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Abstract. Evolutionary techniques are one of the most successful paradigms in
the field of optimization. In this paper we present a new approach, named GA-
EDA, which is a new hybrid algorithm based on genetic and estimation of
distribution algorithms. The original objective is to get benefits from both
approaches. In order to perform an evaluation of this new approach a selection
of synthetic optimizations problems have been proposed together with two real-
world cases. Experimental results show the correctness of our new approach.
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1   Introduction

Evolutionary techniques stand from the assumption that a restricted set of solutions
could be evolved to improve solutions in an iterative process. The evolutionary
process is driven by a fitness function, which measures how good each solution is.

Many pure (GAs and EDAs) techniques have been proposed as well as other
combination of them, named hybrid algorithms. Examples of them are: ERA, which
incorporates, simulated annealing. [Rodriguez-Tello & Torres-Jimenez, 2003];
GASAT that incorporates local search within the genetic framework [Hao & Lardeux
& Saubion, 2002]; and an integrated Genetic Algorithm with Hill Climbing that
solves the matrix bandwidth minimization problem [Lim & Rodrigues & Xiao, 2003].
Also, a hybrid algorithm based on the combination of EDA with Guided Local Search
(GLS) for Quadratic Assignment Problems (QAP) [Zhang & Sun & Tsang & Ford,
2003]; another hybrid genetic algorithm that combines efficient local heuristic and
aging mechanism for the hexagonal tortoise problem [Choe & Choi & Moon, 2003].

In this paper we present a new approach, named GA-EDA, which is a new hybrid
algorithm based on genetic and estimation of distribution algorithms.   

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /SMinionPlus-Regular /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Nein     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /SMinionPlus-Regular /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



362 J.M. Peña et al.

2   Evolutionary Optimization Methods

Among the different evolutionary techniques the best known are Genetic Algorithms,
although new approaches, like Estimation of Distribution Algorithms, have arise in
the very last years.

2.1   Genetic Algorithms

Genetic Algorithms are heuristics search and optimization algorithms, highly parallel,
inspired by the Darwinian principle of natural selection and genetic reproduction
[Goldberg, 1989].

Genetic Algorithms begins with a population of individuals, each one representing
a possible solution of a given problem. These individuals are represented as
chromosomes. Chromosomes generally are sequences of bits, but often the problem
demands one more complex representation. Any chosen representation, should to be
able to represent the entire space search to investigate. Representation must be
minimum since if it contains unnecessary information the size of the space search
increase and therefore the efficiency of the GA decreases during the search.

Pseudocode for the GA approach:

P0 ← Generate M individuals (the initial population)
Repeat until stopping criterion is reached (i = 1…n):

• Selection:
- Pintermediate ← Select N individuals (N ≤ M) from Pi-1 according to

some selection mechanisms
- Select P individuals (P ≤ N) from Pintermediate that will be the

progenitors
• Reproduction:

- P individuals of Pintermediate are selected and joined in pairs, and Q
descendants are generated

- Pintermediate ← N + Q
• Replacement:

- Pi ← Select M individuals from Pintermediate, generally the fittest.

2.2  Estimation of Distribution Algorithms

EDAs [Larrañaga & Lozano, 2001] [Mühlenbein, 1998] are non-deterministic,
stochastic heuristic search strategies that form part of the evolutionary computation
approaches, where a number of solutions or individuals are created every generation,
evolving once and again until a satisfactory solution is achieved. In brief, the
characteristic that differentiates most EDAs from other evolutionary search strategies
such as GAs is that the evolution from a generation to the next one is done by
estimating the probability distribution of the fittest individuals, and afterwards by
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sampling the induced model. This avoids the use of crossing or mutation operators,
and the number of parameters that EDAs require is considerably reduced.

In the pseudocode of a generic EDA algorithm, we can distinguish four main steps:

1. At the beginning, the first population D0 of M individuals is generated.
2. A number N (N <= M) of individuals are selected, usually the fittest.
3. The n–dimensional probabilistic graphical model that better expresses the

dependencies among the n variables is induced.
4. A new population of M new individuals is obtained by simulating the probability

distribution learnt in the previous step.

2.3   Comparative Results

There are several studies of the properties and qualities of these two approaches for
different problems (see chapters 13,16 and 17 of [Larrañaga & Lozano, 2001]). One
of the most important results obtained on these and similar studies is that none of
them outperforms the other for all the possible problems. There are cases in which
GAs converge slower to the solution and there are other cases in which EDAs fall in a
local optimum. Sometimes the absolute optimum is obtained only by one of these
algorithms. The reason depends on characteristics of the very problem, and only for
few specially designed problems is possible to predict whether GAs or EDAs are
going to perform better.

3   Hybrid GA-EDA Algorithm

On this paper we propose a new algorithm based on both techniques. The original
objective is to get benefits from both approaches. The main difference from these two
evolutionary strategies is how new individuals are generated. These new individuals
generated on each generation are called offspring. On one hand, GAs uses crossover
and mutation operators as a mechanism to create new individuals from the best
individuals of the previous generation. On the other, EDAs builds a probabilistic
model with the bests individuals and then sample the model to generate new ones.

Participation Function Our new approach generates two groups of offspring
individuals, one generated by the GA mechanism and the other by EDA one.
Populationp+1 is composed by the best overall individuals from (i) the past population
(Populationp), (ii) the GA-evolved offspring, and (iii) EDA-evolved offspring.

The individuals are selected based on their fitness function. This evolutionary
schema is quite similar to Steady State GA in which individuals from one population,
with better fitness than new individual from the offspring, survive in the next one. In
this case we have two offspring pools. Figure 1 shows how this model works.
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Fig. 1.  Hybrid Evolutionary Algorithm Schema

On this new approach an additional parameter appears, this parameter has been
called Participation Function (PF). PF provides a ratio of how many individuals are
generated by each mechanism. In other words, the size of GA and EDA offspring sets.
The size of these sets also represents how each of these mechanisms participates on
the evolution of the population. These ratios are only a proportion for the number of
new individuals each method generates, it is not a proportion of individuals in the
next population, which is defined by the quality of each particular individual. If a
method were better that the other in terms of how it combines the individuals there
would be more individuals from this offspring set than the other.

The following alternatives for Participation Functions are introduced:

Constant Ratio (x% EDA / y% GA)
The percentage of individuals generated by each method is constant during all the
generations. For example, 30% of the individuals are generated by GA crossover and
mutation and 70% by the EDA probabilistic graphical model.

Populationp
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mutation

GA offspring EDA offspring
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GA participation 
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EDA participation 
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Participation Function (PF)
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Incremental Ratio (EDA++ and GA++)
The partition ratio for one of the mechanism increases from one generation to the
other. There are two incremental Participation Functions, GA Incremental Function
and EDA Incremental Function. The ratio is defined by the formula1:

genM
genratio
+

=

Alternative Ratio (ALT)
On each generation it alternates either GA or EDA generation method. If the
generation is an even number GA mechanism generates all offspring individuals, if it
is an odd number is the EDA method.

Dynamic Ratio (DYNAMIC)
As a difference with the previous Participation Functions that are static (and
deterministic), we also propose a dynamic adaptative function. The idea is to have a
mechanism that increases the participation ratio for the method that happens to
generate better individuals. This function is evaluated each generation considering the
possibility to change the participation criterion (defined by the ratio array).

This function performs according to the following algorithm:
diff=(MAX(avg_score[GA],avg_score[EDA])-base)/
     (MIN(avg_score[GA],avg_score[EDA])-base);
if(avg_score[GA]>avg_score[EDA]){
 ratio_inc=ratio[EDA]*ADJUST*diff;
 ratio[GA]  += ratio_inc;        ratio[EDA]= 1.0 - part[GA];
}
else if(avg_score[GA]<avg_score[EDA]){
 ratio_inc=ratio[GA]*ADJUST*diff;
 ratio[EDA] += ratio_inc;        ratio[GA] = 1.0 - part[EDA];
}

Where avg_score is an array of the average fitness score of the top 25% of the
individual generated by each of the offspring methods2. As the best fitness score is
monotonically increasing this value is always greater than 1. ADJUST is a constant
that defines the size of the steps of the dynamic update (5% in our experimentation).

This algorithm starts with 50%/50% ratio distribution between the two methods.
On each generation the best offspring individuals from each method are compared
and the wining method gets a 5% of the opposite method ratio (scaled by the amount
of relative difference between the methods, diff variable). This mechanism provides
a contest-based dynamic function, in which methods are competing to get higher ratio
as they generate better individuals.

                                                          
1 gen is the number of the generation and M is called the Mid-point that represents at which

generation the ratio is 50%/50%. Function is 0 at the first generation and never reaches 1.
2 base is the best fitness score obtained in the first generation (used to scale fitness values).
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4   Evaluation of the New Algorithm

The hybrid algorithm proposed is composed by the simplest versions of both GA and
EDA component. In this sense a single bit-string chromosome has been used to code
all the problems. GA uses “Roulette Wheel” selector, one-point crossover, flip
mutation and uniform initialization. EDA uses UMDA probabilistic model. The
overall algorithms generate an offspring twice the size of the population (this
offspring is then divided between two methods depending on the ratios provided by
the Participation Function). The composition of the new population is defined by a
deterministic method, selecting the best overall fitness scores from the previous
population and both offspring sets.

All experiments have been run ten times, and the values in the figures of the
experimental result section are the average of these executions. As Participation
Functions for the hybrid approach we have tested the next ones: 75% EDA/ 25% GA,
50% EDA / 50% GA and 25% EDA / 75% GA as constant ratio functions, as well as
EDA++, GA++, ALT, and DYNAMIC functions.

4.1   Description of the Problems

Four classes of problems were empirically tested on our new hybrid approach, two
artificial problems (4-bit fully deceptive function and 240 bit Holland royal road) and
two real problems (SAT problem and feature subset selection problem).

4-Bit Fully Deceptive fuNction
Deceptive trap functions are used in many studies of GAs because their difficulty is
well understood and it can be regulated easily [Deb & Golberg, 1993]. We have used
the 4-bit fully deceptive function of order 2, defined by Whitley and Starkweather in
their paper GENITOR II [Whitley & Starkweather, 1990]. The problem is a 40 bit
long maximization problem, and is comprised of 10 sub-problems, each 4 bits longs.

240 Bit Holland Royal Road
The Royal Road functions were introduced in [Mitchell et al., 1992]. They were
designed as functions that would be simple for a genetic algorithm to optimize, but
difficult for a hillclimber. In [Holland, 1993], Holland presented a revised class of
Royal Road functions that were designed to create insurmountable difficulties for a
wider class of hillclimbers, and yet still admissible to optimization by a GA.

The Holland Royal Road function takes a binary string as input and produces a real
value. The function is used to define a search task in which one wants to locale strings
that produces high function values. The string is composed of 2k non-overlapping
continuous regions, each of length b+g. With Hollands’s defaults, k=4, b=8, g=7,
there are 16 regions of length 15, giving and overall string length of 240. Each region
is divided into two non-overlapping pieces. The first, of length b, is called the block,
and the second, of length g, is called the gap. In the fitness calculation, only the bits in
the block part of each region are considered.
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SAT Problem
The goal of the satisfiability (SAT) problem [Rodriguez-Tello & Torres-Jimenez, 2003]
is to find an assignment of truth-values to the literals of a given boolean formula, in its
conjunctive normal form, that satisfies it. In theory SAT is one of the basic core NP-
complete problems. In practice, it has become increasingly popular in different research
fields, given that several problems can be easily encoded into propositional logic
formula such as planning, formal verification, knowledge representation and so on.

In GAs and EDAs the SAT problem is represented using binary strings of length n in
which the i-th bit represents the truth-value of the i-th propositional variable in the
formula. The fitness function used is the fraction of clauses satisfied. To test the
algorithm developed the SAT instances 4blocksb.cnf was used, since they are widely-
known and easily available from the SATLIB benchmark3.

Feature Subset Selection
Feature Subset Selection (FSS) is a well-known task in the Machine Learning, Data
Mining, Pattern Recognition and Text Learning paradigms. FSS formulates as follows:
Given a set of candidate features, select the best subset under some learning algorithm.
As the learning algorithm we are going to use naïve Bayes [Duda & Hart, 1973] [Hand
& Yu, 2001]. A good review of FSS algorithm can be found in [Liu & Motoda, 1998].
To test the FSS problem we will use the chess dataset from the UCI repository [Murphy
& Aha, 1995], which has a total of 36 features and 699 instances.

Results: 4-Bit Fully Deceptive Function
Figure 2 shows the results for the 4-bit fully deceptive function using a population of
1000 individuals. Results for other size of populations are really similar.

(a) Constant Participation Functions                     (b) Other Participation Functions

Fig. 2.  Results for the 4-bit Fully deceptive function

The best results are obtained with EDAs, while the worst are obtained with GAs. Using
EDAs the maximum is reached in approximately 23 generations. On the other hand,
using GAs, after 91 generations the maximum is never found. About our new hybrid
approaches, we always reach the maximum, being the best Participation Function the
dynamic one, which reaches the maximum in 27 generations and the worst Participation

                                                          
3  (http://www.satlib.org/benchm.html). 4blocksb.cnf contain 24758 clauses, 410 propositional

variables and is satisfiable.
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Function the constant ration with 25% EDA / 75% GA which reaches the maximum in
36 generations.

In conclusion, we always reach the maximum with our hybrid approaches and the
bad results obtained with GAs only affect our hybrid in the number of generations
required.

Results: 240 Bit Holland Royal Road
This problem is just the opposite of the previous one. As it is possible to see in Figure 3,
with a population of 1000 individuals, the performance of GAs is much better than the
performance of EDAs. With EDAs is only possible to achieve a fitness value of 12.91,
while with GAs this value is 21.07. However, most of the hybrid approaches are better
than GAs, being the best obtained value 22.37 with the DYNAMIC and the
CONSTANT 75% GA / 25% EDA Participation Functions.
In conclusion, for the 240 bit Holland Royal Road problem our hybrid approach
performs better than GAs and EDAs.

(a) Constant Participation Functions                (b) Other Participation Functions
Fig. 3.  Results for the Holland Royal Road problem

Results: SAT Problem
The experimental results obtained for the SAT problem are quite similar to the results of
the 4-bit fully deceptive function (see Figure 4). The best results are obtained with
EDAs, while the worst are obtained with GAs. Using EDAs the maximum (fitness =
47803) is reached in approximately 43 generations. On the other hand, using GAs, after
64 generations the maximum obtained is 47142.

(a) Constant Participation Functions                (b) Other Participation Functions
Fig. 4. Results for the SAT problem
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Our new hybrid approaches the best Participation Function is EDA++, which gives a
fitness value of 48000. With the DYNAMIC, 25% EDA / 74% GA and 50% EDA /
50% GA Participation Functions the results are also good.

Feature Subset Selection
In the FSS problem GAs performance is better than EDAs performance. However, the
hybrid solution using 50% EDA / 50% GA is better than both of them.

Fig. 5.  Results for the FSS problem

4.2   Dynamic Participation Function: Evaluation

One of the most interesting aspects researched by this contribution is to know how the
dynamic Participation Function performs for different kind of problems. This result
provides an idea of how suitable is each of the methods for a specific kind of problem.
And more useful, during the execution of the algorithm what is the performance base
on the generation. Figure 6 shows the Percentage of GA participation in the Dynamic
Participation Function for the four problems. In three of the four problems we can
observe the same tendency, first we start to use the genetic algorithms, and after some
generations the use of EDAs increase. This tendency is bigger in the problems in
which GAs performs better than EDAs. However, it is necessary to remark that in the
last generations, EDA algorithm always increases.
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Fig. 6. Percentage of GA participation in the Dynamic PF

5   Conclusions and Future Work

In this paper we have proposed a new hybrid algorithm based on genetic and
estimation of distribution algorithms. This new algorithm has been tested on four
different problems: 4-bit fully deceptive function, Holland Royal Road, SAT problem
and Feature Subset Selection. Although the hybrid algorithm proposed is composed
by the simplest versions of both GA and EDA components and only works with bit-
string individuals, the experimentation shows it is really promising and competitive.
In most of the experiments we reach to the best of the values found by GAs or EDAs
or even we improve them.
There is still a lot of further future work: Extend the implementation to support more
sophisticated individual representations, for example with continuous genes, make
new Participation Functions, make experimentation in more problems, implement a
parallel version or use more complex GAs and EDAs in the hybrid solution.

Acknowledgements. The authors would like to acknowledge Raquel Hernández for
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useful comments.
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