
ffi
EISEVIER

fournal of
Parallel and
Distributed
Computing

www.elsevier.com/locate/jpdc

A new formalism for dynamic reconfiguration of data servers in a cluster

María S. Pérez*, Alberto Sánchez, José M. Peña, Víctor Robles

Department of Computer Architecture and Techrutlogy, Politechnical University oJ Madrid, Madrid, Spain,

Available online 20 June 2005

Abstract

The use of parallel file systems constitutes a high-performance solution to the problem known as I/O crisis in parallel or distributed
environments. In the last years, clusters have become one of the most cheap and flexible frameworks for the deployment of parallel and
disfibuted applications. Both parallel file systems and clusters have been successfully used in several scenarios, where it is possible to
share and access data in an efficient way. In f'act, clusters provide a huge number of advantages to this kind of systems, the wide availability
of tools integrated with them being one of the most important. Nevertheless, clusters and, in general, high-availability disributed systems
are characterized to be dynamically modified. Operations such as the addition or elimination of nodes are typical in a cluster environment.
Therefore, it is necessary to use new approaches for the dynamic reconfiguration of the nodes that belong to a cluster. This paper describes
a mathematical formalism for achieving high-performance and dynamic reconfiguration of data-based clusters with service maintenance.
@ 2005 Elsevier Inc. All rishts reserved.

Keywords: Dynamic reconfiguration; Clusters; Parallel I/O; Data servers; Distributed systems

Available online at www.sciencedirect.com

o E N . E
d o r ^ . . r .

J. Parallel Disrib. Comput. 65 (2005) 1134-1145

1. Introduction

Clusters are rapidly becoming a standard platform for high
performance and reliable computing. The main reasons are
their low cost, high performance, and the flexibility of their
off-the-shelf hardware components.

In the last years, a huge number of software tools and
applications have been developed for being used in clusters
of workstations. One significant example of these applica-
tions is the development of parallel file systems oriented to
clusters, such as parallel virtual file system (PVFS) [4] or
multiagent parallel file system (MAPFS) [2]. These sys-
tems combine the advantages of parallel file systems and
clusters.

MAPFS is a multiagent file system that provides an efñ-
cient access to data stored in the server-side ofcluster archi-
tecture. MAPFS is based on a client module able to interact

+ Corresponding author.
E- mail addresses: mperez@fi .upm.es (M.S. Pérez),

ascampos@fi .upm.es (A. Sánchez), jmpena@fi.upm.es (J.M. Peña),
vrobles@fi .upm.es (V. Robles).

0743-7315/$-see front matter @ 2005 Elsevier Inc. All rights reserved.
doi: 10. I 01ó/j jpdc.2005.04.0 I 8

with different traditional or distributed servers, providing
them parallel VO features. It presents several advantages:

o MAPFS is a multiagent-based architecture for high-
performance VO in clusters.

o It is easily integratable with conventional distributed sys-
tems, since MAPFS is based on these kinds of systems.
MAPFS also makes the coexistence of distributed and
traditional partitions possible.

o The building of the parallel file system is simpler, be-
cause it is based on an existing file server, whose perfor-
mance has been widely tested. This approach is differ-
ent from most of the current parallel file system, which
are built from scratch, both client and server sides. This
last feature makes systems more difficult to integrate in
distributed environments.

o MAPFS allows applications to access in a parallel way
to both data of different files and data of the same file,
which reduces the bottleneck that constitutes the access
to conventional servers.

o MAPFS improves the use of system resources, because
data distribution amons diff'erent servers leads to a better
load balancing.

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2005) 1134-1145 1 135

o MAPFS fits the heterogeneous nature of a distributed
system, because it can use servers with different archi-
tectures and operating systems.

Nevertheless, clusters are usually dynamic environments,
characterized by the use of operations that modify their con-

figuration. For this reason, MAPFS needs to use a new ap-
proach for solving the problem of data management in a
changing environment, where clusters are reconfigured dy-

namiially and, therefore, data servers are modified. This ap-
proach is the definition of the storage groups. This paper

describes the concept of storage group and its deployment
within MAPFS file system. The main requirement is that
MAPFS must keep its service during the use of reconfigu-
ration operations.

The outline of this paper is as follows. Section 2 describes
the problems of data intensive applications, which we need

to address by means of a flexible UO architecture. Con-

cretely, we analyze the needs of reconfiguration of the appli-

cations and the problem of keeping the data service during

the phase of the dynamic changes. In this section, we also

describe other approaches used for the dynamic reconfigu-
ration. Section 3 presents the formalism of storage groups,

which is used for the dynamic management of servers in

MAPFS. Section 4 shows the results obtained for the evalua-

tion ofthe use ofstorage groups, analyzing different aspects

related to them. Section 5 presents the advantages and dif-
ferences of storage groups versus other approaches. Finally,

Section 6 summarizes our conclusions and suggests further
future work.

2. Problem statement and related work

2.L Data-intensive applications and their I/O needs

The emergence of applications with greater processing

and speedup requirements, such as grand challenge applica'

tions (GCA), involves new computing and VO needs. Many

of these applications require access to huge data repositories

and other VO sources, being the VO phase a bottleneck in

the computing systems, due to its poor performance. Exist-

ing data-intensive GCA have been used in several domains,
such as physics [8], climate modeling [9], biology [15] or vi-

sualization [5]. The VO problem is not solved in these kinds

of applications. New approaches are required in this scene,
On the other hand, the use of clusters constitutes one

of the most successful and stable distributed solutions. In

fact, clusters have become a cheap and flexible solution to

the deployment of parallel and distributed computing. Fur-
thermore, a huge number of systems and applications have

been developed for being used in this kind of infrastructures.
These applications need tools for managing and configuring
properly the cluster, and concretely, the data servers. One

of the most important problems in this scenario is provid-

ing service maintenance during the changes in the hardware

and software infrastructure. MAPFS offers different tools
for giving this service,

2.2. Related work

With respect to approaches used for the dynamic recon-
figuration of servers, there are different alternatives similar
or related to the MAPFS storage groups, defined in Sec-
tion 3.1. Two different VO architectures are analyzed here.
The xFS file system [1] defines the concept of stripe group

as subsets of storage servers and the GFS file system [13]
defines network storage pool (NSP) as a set of physically

shared devices.
A stripe group in xFS is a set of storage servers. xFS dis-

tributes data through all the storage servers, implementing a

software RAID. xFS uses a striping system, based on logs,

in a similar fashion as Zebra [7]. The main goal of stripe
groups is reducing the problem ofthe scalability, which ap-
pears when the stripe is made over a huge number of disks'
Grouping servers, data distribution is made without losing
performance. In fact, Zebra, which does not use grouping,

is limited by the maximum number of servers that can be

used properly. Like MAPFS, xFS provides dynamic recon-
figuration of servers, in the case a node leaves or joins to the

architecture. For managing the way in which stripe groups

works, xFS uses a structure named stripe group map, which

stores information about every stripe group. Moreover, xFS

defines two kind of groups, current groups and obsolete
groups. When a server leaves or joins the system, xFS mod-
ifies the map, in such way that every active server belongs
exactly to one of the current storage groups. If this recon-

figuration changes the ownership of a concrete group, xFS

does not delete the old entry of the group. Instead of this,
xFS marks such entry as "obsolete". Clients only write in

current groups, although can read from both current and ob-

solete groups. Thus, there is no data transference from obso-
lete groups to current groups. On the other hand, in systems

based on logs, a cl¿aner process is responsible for elimi-
nating obsolete entries. This process transfers data from ob-

solete groups to current groups along the time. When this
process moves the last item from an obsolete group, xFS

deletes its entry of the stripe group map.
As we mentioned previously, a NSP or pool in GFS is a

set of physically shared devices. Subpools are divisions of
the NSP according to the features ofthe devices. These fea-

tures are the latency and the bandwidth. A subpool of high

bandwidth devices contains devices attached to clients with

one or more high bandwidth links. Meanwhile, a subpool
of low latency devices is composed of solid state devices.
A GFS implementation can exploit several performance
features, using different subpools. For instance, GFS can lo-

cate often referenced files in low latency subpools and large
files in high bandwidth subpools. The other choice is locat-

ing data and metadata in different subpools, data in high

bandwidth subpools and metadata in low latency subpools,

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2005) I134-1145

in order to increase the performance of VO operations.
Additionally, resource groups (RG) are defined in GFS
as groups that distribute system resources through a NSP.
There are multiple RGs per device. RGs make the location
of files in different subpools easier. Advanced users or some
specific applications can exploit the parallelism through
the file transference between RGs. File migration can be
used for making a good load balancing between different
devices.

3. Proposed approach

3.1. Storage groups

The concept of grouping is fundamental in every aspect
of the life. Edwin P. Hubble, who is considered the founder
of the observational cosmology, said in the 1930s that the
best place for searching for a galaxy is next to another one,
describing the concept ofgalaxy grouping. Like in real life,
computer science has a significant number of groupings,
such as process group or user group, which are used for
representing sets of objects from the computing field.

A storage group is defined in MAPFS as a set of servers
clustered as groups providing data storage capabilities.
These groups take the role of data repositories and can be
built by applying several policies, trying to optimize the
access to all the storage groups.

A file is said to be associated to a storage group if file data
are distributed among the servers belonging to such storage
group.

Providing dynamism to the servers management is one
of the main goals of the definition of storage groups, in
such a way that we can add and modify dynamically servers
to existing or new groups. In fact, the main advantages of
storage groups are:

(1) Logic abstraction of the concept of storage server: As a
partition is a logic abstraction of the physical disk, the
storage group is also a logical abstraction ofthe storage
server concept.

(2) Dynamic management of servers: As we mentioned pre-
viously, the use of storage groups provides dynamic
management of servers through the MAPFS interface.

(3) Efficiency of the storage operations: Policies used in the
system provide a way ofincreasing the global efficiency
of the system.

(4) Load balancing: It is possible to use a concrete storage
group in order to optimize system load balancing, de-
pending on the load of the remaining storage groups.

(5) Transparent migration: In addition to the MAPFS inter-
face, the system can change the distribution of storage
groups in a transparent way in order to optimize differ-
ent aspects related to the system performance.

In a first step, storage groups are considered as a partition
of all the servers of the system.

Let be a set of servers S : U;,; Sili¡. We define the set
G : {Gr, Gz,. . . ,Gnl of storage groups. Every group G¡
contains a set of servers S¡g¡, that is,

G r : { S r (r) , . . . , S r (') }
G z : { 5 2 ¡ ¡ , . . . , 5 2 < r ¡ 1 ,

G , r : { $ r (1) , . . . , $ r (l) } . (l)

The function used for building this association between
servers and storage groups is called grouping function and
is written as A6 ; S --+ G. In short:

2c(S¡) * G¡ e S¡ e. G¡,

where),6 must be defined in the domain of S.
Let R6 be a relation defined over the cartesian product

of the elements of S, which is called grouping relation. Tlte
relation R6 between servers $ and S; is defined as

S ¡ R c S ; e * l S ¡ € G t A 5 7 € G ¡ .

Proposition l. If the grouping function is an injective ap-
plication, then the relation R6 is an equivalence relation,
which defines the partition of Eq. (l), that is, R6 is a par-
tition of the set of servers S. Therefore, this relation has
reflexiv e, c o mmut ativ e and t ran s it iv e p ro p e rt i e s.

3.1.1. Limitations of the definition of storage groups as
partition

Defining storage groups as a partition of the set of all the
servers has as main advantage the simplicity of this kind of
relation, because a server only belongs to a single group.
Thus, the estimation and optimization of different param-
eters related to the storage groups is very simple. Further-
more, it is possible to achieve load balance in the system,
because a storage group is completely independent of the
rest of storage groups and thus the load can be easily cal-
culated. If the structure of the storage groups is flexible,
the optimization of such parameters could be a NP-hard
problem.

Nevertheless, these kinds of storage groups do not rep-
resent the dynamism of the system correctly and thus they
are not suitable for representing situations in which several
servers may join to existing groups or change its group. In
this case, it is necessary to specify what will happen with
files stored in such a server. Because of this, it is neces-
sary to extend this model with a new formalism that pro-
vides more flexibility to the operations of storage groups and
servers.

In order to define this new model, we are going to analyze
different scenarios:

(l) Creation of a storage group from empty servers: In this
case, the creation of a group is previous to the creation

M.S. Pérez et al. / J. Parallel Dístrib. Comput.65 (2005) I134-1145 tt37

of files or directories in its servers. Therefore, the group

is configured before the distribution of the information.
(2) Creation of a storage group from non-empty servers:

A storage group is composed of servers with files. To

redistribute this information among the components of

a new group is a very inefficient choice. For this rea-

son, it is necessary to deal with files distributed among
different number of servers within the same storage
group.

(3) Joining a server to an existing storage group: This case

constitutes a generalization ofthe previous scenario. As

in the previous case, the redistribution is not a valid

option, because it is very inefficient.
(4) Creation of a storage group from two existing groups:

This case is a generalization again of the previous sce-
nario. Different groups with different distributions are
joined in a new group. The redistribution is not used

either.
(5) Elimination of a server from a storage group: In order

to keep the stored information, it is necessary to redis-

tribute the information among the rest of the compo-
nents of the storage group. It is advisable to make this

operation in low-load hours.
(6) Elimination of a storage group: The information of a

storage group must be redistributed in other group. This

operation must also be made in low-load hours.

Next, all these situations are going to be analyzed.

3.L2. Creation of a storage group from empty servers
The data distribution over a new storage group is made

through a set of nodes initially empty, and therefore, all

the files are distributed in a homogeneous way among such

nodes. This situation does not involve any problem in a

dynamic environment.

3.1.3. Creation of a storage group from non-empty servers

This section deals with the creation of a storage group

from servers that contains files, distributed or not. The dif-

ference between the previous case and this one is that in

this last case, at first sight, it is necessary ¡o reconstruct

the information if files must be homogeneously distributed
among all the servers belonging to their storage group.

The problem of the reconstruction of information is dealt

in the following section, because it affects all the situa-

tions in which the topology is changed. We will see that

the reconstruction is not a feasible solution in most of the

situations.

3.1.4. Reconstruction of the information
One of the most important aspects related to the distribu-

tion of the information is the way in which the reconstruc-

tion of the information is performed when a node is added

to the initial topology or a new storage group is created from

non-empty servers,

The first alternative is to reconstruct the information Dy

brute force, which consists of the following steps:

(l) read all the files,
(2) write the data blocks in new files taking into account

the new topology,
(3) delete old files.

This option is very inefficient. Because the addition of

nodes is feasible in high-performance environments, the

change of topology is a very usual operation. This fact

together with the facilities offered by clusters for recon-

figuration [3] implies that this technique is not a suitable

solution.
On the other hand, when the topology is changed, the

UO system needs to know these changes. The advantage

of redistributing the information is that these changes are

transparent for the VO system.
Storage groups provide an intermediate solution, in such

way that the data redistribution is only made when a node

is deleted from a existing storage group. To avoid the redis-

tribution, when a node is included in the topology, a new

storage group is created, including all nodes plus the new

node. When a node disappears from the topology, the in-

formation must be redistributed among the new topology.

Nevertheless, this reconstruction is made within the storage
group.

Therefore, storage groups simplify the reconstruction in

two different ways:

(l) Reconstruction operations are limited to a single storage
group.

(2) In principle, the reconstruction is only made when a

node is deleted.

Nevertheless, avoiding the reconstruction in the addition

operation has a collateral effect: if the topology is often

changed, a great number of storage groups are created with

small differences between them. To tackle this disadvan-
tage, the system provides storage groups defragmentation,
with the same goal than the disk defragmentation [14],
avoiding the fragmentation of data among lots of groups.

This operation is implemented by MAPFS and is named

mapGroupDefragmO. This operation will be described
in depth in Section 3.2.1.

Therefore, in order to create a storage group from non-

empty servers, avoiding the information reconstruction, we

will create as many group as different files distributions plus

a group with all the servers, named main group.

Definition 1. A file distribution is the list of servers
(Sr ,Sz, . . . ,Sn) in which data are homogeneously d is-
tributed or sliced.

Definition 2. A main group that belongs to a set of servers

is a storage group that includes all the servers of such

a set and has the same distribution for all the files that

stores.

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2005) 1134-1145

Typically, if we join ,? servers without common files, it is
necessary to create n * I storage groups, one per server and
other more, the main group, which is initially empty.

The main group is visible by the applications; the rest
of the groups are used exclusively for avoiding the system
degradation, as we described previously. For this reason, the
rest of the groups are named invisible groups or secondary

Sroups.

Definition 3. An invisible group or secondary group is a
storage group that is not a main group of a set of servers.

Observation l. The main group that belongs to a set of
servers is a superset of all the storage groups which include
some of the servers.

3.1.5. Joining a server to an existing storage Sroup
To add a new node or server is a usual scenario in clusters.

In this situation, such a server may be added to an existing
storage group. There are two cases:

(l) the server is empty, that is, without files;
(2) the server is not empty and, therefore, it is necessary to

give access to its files.

In the first case, we have to create a new storage group, the
main group, containing all the servers, as we described pre-
viously. The original storage group is kept for the manage-
ment of the files. The main group will be initially empty.

In the second case, we must create two new storage
groups, a storage group for storing the files of the new
server and the main group, initially empty. Also, the original
storage group is kept as in the previous case.

3.1.6. Creation of a storage group from two existing groups
Let G, and G.n be two main storage groups. We want to

create a third storage group from these two groups, named
union group G.. The union group G. will be formed by
all the servers of the original groups G, and G.n, keeping
the existing files in the original groups. Every operation in
the new group is made over all the servers, except if the
operations are deployed over files existing in the original
groups. This behavior is transparent for the user applications
using the system, because for such applications there is only
a storage group G., after the union, that is, the new main
group.

It is important to note that the union of two storage groups
is made over main groups. However, the invisible groups
associated to the main groups do not disappear when the
union is made. They become invisible groups of the union
group. Furthermore, the main groups G, and G, become
invisible groups of the main group G., that is

G , U G , : 6 , ,
G. is main group,
G* and Gn become invisible groups of G.,

If G, is invisible group of G* or G,

I G,o is invisible group of G..

Proposition 2. Every server belongs only to a single main
group.

Definition 4. The main grouping relation is the relation of
ownership of a server r to a main storage group. This relation
is written as Rcp. This relation is defined as

S ¡ R c p { ¡ 1 9 $ € G ¡ A 5 7 € G ¡

being G, a main group.

Proposition 3. The main groups of a system constitute a
partition of all the servers of such system.

The application that builds the association between servers
and main storage groups is named main grouping function.
This function is written as ,tcp(S¡). In short

Acp(S¡) - G¡ e S¡ € G7

A G; is a main group.

Proposition 4. The main grouping function is an injective

function.

There exists an order relation between secondary groups
and their main storage group. This order relation is a
relation of "ownership" between storage groups. This re-
lation is called group ownership relation. Moreover, every
main group together with its secondary groups compose a
lattíce.

Definition 5. Let P6 be a relation defined over all the stor-
age groups, named group ownership relation. The relation
P6 between two storage groups G¡ and G ¡ is defined as

G¡ P6G ¡ *
l"il,l,,ll:, ;;,li:,t

c G ¡

Proposition 5. The group ownership relation P6 is a par-
tial order relation.

Definition 6. We define the null storage group or sim-
ply null group (0) as a storage group with no servers. By
definition, every group includes the null storage group.

Definition 7. The main lattice of a main group is the lattice
formed by the main group, its secondary groups and the
null group and whose order relation is the group ownership
relation Pc. The set constituted by the main group GP¡, its

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2005) l134-1145 tt39

secondary groups and the null group is written as I GP¡
and the main lattice (EGPi, Pd.

Definition 8. A main lattice is defined as a tuple (I GPi,
v, n), where the disjunction operation (v) and conjunction
operation (n) consists in

vsr, sy efcr i ,
St V Sy : JUP{'S¡, Sy},

S' n Sn : inl{S', Sv}'

In the case of the main lattices, the disjunction and conjunc-
tion are the same as the union of sets (U) and intersection
of sets (O), respectively.

Observation 2, Every partition of the system is a lattice of
the set of servers that belongs to such partition. The set of
all the lattices is called lattice partition.

Example 1..
o Scenario 1: I

G 1 : { S 1 , S 2 } ,
G2 : {S3, Sa} ,

G! : {S5, 56}

Gi : {S1, 52, 53, Sa} ,

Gi : {S7, S8} ,

G! : {Se, S1s} .

Fig. I shows the lattice partition in the scenario 1.
o Scenario 2:The groups G5 and G6 join together:

G1 : {S1 , S2 } ,

G2 : {S3, Sa} ,

Gi : {Ss, 56} ,

ci : {St, 52, 53, Sa},

G5 : {S7, Ss},

G6 : {Se, S1¡} ,

G'7 : lS1, Sg, Sq, Sro).

Fig. 2 shows the lattice partition of the scenario 2.

3.1 .7. Elimination of a server from a storage group
The elimination operation requires the redistribution of

the data. in order to avoid the loss of the information of
the eliminated element. As we mentioned previously, these
kinds of operations must not be made often because they
have a high cost. For this reason, it is advisable to make
them in low-load hours.

-l
*a .urn g¡oups are represented by the symbol /.

G3'� \:6

Fig. l. Lattice partition corresponding to the scenario 1.

G3'�

G 2 O

Fig. 2. Lanice partition corresponding to the scenario 2.

In the case of the elimination of a server from a storage
group, files are redistributed among the rest of the compo-
nents of such storage group. Furthermore, the main storage
group has been modified when the server is eliminated. It
is possible that the eliminated server belongs to some sec-
ondary group associated to the main group. In this case, it is
necessary to redistribute the information of such secondary
groups in the new main storage group, deleting them.

Example 2.

o Scenario 3: The server 51 is eliminated. This fact implies
that the secondary group G1 disappears. After that, the
server S¡ (empty) joins to the group G7.

G2 : {S3, Sa} ,

Gi : {Ss, 56} ,

G'o -- ÍSz, Ss, S¿),

G5 : {S7, Ss} ,

G6 : {Se, S1s} ,

G7 : lS7, Sa, Ss, Srol,

Gi : {S1, S?, 58, Sq, Slo} .

Fig. 3 shows the lattice partition of the scenario 3.

3.1.8. Etimination of a storage group
This operation is made over main storage groups. These

secondary groups associated to the eliminated main storage
group also must be eliminated. Therefore, the information
of the main storage group and the secondary groups must be
redistributed in a different main storage group. The selec-
tion of the storage group in which the information is going

Gt'�

,4.'
Gs

\,/
0

G4'�

,/\
, / \

G1

\ /

0

G4'�

0

Gs'�

G2

G6

Fig. 3. Lattice partition corresponding to the scenario 3.

to redistribute must be calculated accordins to the svstem
policies.

3.1.9. Storage groups policies
Storage groups can be built applying several policies, try-

ing to optimize the access to all the storage groups. Some
significant policies are:

o Grouping by server proximity: Storage groups are built
based on the physical distribution of the data servers.
Storage groups are composed of servers in close prox-
imity to each other. This policy optimizes the queries
addressed to a storage group because of the similar la-
tency of messages sent to servers.

o Grouping by server similarity: Storage groups are com-
posed of servers with similar processing capacity. This
policy classifies storage groups in different categories,
depending on their computational and VO power.

3.2. Redistribution of the information in MAPFS

The creation of secondary groups involves new chal-
lenges, since the need ofproviding dynamic reconfiguration
maintaining the performance. Some new approaches have
been added to MAPFS for tackling this issue. Next sections
describe in depth these proposals.

3.2. L MAPFS defragmentation
One of the problems that must be addressed by MAPFS

is the storage groups defragmentation, which is used for
eliminating secondary storage groups. The defragmentation
is implemented on a per-file basis, since a file is situated in
a specific storage group, secondary or main. This task can
be made through different alternatives.

The first choice consists of three stages, (i) read the file,
which is placed at a secondary group; (ii) write the file in
a temporal and sequential file; and (iii) write the temporal
file in the main group. That is, it is similar to the brute force
technique.

The main advantage of this alternative is its simplicity.
Nevertheless, as we will see above, this solution has not a
good performance.

A second proposal is reading slices from the file in the
old topology and writing them in the new topology. In this

case, it is necessary to change the topology between both
operations. Therefore, the redistribution time follows this
expression:

Z : (Tiopologychange * ?iransference) x N'

where N is equal to the number of slices. We will analyze
this choice above.

Finally, the third choice is based on the use of selective
read operations. These operations are used for reading data
of the servers that belong to the secondary group, writing
them in the main group and thus, achieving the defragmenta-
tion. These operations are made without changing the topol-
ogy.

In case of elimination of a server from a storage group,
it will be necessary to redistribute information between the
rest of servers belonging to such group. Therefore, we will
have to read files from all the servers and make a selective
write through the new topology, which does not include the
eliminated server.

3.2.2. Big writes
Unlike the problem known as sm.all write problem l7l,

which appears for instance in RAID systems and xFS, we
have to deal with the opposite problem in MAPFS, named
big write problem. Such problem is due to the use of sec-
ondary storage groups, which do not take advantage of all
the servers of the respective main storage group.

As we have mentioned previously, the defragmentation
operation is used with the aim of increasing the performance
of future read and write operations. Nevertheless, due to its
high cost, this operation is only made in specific situations.

The other choice is allowing applications to write files in
the main group, taking advantage of a higher parallelism.
In the case of new files, this is the usual scenario, since
applications only see the main storage group. However, if
a file has already been created and stored in a secondary
group, the solution is not so obvious. There are two choices,
writing in the secondary group or transferring files to the
main storage group for increasing the performance of future
accesses.

If a file is going to be widely changed, the best choice
is writing the file in the main storage group, since there
are few data items that must be redistributed. This kind of
write is called big write. Tlte waste of redistribution is very
low (new data is not redistributed). Moreover, this solution
allows us to take advantage of the improvement in later
accesses (higher parallelism). Nevertheless, it is impossible
to know a priori the amount of data that the user is going
to write, because the write call is used with a small-size
a buffer and can be invoked a huge number of times. For
this reason, the user must decide whether or not a big write
operation must be used, according to the overload of this
operation and its advantages.

For making the use of this advanced operation easier,
MAPFS offers two operations, maplnitBigWrite and

\:4 tJ3

t l
t l
t l
G 2 0

0

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2M5) 1134-1145

G8'�

I
G7

Gs G6

0

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2005) II34-1145 I t 4 l

3.4. Framework architecture and implementation

Storage groups are defined within the MAPFS system.
MAPFS is based on a clientserver architecture using gen-
eral purpose servers, providing all the MAPFS management
tasks as specialized clients. In the first prototype, we use
network file system (NFS) server. NFS [11] has been ported
to different operating systems and machine platforms and
is widely used by many servers worldwide. Data are dis-
tributed through the servers belonging to a storage group,
using a stripe unit.

On the client side, it is necessary to install a MAPFS
client, which provides a parallel VO interface to the servers,
through the use of MPI [l0,6] and the master-slave paradigm

[2]. MPI has been chosen for the following reasons:

(l) MPI is an standard message-passing interface, which
allows different processes to communicate among them
by means of messages.

(2) Message-passing paradigm is useful for synchronizing
processes.

(3) MPI is widely used in clusters of workstations.
(4) It provides a suitable framework for parallel applica-

tions and dynamic management of processes.
(5) Finally, MPI provides operations for modifying the

communication topologies.

As repository to manage storage groups, a group database is
used. Such a database stores information about the groups,
their properties and their composition.

Furthermore, a graphical interface has been implemented
with the aim of increasing the interaction between the user
and the storage system. Fig. 6 shows the implemented inter-
face.

fl Defragmented blocksm Non defragmented blocks

mapFinishBigWrite, which set the boundaries in the
code, in such a way that all the VO operations between them,
redistribute a file over the main storage group, if such a file is
stored in a secondary storage group. Therefore, the first write
operation made just after invoking maplnitBigVürite
redistribute the beginning of the file until the offset of the
write operation in the main storage group. The rest of write
operations allow MAPFS to write in the main storage group.
When the mapFinishBigvürite operation is made, the
rest of data of the file are redistributed on the main storase
group.

3.3. Senice maintenance

Data redistribution is an expensive task, which affects the
system performance. Since this operation is necessary, be-
cause it increases the performance of later accesses (defrag-
mentation), or due to the capacity of the system of eliminat-
ing a server (redistribution), the system must provide service
during the execution of such task.

For getting the service maintenance during these admin-
istration tasks, the original file must not be eliminated un-
til the redistribution operation has been completed. Then,
at this moment the system has two copies or views of the
same file in different topologies, and each copy has a differ-
ent name created by the system. The access to the different
views is made through both names.

As it can be seen in Fig. 4, during the redistribution task, a
file mapping must be made, in such way that if other process
accesses to slices that have been written by the defragmen-
tator, the system uses the new view. If such process accesses
to slices that have not been written yet, the system uses the
old view. The metafile represents the file view during the
defragmentation process.

On the other hand, it is very important that the system
provides service to different processes that access to the
same file in a point of time. This aspect is established by
means of the coutilization semantic. Since MAPFS is based
on UNIX, MAPFS offers a coutilization semantic very sim-
ilar to the UNIX semantic. Thus, there exists an only file
view For achieving an only image of the files, MAPFS locks
processes accessing to blocks used by other process. In this
sense, the defragmentator is considered as another process.
This lock operation is made in a per-block basis, avoiding
to reduce the parallelism. Fig. 5 shows this approach.

Process B

Fig. 5. Locking processes accessing to blocks used by another process.

Fig. 4. Service maintenance during a redistribution operation.

Fig. 6. MAPFS interface showing the system topology.

l l 42

4. Performance analysis

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2005) 1134-1145

The MAPFS module in charge of managing and configur-
ing storage groups is named MAPFS_GM (MAPFS Group
Management). This section shows the analysis of the test re-
sults about the MAPFS_GM performance in a dynamic en-
vironment. By means of this analysis, we can extract some
interesting conclusions that assert our previous proposals.

Systems evaluations are often made in unusual conditions,
mainly due to two different reasons: (i) systems are evaluated
through simulations and (ii) the test environment is different
from the deployment environment. In order to evaluate our
implementation, we have tested it in a real environment,
supporting a normal workload.

Our work environment is a cluster, which is constituted
by nodes Intel Xeon 2.4OGHz, with 1GB of RAM memory
and a2 Gigabit network.

Our experiments have been developed in order to mea-
sure the following parameters: (i) computational load added
by the storage goups management in the MAPFS system
and (ii) performance of defragmentation and big write op-
erations.

First, we have studied the time of the write operations
to measure the computational load added by the storage
groups management in the MAPFS system. We have com-
pared the write time in the MAPFS system without group
management, and the write time with group management
(MAPFS_GM).

Fig. 7 shows this comparison. As it can be seen, the dif-
ference between the write time is minimal. This suggests
that both write times in MAPFS were correlated to the write
time in MAPFS_GM, adding a small load,less than 300ms.

Regarding MAPFS performance, it was anticipated that
the storage groups management implies load to the MAPFS
system. Results showed that this load is very small. It was
unlikely that in some write operations, the access time of
MAPFS_GM is smaller than the access time of MAPFS
without groups management. One reason could be that the

{- MAPFS -.r- MAPFS_GM

' i - - n " + t * i > É r 4

i ' . ' ' ' - i ;m: : ' -
i i i

0 2000 4000 6000 8000 10000 12000
Access Size (Kb)

Fig. 7. Computational load added by the storage groups management.

+- Secondary Storage Group -r- Main Storage Group

7000

0 2000 4000 6000 8000 10000 12000
Access Size (Kb)

Fig. 8. Comparison between the performance of a secondary group and
a main group (Degraded mode).

small load of group management affects the total time less
than the load of the nodes and the synchronization between
processes.

Furthermore, we must take into account that accesses to
secondary groups are less efficient than accesses to main
storage groups, because the last ones allow applications to
take advantage of the highest parallelism of the system (the
maximum number of storage nodes). This implies that the
changes in the topology lead the system to a degraded mode
by the use of old files (those files that are stored in secondary
groups).

With the aim of measuring the decrease of the perfor-
mance in the degraded mode, we have evaluated the differ-
ences between the read time of a file in a secondary group
and its read time in the main group, which contains a server
or storage node more. Fig. 8 shows this comparison. As it
can be seen, before starting the degraded mode the read time
in a secondary group is better than the time in a main group.
Nevertheless, when the system is in a degraded mode the
request time in a secondary group is worse.

The theory led us to infer that the degraded mode is
achieved from a determined access size, because before this
point, the accesses are small and the higher parallelism of
the main storage group is not significant. It should be em-
phasized that the results shown in Fig. 8 are for a difference
of an only node. Thus, in the case of the main group hav-
ing more than one node of difference with respect to the
secondary group, the decrease ofthe performance in the de-
graded mode would be more significant.

On the other hand, with the aim of measuring the system
performance with respect to the defragmentation and big
write operations, we have built a work environment formed
by a secondary group with 2 nodes, which belong to a main
group with 4 nodes.

First, we have focused on the performance analysis of the
defragmentation operation. In Section 3.2.1 we have pre-
sented three different proposals to make the system defrag-
mentation. In the proposal based in the changing topology

o
g sooo
o
E 4000
¡=
o 3000
o
o
E 2000

1000

0

5000
4500

6. 4000
E 3s00

I sooo
i= 2500

E 2OOO

$ rsoo
< 1000

500
0

M.S. Pérez et aL / J. Parallel Distrib. Comput.65 (2005) 1134-1145

1 . 8

1 . 6

^ 1 .4
q

E 1.2
8 r.o
o
l¿ 0.8
o
.E 0.6
F 0.4

0.2
0.0

1 6

1 4

9 , "
5 r o
0

ü 8
c 6

F 4
2
0

+ Oohagmntation cing slstivg r€ding8 and writ¡ngs with sry¡cs mainlenancé

+ D€ftagmentation ushg sglectivg r€dlngs and writings without sryice ma¡nlenance
$ D€lÉgmEnlation by reans of brute forc€ tshn¡que

Fig. 9. Comparison among different techniques of defragmentation.

every slice of information is necessary to know the certain
time that takes a changing topology. We did some tests to
measure this time and we obtained that is around 1.7 s. As
it is observed, this time is too high, because this operation
requires killing all old MPI process and creating them on
the new topology. In conclusion, if an operation defragmen-
tation has a lot of slices and we change the topology every
slice, the time of changing topology will significantly affect
the total time. Thus, this solution cannot be acceptable.

The rest of proposals are compared in Fig. 9. In this fig-
ure, the time differences among the defragmentation using
the brute force technique and two versions of the technique
based on selective readings and writings, with and without
service maintenance, can be seen. The time difference be-
tween both versions shows the maintenance cost that allows
one to respond to data requests while the defragmentation
is running.

Every VO system must satisfy the user requests at any
moment. Thus, every new operation included in the MAPFS
file system must keep this feature and be transparent to the
final user.

After this, we can compare the results obtained by the
defragmentation based in the brute force technique and the
defragmentation using selective readings and writings. It is
necessary to emphasize that the implementation of brute
force do not guarantee the service maintenance. The results
show that the operation time in the second alternative is
better. Thus, it can be concluded that the approach based in
selective readings and writings could be the best choice to
do the system defragmentation.

Then, with the aim of improving the system performance,
we have defined in Section 3.2.2 a new operation to do the
big write operations. Fig. 10 shows the time of the first write
operation starting from a certain offset. We must take into
account that this operation redistributes the information be-
fore the indicated offset on the main group that contains to
the secondary group where the file is stored, and then, it
makes the corresponding write operation in the new topol-
ogy. The results show that the operation time is related to
the size of the redistribution (offset) and there is a minimum
time corresponding to the processes synchronization.

-,F F¡rst writol

0 200 400 600 800 1000 1200
Offset (KBytes)

Fig. 10. Time of the first writing in a big write operation with a certain
offset.

+ Big write operalion of size 1 MegaByte
'.ry,'" Wrile plus defragmentation
-r- Wrile on a secondary group of size 1 MegaByte

¿r'
f"-'""'"-

o 2 4 6 8 1 0 1 2

Flle Slze (Mega Bytes)

Fig. 11. Comparison between big writing operation and writing on a

secondary group of size I MB.

These results are not decisive to take any decision about
the advisability of using or not the big write operation.
Fig. 11 shows a comparison between big and simple write
operations on a secondary group of size I MB. It can be ob-
served that the time of simple write is not correlated to the
file size because only the indicated data are written. Mean-
while, the time of the big write operation is associated with
the file size in which is written, because it is necessary to
redistribute the rest of the file on the main group as well as
writing the corresponding data.

This figure also shows that the access time in the case
of a big write operation is worse than the time in simple
operations. However, if we make a simple writing, the file
will be stored in a secondary group, and in a future we will
have to run a defragmentation operation in order to improve
the system performance.

Thus, we have compared the time of the simple writing
plus the defragmentation time and obtained similar results
to the time of big writing. In short, in this case, it takes the
same time making a big writing as a simple writing plus a
defragmentation. But, while the defragmentation have not
been executed, the access to the file is made with a low
performance, since it only uses nodes from the secondary
group. Whereas, in the big write operation, any later access
to the file is made with better performance.

12

1 0
o
t t a
o

$ o
o ,
E $
tr

2

0

M.S. Pérez et al. / J. Parallel Distrib. Comput.65 (2005) l134-1145

This discussion is supported by means of Fig. 8. This
figure showed the time differences between file accesses on
different types of storage groups. These results show that the
access time on a main group is much better than the access
time on a secondary group in the degraded mode.

Thus, all operations that redistribute files from secondary
groups in the corresponding main group, may increase the
performance in future accesses. This means that is conve-
nient to use the big write operation but only when the size
of the write operation is large enough comparing to the size
of the file in which we are writing. This decision must be
taken by an advanced user that understands the benefits of
the big write operation and knows the size to write. We are
currently working on providing self-management character-
istics to MAPFS in order to maximize the transparency of
this operation.

5. Discussion

This section shows a comparison between our proposal,
storage groups, and the proposal of xFS and GFS.

Firstly, the concepts ofcurrent and obsolete groups in xFS
are similar to secondary and main storage groups in MAPFS,
although obsolete groups are read-only groups versus sec-
ondary groups, which are read-and-write storage groups.
However, the main differences between xFS and MAPFS
are:

(1) MAPFS provides several grouping policies for optimiz-
ing different parameters.

(2) MAPFS defines a formalism, based on mathematical
concepts such as partitions and lattices.

(3) xFS uses a cleaner process for deleting obsolete groups.
MAPFS uses defragmentation operations and big writes
for this task.

With respect to GFS, the way in which subpools are formed
is similar to the grouping by server similarity policy in
MAPFS. However, MAPFS provides different policies for
building storage groups. Storage groups in MAPFS are built
for storage servers. In GFS, pools are used for grouping
physical devices. Finally, GFS does not implement a dy-
namic reconfiguration of the storage devices.

6. Conclusions and future work

This paper has widely described storage groups and the
formalism for building them. This concept allows MAPFS
system to define a logical abstraction of the concept of
storage server, providing a dynamic management of such
servers. Moreover, storage groups allow applications uses
the data servers during the reconfiguration phase.

With respect to the evaluation, the system performance
has been evaluated through the analysis of several storage
groups, measuring the effects of using storage groups in a
dynamic environment. We conclude that the storage groups
management hardly decreases the performance of the VO

architecture, providing a flexible and powerful dynamic re-
configuration.

As future work, we are developing the extension to
MAPFS to an autonomic system for providing self-
management of the storage groups.

References

[] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, R. Wang,
Serverless network file systems, ACM Trans. Comput. Systems 14
(l) (February 1996) 4l-'79.

[2] O. Beaumont, A. Legrand, Y. Robert, The master-slave paradigm

with heterogeneous proc€ssors, CLUSTER 2001, IEEE Computer
Society Press, Silver Spring, MD, 2001, pp. 419426.

[3] R. Buyya (Ed.), High Performance Cluster Computing: Architectures
and Systems, vol. 1, Prentice-Hall, Englewood Clitrs, NJ. 1999.

[4] P.H. Cams, WB. Ligon III, R.B. Ross, R. Thakur, PVFS: A parallel

file system for linux clusters, in: Proceedings of the Fourth Annual
Linux Showcase and Conference, October 2000, pp. 317-327.

t5l L.A. Freitag, R.M. Lo¡ Adaptive, multiresolution visualization of
large data sets using a distributed memory octree, in: Proceedings of
SC99: High Performance Networking and Computing, Portland, OR,
November 1999, ACM Press, New York, IEEE Computer Society
Press, Silver Spring, MD.

[6] W. Gropp, E. Lusk, N. Doss, A. Skjellum, High-performance,
portable implementation of the MPI message passing interface

standard, Parallel Comput.22 (6) (1996) 789-828.

[7] J.H. Hartman, J.K. Ousterhout, The Zebra striped network ñle
system, in: H. Jin, T. Cortes, R. Buyya (Eds.), High Performance
Mass Storage and Parallel VO: Technologies and Applications, IEEE
Computer Society Press, Silver Spring, MD, Wile¡ New York, 2001,
pp. 309-329.

[8] K. Holtman, Object level physics data replication in the grid, in:
Proceedings of ACAT'2000, October 2000, pp. 244-246.

t9l P.M. Lyster, K. Ekers, J. Guo, M. Harber, D. Lamich, J.W. Larson, R.
Lucchesi, R. Rood, S. Schubert, W. Sawyer, M. Sienkiewicz, A. da
Silva, J. Stobie, L.L. Takacs, R. Todling, J. Zero, Parallel computing
at the NASA data assimilation ofñce (DAO), San Jose CA, IEEE
Computer Society Press, Silver Spring, MD, November 1997.

[10] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, May 1994.

[l] Network Working Group, NFS: Network File System Protocol
Specification, March 1989, RFC 1094.

t12l M.S. Pérez, F. García, J. Ca¡retero, A new multiagent based
architecture for high performance i/o in clusters, in: ICPP Workshops,
IEEE Computer Societ¡ Silver Spring, MD, 2001, pp. 201-206.

[3] S.R. Soltis, T.M. Ruwart, M.T. O'Keefe. The global file system,
in: Proceedings of the Fifth NASA Goddard Space Flight Center
Conference on Mass Storage Systems and Technologies, September
1996.

tl4l S. Widen, C. Chris, Disk defragmentation for windows
NT/2O00-hidden gold for the enterprise, Technical Report IDC white
paper, IDC,2000.

tl5l S.J. Young, G. Y Fan, D. Hessleq S. Lamont, T.T. Elvins, M.
Hadida, G. Hanyzewski, J.W. Durkin, P. Hubbard, G. Kindlmann,
E. Wong, D. Greenberg, S. Karin, M.H. Ellisman, Implementing a
collaboratory for microscopic digital anatomy, Supercomput. Appl.
High Perform. Comput. l0 (213) (1996) 170-181.

María S. Pérez received the MS degfee in Computer Science in 1998 at
the Universidad Politécnica de Madrid, and the PhD degree in Computer
Science in 2003 at the same university. From 1998 she is an associate
professor at the Universidad Politécnica de Madrid. During 2003 she
was post-doc at NRC in Ottawa. Her resea¡ch interest includes high-
performance and grid computing, parallel VO and data mining. She is

M.S. Pérez et al. / J. Parallel Distrib.

coauthor of 4 books and she has published more than 40 articles in
journals and conferences.

Atberto Sánchez received the MS degree in Computer Science in 2003 at
the Universidad Politécnica de Madrid. He is cunently a PhD student at the
same university. He has done a predoctoral stay at CERN for 3 months. His
research interest includes high-performance and grid computing, parallel
I/O and autonomic computing. He is coauthor of 14 a¡ticles in joumals
and conferences.

José M. Peña received his PhD in Computer Science at the Universidad
Politécnica de Madrid. He is an Associate Professor at the same University.
He has been working during the last six years in high performance data
analysis and parallel data mining. He has publicaüons in data mining
and machine leaming techniques as well as distributed and parallel data
processing. He is also member of the Intelligent Data Analysis Council
and member of the editorial board in other specialized journals.

Comput. 65 (2005) I 134- I 145 I 145

Víctor Robles received the MS degree in Computer Science in 1998 at
the Universidad Politécnica de Madrid, and the PhD degree in Computer
Science in 2003 at the same university. From 1999 he is an associate
professor at the Universidad Politécnica de Madrid. During 2004 he
was post-doc at Harvard Medical School. His research interest includes
optimization, daa mining, grid and cluster computing and bioinformatics.
He is coauthor of 4 books and he has published more than 40 articles in
journals and conferences.

ilt I ilt il | il lt il il | | il | ll ll | | il | ll I lll | | | llll l lll
R001 04291_YJPDC_21 84

