is available
in the storage group Gx. This process corresponds to the performative of Figure 3. Thus,
the cycle is closed. Nevertheless, the cache structure has a maximum number of entries,
which must be replaced by other elements with a concrete replace policy. When the entry
is invalidated, the cache agent z sends the performative represented in Figure 4.

Cache agents use metadata provided by hints agents, sending the performative of
Figure 5(a). In this way, metainformation identified by h is required. A hint agent build
the required metainformation, sending it to the cache agent by means of the performative
of Figure 5(b). Figure 6 shows the control flow of system performatives.

3.2 Cache Agent. A Sample Agent

A cache agent is a sample MAPFS agent. In order to increase the efficiency of the
I/O system, cache agents make prefetching and caching tasks. Prefetching is used for

Design and Evaluation of an Agent-Based Communication Model 91

Step 1

x ∈ DA

y ∈ EA

(ask-if

:sender x

:receiver y

:reply-with id da

:language Prolog

:ontology MAPFS

:content “exists(d,Gx)”)

(a) Performative for the data re-
quest from a distributor agent to
an extractor agent.

Step 2.1

(tell

:sender y

:receiver x

:in-reply-to id da

:reply-with id ea

:language Prolog

:ontology MAPFS

:content “exists(d,Gx)”)

(b) Response performative from
an extractor agent to a distribu-
tor agent, if the agent has the re-
quired data.

Fig. 1. Performatives related to a distributor agent

Step 2.2

z ∈ CA

(achieve

:sender y

:receiver z

:in-reply-to id da

:reply-with id ea

:language Prolog

:ontology MAPFS

:content “ask(d,z)”)

Fig. 2. Performative for the data request from an extractor agent to a cache agent

increasing the performance of read operations, since it is possible to read in advance
data used in posterior operations. Caching is used for increasing the performance of read
and write operations, due to the locality of data and the possibility of delayed write. The

92 M.S. Pérez et al.

Step 3.1

(forward

:from z

:to x

:sender z

:receiver y

:reply-with id ca

:language KQML

:ontology kqml-ontology

:content (achieve

:sender z

:receiver x

:in-reply-to id ea

:reply-with id ca

:language Prolog

:ontology MAPFS

:content “exists(d,Gx)”)

Fig. 3. Response performative from a cache agent to a distributor agent, once data are obtained

definition of a cache agent, according to the previous definition of a generic agent is the
following:

Definition 2 A cache agent of a storage group Gx is defined as the following tuple:

< C Ag Id, Gx, Cache, C Int Net >

where C Int Net represents the interaction network of the cache agent with other
agents linked to it, as a vector of relation between cache agent and the rest of agents
that belong to the same storage group. According to Figure 6, cache agents are related
with other cache agents, with extractor and hint agents.

The relation between a cache agent and an extractor agent is derived directly from
the performative of Figure 2. Therefore, a cache agent is associated unless to an extractor
agent. Furthermore, there may be a relation between different cache agents, with the aim
of providing a caching service to a single extractor agent. Cache agents are related to
hint agents, as we can see in the performative of Figure 5(a).

Design and Evaluation of an Agent-Based Communication Model 93

Invalidation

(forward

:from z

:to x

:sender z

:receiver y

:reply-with id ca’

:language KQML

:ontology kqml-ontology

:content (unachieve

:sender z

:receiver x

:in-reply-to id ea

:reply-with id ca’

:language Prolog

:ontology MAPFS

:content “exists(d,Gx)”)

Fig. 4. Performative of invalidation of data in the cache

4 MAPFS Agents Implementation and Evaluation

Agents are useful in the design of a complex system, and, concretely in the design of a
parallel file system, as we have shown in previous sections. Nevertheless, it is necessary
to validate this paradigm within this field, evaluating the increase of the performance of
the implementation of MAPFS and its multiagent subsystem.

The implementation of the multiagent subsystem is based on MPI technology. MPI
provides a framework for deploying agents and their main features. MPI is able to create
dynamically independent and autonomous processes with communication capacities.
Additionally, agents can react to the environment or changes in other processes by
means of a MPI message. In fact, KQML performatives are translated to MPI messages
by MAPFS, as it is described below.

KQML defines an abstraction for transport for agent communication and can be
implemented with different solutions. MPI is a good choice, since this technology fulfill
the requirements of KQML performatives. The translation of the most relevant KQML
performatives into MPI messages is shown in Table 1.

94 M.S. Pérez et al.

Step 3.2

u ∈ HA

(achieve

:sender z

:receiver u

:reply-with id ca”

:language Prolog

:ontology MAPFS

:content “ask(h,v)”)

(a) Performative for the
hint request from an cache
agent to a hint agent.

Step 4.1

(tell

:sender u

:receiver z

:in-reply-to id ca”

:reply-with id ha

:language Prolog

:ontology MAPFS

:content “exists(h,Gx)”)

(b) Response performative from a
hint agent to a cache agent, once
hints are obtained.

Fig. 5. Performatives related to a hint agent

Table 1. Translation of KQML performatives into MPI messages

KQML Performative MPI Messages
ask-one MPI Send

MPI Recv a single basic element
ask-all MPI Send

MPI Recv a vector of elements
tell MPI Send
untell MPI Send
deny MPI Send
insert MPI Send
uninsert MPI Send
achieve MPI Send
unachieve MPI Send
error MPI Send
sorry MPI Send
forward MPI Send

Interpretation of the included performative

It is important to emphasize that MPI only solves the communication problem. The
semantic is provided by the messages content and the processing of such message by
the receiver agent.

Design and Evaluation of an Agent-Based Communication Model 95

Fig. 6. Control flow of system performatives

Fig. 7. Comparison of a scientific application in PVFS and MAPFS

A MAPFS multiagent subsystem responsible for prefetching has been implemented
and evaluated. If we compare PVFS (Parallel Virtual File System) [5] and MAPFS
(Figure 7), we conclude that the usage of agents is a flexible way of increasing the
performance, improving the efficiency of PVFS by means of a multiagent subsystem
oriented to prefetch probably used data in next executions.

5 Conclusions and Future Work

MAPFS is a multiagent parallel file system, whose design is based on agent theory. Sev-
eral multiagent subsystems are implemented in MAPFS for tackling different aspects
related to its performance. This paper shows the evaluation of a multiagent subsystem
used for prefetching probably used data in next executions, concluding that MAPFS
system can improve its efficiency in a flexible way by means of the usage of these mul-

96 M.S. Pérez et al.

tiagent subsystems. This paper also describes how to translate conceptual abstractions
based on agents in implementations of close technologies to system programming. In
the case of MAPFS, a implementation based on MPI has been used.

As future work, we are developing new multiagent subsystems for improving other
aspects of the MAPFS system. Additionally, we have implemented MAPFS-Grid as a
version of MAPFS for grid environments. We need to adapt these multiagent subsystems
to this new version. Nevertheless, in this kind of system we have to face with different
problems, related to the heterogeneity and geographical distribution of grids.

References

1. American National Standard. Knowledge Interchange Format. Draft Proposed American Na-
tional Standard (dpANS), NCITS.T2/98-004, 1998.

2. N. M. Avouris and L. Gasser. Distributed Artificial Intelligence: Theory and Praxis. Volume
5 of Computer and Information Science. Kluwer Academic Publisher, Boston, MA, 1992.

3. C. P. Azevedo, B. Feiju, and M. Costa. Control centres evolve with agent technology. IEEE
Computer Applications in Power, 13(3):48-53, 2000.

4. Lubomir Bic, Munehiro Fukuda, and Michael B. Dillencourt. Distributed programming using
autonomous agents. IEEE Computer, 29(8):55-61, 1996.

5. P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A parallel file system for linux
clusters. In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317-327,
October 2000.

6. N. R. Jennings et al. ADEPT: Managing business processes using intelligent agents. In Pro-
ceedings of the BCS Expert Systems 96 Conference, Cambridge, UK, pages 5-23, 1996.

7. Tim Finin,Yannis Labrou, and James Mayfield. KQML as an agent communication language.
"Software Agents", MIT Press. Cambridge, 1997.

8. Eugene Gendelman, Lubomir F. Bic, and Michael B. Dillencourt. Fast file access for fast
agents. Proceedings of the 5th International Conference, MA 2001., 2240:88-102, 2001.

9. Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform architecture. Infrastruc-
ture for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems, March 2001.

10. Staffan Hägg. Agent technology in industrial applications. In Proceedings of the Australia-
Pacific Forum on Intelligent Processing and Manufacturing of Materials (IPMM’97), 1997.

11. N. R. Jennings, J. M. Corera, L. Laresgoiti, E. H. Mamdani, F. Perriollat, P. Skarek, and L. Z.
Varga. Using ARCHON to develop real-world DAI applications for electricity transportation
management and particle accelerator control. IEEE Expert, 1995.

12. Yannis Labrou and Tim Finin. A Proposal for a new KQML Specification. Technical Report
TR CS-97-03, Baltimore, MD 21250, 1997.

13. E. Pitoura. Transaction-Based Coordination of Software Agents. In Proceedings of the 9th
International Conference on Database and Expert Systems Applications (DEXA), 1998.

14. Marı́a S. Pérez, Félix Garcı́a, and Jesús Carretero. A new multiagent based architecture for
high performance I/O in clusters. In Proceedings of ICCP’01, September 2001.

15. Marı́a S. Pérez, Félix Garcı́a, and Jes´us Carretero. MAPFS MAS: A model of interaction
among information retrieval agents. In 2nd IEEE/ACM CCGrid 2002, May 2002.

16. K. Segun, A. Hurson, V. Desai, A. Spink, and L. Miller. Transaction management in a mobile
data access system. Annual Review of Scalable Computing, 3:85-147, 2001.

17. Aamir et al. Shafi. DIAMOnDS - DIstributed Agents for MObile and Dynamic Services. In
Proceedings of the CHEP03, March 24-28 2003.

	Introduction
	Problem Statement and Related Work
	MAPFS Overview
	Related Work

	Generic Structure of an Agent in MAPFS
	MAPFS Performatives
	Cache Agent. A Sample Agent

	MAPFS Agents Implementation and Evaluation
	Conclusions and Future Work

