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Abstract

The emergence of applications with greater processing and speedup requirements, such as Grand Challenge Applications

(GCA), involves new computing and vo needs. Many ofthese applications require access to huge data repositories and other

I/O sources, making the I/o pháse a bottleneck in the computing systems, due to its poor performance. In this sense, parallel

I/O is becoming one of the major topics in the area of high-performance systems. Existing data-intensive GCA have been used

in several domains, such as high energy physics, climate modeling, biology or visualization. Since the I/O problem has not

been solved in this kind of applications, new approaches are required in this case. This paper presents MAPFS' a multiagent

architecture, whose goal ls to atto* applications to access data in a cluster of workstations in an efficient and flexible fashion'

providing formalisms for modifying the topology of the storage system, specifying different data access pattems and selecting

additional functionalities.
@ 2005 Elsevier B.V. All rights reserved.
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1.. Introduction

Nowadays, there is a growing interest in the devel-

opment of high-perfornance VO systems, because the

VO phase has become a bottleneck in the computing

systems due to its poor performance. In fact, one of

the major goals of high-performance computing is to
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provide an efrficient access to data, making parallel VO

one of the most relevant issues in this field.

Currently, there are different parallel file systems,

such as Galley [25], Parallel File System (PFS) t9l
and Portable Parallel File System (PPFS) [16]' which

offer high-performance services to access resources.

Many of these systems have been widely developed

for parallel machines and are not suitable for clusters

of workstations. Nevertheless, there is an increasing

trend in parallel computing towards the usage of

clusters, mainly because of their prices and their ease

of integration. In this sense, the Parallel Vrtual File

System (PVFS) [3] is used in dedicated clusters of
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workstations. On the other hand, parallel file system
optimizations provide improved VO operations. The
usage of hints related to different aspects of data
distribution and access patterns allows parallel file sys-
tems to increase the performance of these operations.
Processes such as caching or prefetching are useful
approaches used in addition with these last ones 128,21.
The agent technology [0,15] is a suitable framework
for integrating these functions in the storage system,
because of its adaptability to different domains and its
capability to achieve process autonomy.

This paper presents MAPFS, a multiagent architec-
ture, whose goal is to allow applications to access data
in a cluster of workstations in an efficient and flexi-
ble fashion, providing formalisms for modifying the
topology of the storage system, specifying different
data access patterns and selecting additional function-
alities. The outline of this paper is as follows. Section 2
describes the problems of data-intensive applications,
which we need to address by means of a flexible VO
architecture. Section 3 presents MAPFS as a suitable
infrastructure for this kind of applications in a cluster
environment. This section describes MAPFS architec-
ture, showing the different modules in which the system
is divided into. Additionally, it shows the formalism of
storage groups, which is used for the dynamic man-
agement of servers. Finally, in this section the way in
which MAPFS allows applications to define different
access patterns is also described. Section 4 shows the
results obtained for the evaluation ofapplications using
MAPFS. With this aim, we have evaluated the differ-
ent features of MAPFS. Furthermore, a comparison be-
tween MAPFS and PVFS, another parallel file system
for clusters, is analyzed. Finally, Section 5 summarizes
our conclusions and suggests further future work.

2. Problem statement and related work

2.1 . Data-intensive applications and their I/O
needs

The emergence of applications with greater VO
access requirements, also known as data-intensive
applications or VO-intensive applications, demands
new VO solutions. Examples of data-intensive and
Grand Challenge applications [ 12] include data mining
systems, data warehousing [7], high energy physics

applications [34], and satellite data processing [1].
These applications may require access to data sources
distributed among different nodes. Moreove¡ typical
data-intensive applications require access to terabyte
size datasets, which must be processed in an effr-
cient way, in order to increase the performance of the
applications executed on the cluster. Furthermore, data-
intensive applications are very different depending on
the kind of functional requirements and access pat-
terns. It is critical for VO system to be flexible enough
to match these demands. The usage of hints, caching
and prefetching policies or different data distribution
configurations are optional features, which can reduce
latency and increase VO operations performance.

Respect to the underlying architecture, clusters are
characterized to be modified dynamically. Operations
such as addition of new nodes or elimination of ex-
isting nodes are typical in a cluster environment or
in distributed systems, in general. In fact, it is desir-
able that the services in a cluster allow complex soft-
ware systems to be built in a "plug-and-play" fashion.
Therefore, we need a tool or formalism for the dy-
namic reconfiguration ofthe storage nodes. This paper
describes a parallel VO architecture for increasing the
performance of data-intensive applications in a flexible
way, providing formalisms for modifying the topology
ofthe storage system and selecting additional function-
alities.

2.2. Relatedwork

Although VO systems have traditionally tackled the
I/O phase in the same way, independent of the appli-
cations domain and their access patterns, some studies

[22,26,'ll have demonstrated that a higher control of
the user applications over the VO system can increase
their performance. Some of the features for increasing
the control of the applications are the usage of access
patterns, VO caching and prefetching or the usage of
hints.

The performance of VO accesses depends on two
related aspects: data layout in the files, which is named
storage pattern, and the distribution of data through
different nodes, that is, access pattern. In those cases
in which these two different patterns are not equal, the
effrciency ofVO accesses can be decreased, since every
node must access in an independent way to data, result-
ing in a great number of small VO accesses. Therefore,
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a suitable data placement is extremely important in the
increase of the performance of VO operations. Most
file systems provide transparency to user applications,
hiding details about the data distribution or data lay-
out. Some file system such as nCUBE [6] or Vesta [5]
provide programmer a higher control over the layout.

Panda [33,4] hides physical details of the VO sys-
tems to the applications, defining transparent schemas
known as Panda schemas. PPFS defines a set ofaccess
patterns when a parallel file is opened [8]. Madhyastha
andReed [21] use HMM (HiüenMarkov Models),and
neural networks for classifying access pattern within a
file. MPI-IO uses MPI datatypes fo describe data lay-
out both in memory and in file, in such a way that it is
possible to specify non-contiguous access 136,371.

On the other hand, if the behavior of an algorithm
is known, VO requirements could be achieved in ad-
vance before the algorithm actually needs the data. An
optimal usage of computational resources, like UO op-
erations or disk caches is also a key factor for high-
performance algorithms. With the usage of data ac-
cess knowledge both accurate prefetching and resource
management could be achieved. For using these fea-
tures, it is necessary to have a cache structure, where
the VO data items are stored in memory. The effec-
tiveness of the cache is determined largely by the re-
placement policy. A typical cache replacement policy
is Le a s t R e c e ntly U s e d (LR.U). This policy assumes that
data items used recently are likely to be used again and
therefore, on every release moves the item to the tail
of the free list. The item at the front of the list is the
oldest inactive item and the first candidate to leave such
list. Other alternatives widely used are the FIFO pol-
icy, which replaces the oldest item and MRU policy,
which replaces the most recently used item. Histori-
cal information is often used for both file caching and
prefetching. In fact, the LRU policy is this kind of sys-
tem, where the history consists of the recent accesses
to the data. In the case of prefetching, the most used
approach is sequential readahead. All these policies are
used in conventional systems. Nevertheless, these poli-
cies are not suitable for all the different access patterns
of applications. A more general scheme resorts to us-
ing hints about applications with the aim of increasing
ofthe caching and prefetching phases, since hints pro-
vide information used to decrease the cache faults and
prefetch the most probable used data in the next exe-
cutions. In other words, the more information has been

obtained, the less uncertainty in predicting future ac-
cesses and, therefore, better prefetching and caching
results.

Finally, hints are widely used for increasing the sys-
tem performance in general in computing systems. In
1983, Lampson described its usage in operating sys-
tems such as Alto or Pilot, networks such as Arpanet
or Ethernet and in languages such as Smalltalk [20]. In
the context of the parallel file systems, hints are struc-
tures known and built by the VO system, which are
used for improving the read and write routines perfor-
mance. Hints are usually used as historical information
for optimizing caching and prefetching techniques. For
example, hints can be used in the prefetching phase for
deciding how many blocks are read in advance. OSF/I
system prefetchs up to 64 data blocks when large se-
quential requests are detected [271. Other works de-
tect more complex access patterns for non-sequential
prefetching [19].In fact, hints allow VO systems to take
a more active role, since with the usage of this infor-
mation, they can be reconfigurated in order to increase
the performance of applications. There exists a great
number of works which infer future accesses based on
past accesses [8,35,13]. In [9], historical informa-
tion is used in order to predict the VO workload and,
thus, enhance the prefetching stage. In [28] two dif-
ferent kinds of hints are defined, disclosing hints and
advising hints.The first kind of hints describe the nec-
essary knowledge about the behavior ofthe application.
Advising hints give recommendations about resources
management. Hints can also be specified by means of
the MPI-IO interface [37]. MPI-Info structures are
used for specifying pairs ( key , value ) , which pro-
vide additional information about VO operations. There
is a set of reserved keys, related to the access patterns
or data layout over UO devices.

3. Proposed approach

The previous section states the need of defining a
flexible framework for tackling the VO problems of
data-intensive applications.

MAPFS [30] is a multiagent architecture, which pro-
vides flexibility in different aspects:

. System topology configuration: Ability to change
system topology, setting the VO nodes and their
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relationships. This feature is achieved through the
usage of storage groups, which are described in
Section 3.2.

¡ Access pattern specification: Alrhough MAPFS is a
general purpose VO system, it can be configured in
order to adapt to different VO access patterns [32].

. There are different reasons to allow some function-
alities (such as caching or prefetching) to run in par-
allel on different nodes and even on the data servers.
Moving executions to data servers may reduce net-
work latency and traffic. Because of its properties,
such as autonomy, proactivity and reactivity, the
agent technology is useful in rhis case. MAPFS is
composed of a multiagent subsystem, which is re-
sponsible for performing several independent tasks.

These features allow MAPFS to enhance the three
main levels of an integrated VO system:

(1) Server-side, through the definition of the storage
groups formalism.

(2) Client-side, through the implementarion of differ-
ent functionalities, made by a multiagent subsys-
tem.

(3) Applications, which may configure MAPFS
through the usage ofcontrol user structures in or-
der to provide hints that increase the VO operations
performance.

3.L MAPFS architecture

MAPFS is based on a client-server architecture that
uses general-purpose servers. In the first prototype,
NFS servers are used [ 1 1]. NFS [23,24]has been ported
to different operating systems and machine platforms
and it is widely used by many servers worldwide. Data
is distributed through the servers belonging to a storage
group, using a stripe unit.

On the client-side, it is necessary to install a MAPFS
client, which provides a parallel VO interface to the
servers.

Additional multiagent subsystems, providing sev-
eral functionalities, are executed on different nodes.
Every storage group is associated to a multiagent sub-
system. These multiagent subsystems use an agent hier-
archy, which solves the information retrieval problem
in a transparent and efficient way. The taxonomy of
agents used in MAPFS is composed of:

. Extractor agents: They are responsible for informa-
tion retrieval, invoking parallel VO operations.

r Distributor agents: They distribute the workload to
extractor agents. These agents are placed at the high-
est level ofthe agents hierarchy.

¡ Caching and prefetching agents: They are associ-
ated with one or more extractor agents, caching or
prefetching their data.

r Hints agents: They must study applications access
patterns to build hints improving data access.

r Fault tolerance agents: They must provide data avail-
ability. In order to achieve this goal, these agents
must use duplicate data.

Fig. I represents the relation among these agents.
The taxonomy ofagents can be extended to provide ad-
ditional functionalities. The most usual configuration is
to run these subsystems on data servers, helping to re-
duce network traffic. In this case, a major requirement
is to install a technology that supports distributed exe-
cution of agents. MAPFS provides this optional func-
tionality.

It is possible to distinguish two different aspects of
the MAPFS architecture:

( I ) Aspects related to the intrinsic fearures of a parallel
file system.

(2) Aspects related to data distribution and processing
ofthese data. The usage ofagents is suitable in this
field.

These two aspects are mapped into the MAPFS
architecture through two subsystems: file subsystem,
called MAPFS-FS and a multiagent subsystem, called
MAPFSI\,IAS [31]. The first one is responsible for the
modeling of the file and the final UO operarions. The
second one contains the hierarchy ofagents, represen-
ted in Fig. L There exists a multiagent for each storage
group (see Section 3.2). Both subsystems are used to-
gether in order to acquire data in an efficient and trans-
parent manner.Fig.2 represents these two subsystems.

From an architectonic point of view, MAPFS is
divided in several modules, which have different tasks.
MAPFS has to provide both an user interface and
connection capacity through a network in a distributed
system. These tasks are responsible for two different
modules in the architecture, the user interface and the
communication manager, respectively. Besides, the
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Fig. 1. Tiuonomy of agents used in MAPFS.
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Fig. 2. MAPFS subsystems.

file system must use a redundancy scheme that pro-
vides fault tolerance to the whole system. This feature,
which is established at file level, is implemented by the
fault tolerance manager. This manager communicates
with an agency,r The agency provides autonomy
to the system in order to achieve the fault tolerance
feature. Finall¡ MAPFS manages the different caches
of the file system. The module responsible isthe cache
wmager. This manager communicates with both a
cache structure and the multiagent system. In order to
assemble all the file system functionality and build the
file model, the file flurnager is used, which constitutes
the central core of the file system.

. InFig.3 theMAPFS architectureis depicted, where
the component modules are shown.

The user interface is a module that provides access
to the MAPFS functionality. The main objective of
the user interface is to isolate the applications that use
MAPFS from the MAPFS implementation. The com-
munication manager is used for managing the com-
munication between the MAPFS system and the file
storage server. The communication manager has three
goals:

(1) Transfer information and meta-information in the
MAPFS system.

--' An agency is a softwa¡e container where several agents develop
their work.
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(2) Manage the communication between the cache
manager and the file storage server in order to up-
date the cache.

(3) Distribute agents in the MAPFS system.

For this reason, the communication manager is
linked to the file manager, the cache manager and the
multiagent system.

The fault tolerance manager provides fault tolerance
to the file system. The goal of this module is to guar-
antee the data availability. For managing this feature,

fault tolerance agents from the multiagent system are
used. Because of that, the fault tolerance manager has
a connection link with the multiagent system. The fault
tolerance manager must also communicate with the file
manager, because the fault tolerance characteristic is
implemented on a per-file basis.

Furthermore, MAPFS takes advantage of the tem-
poral and spatial locality of data stored in the servers.
Using a cache in the system improves its performance,
but it causes an important coherence problem. Again,
there are a set of agents that manage this feature. These
agents are named cache agents. They are responsible
for using a cache coherence protocol and control data
transfer between the storase devices. The cache man-
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ager is linked to the file manager, the communication
manager and the multiagent system.

Finally, the file manager is responsible for the
modeling of the file and, therefore, contains the
implementation of the MAPFS interface. This module
communicates with all other modules in order to
provide access to the main functionalities.

3.2. Storage groups

The concept of grouping is fundamental in every
aspect of life. Edwin P. Hubble, who is considered the
founder of observational cosmology, said in the thirties
that the best place for searching for a galaxy is the next
to another one, describing the concept ofgalaxy group-
ing. As in real life, computer science has a significant
number ofgroupings, e.g. process group or user group.

A storage group is defined in MAPFS as a set of
servers clustered as groups. These groups take the role
of data repositories and can be built by applying sev-
eral policies to optimize the accesses to all the storage
groups. Some significant policies are:

o Grouping by server proximity: Storage groups are
built based on the physical distribution of the data
servers. Storage groups are composed of servers in

M.S. Pérez et al. / Future Generation Computer Systems 22 (2006) 620-632
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close proximity to each other. This policy optimrzes
the queries addressed to a storage group because of
the similar latency of messages sent to servers.

o Grouping by server similarity: Storage groups are
composed of servers with similar processing capac-
ity. This policy classifies storage groups in different
categories, depending on their computational and
VO power.

The main advantages of storage groups are:

(l) Logical abstraction of the concept of storage
server: As a partition is a logical abstraction of the
physical disk, the storage group is also a logical
abstraction ofthe storage server concept.

(2) Dynamic management of servers: As we men-
tioned previously, the usage of storage groups pro-
vides dynamic management of servers through the
MAPFS interface (see Fig. 4).

(3) Efficiency of the storage operations: The policies
used in the system provide a way of increasing the
global efficiency of the system.

(4) Load balancing: It is possible to use a concrete stor-
age group in order to optimize system load balanc-
ing, according to the load of the remaining storage
groups.

(5) Transparent migration: In addition to the MAPFS
interface, the system can change the distribution
of storage groups in a transparent way in order
to optimize different aspects related to the system
performance,

The system topology can be changed dynamically.
In this case, data must be reconstructed, because the
system must map files stored in the servers of the pre-
vious topology to the new configuration. Data recon-
struction degrades the performance of the VO system.

In order to avoid data reconstruction, MAPFS de-
fines two types of storage groups, main storage groups
and secondary groups, which form a lattice structure
between them. Secondary groups are used for storing
new data, avoiding the migration of the files data. In
fact, this approach postpones data reconstruction until
the system runs a de-fragmentation operation, which is
used for deleting secondary groups and simplifying the
storage system description.

3.3. Access pattern specification

There are a huge number of applications using paral-
lel file systems. These applications have very different
requirements and data access patterns, Therefore, it is

Fig.4. MAPFS interface showing the system topology



desirable that the underlying file system allows these
applications to provide information about the layout
of the data used by them. This information is given
as hints, which are used for improving read and write
operations performance. For example, storage systems
using hints may provide greater performance because
they use this information to decrease cache faults and
to prefetch the data most likely to be used in later exe-
cutions.

MAPFS uses hints to access data. Thev can be ob-
tained in two ways:

Given by the user, that is, the user application pro-
vides to UO system the necessary specifications.
Built by the multiagent subsystem. If this option is
selected, the multiagent system must analyze the
access pattern of the applications in order to build
hints, improving data access.

If hints are provided by the user application, it is
necessary for the system to provide syntactic rules for
setting the system parameters, which configure the UO
system. On the other hand, if the multiagent subsystem
creates the hints, it is also necessary to store them in a
predefined way. In any case, lexical and syntactic rules
must be introduced in the system.

The system is configured through several opera-
tions, which are independent of the VO operations, al-
though these last ones use the former operations. The
configuration operations are divided into:

Hints Setting Operations: Operations for establish-
ing the hints of the system. Therefore, they can set
and get the values of the different fields of the hints.
Control User Operations: Higher level operations
that can be used directly by the user applications to
manage system performance.

Fig. 5 shows the three subsets of the Storage System
API. As can be seen in the figure, there are three ways
of accessins the Hints Settins Module:

VO operations may ask for hints values and even
modify them.
Control user operations may modify the hints. This
is the normal way for the user applications to in-
teract with hints.
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Fig. 5. Storage system API.

(3) To make the system flexible, the Hints Setting
Module may be accessed directly through the Hints
Setting API. The multiagent system may build and
modify hints through this interface.

The MAPFS VO API has been described in [30].
Hint setting operations are the following ones:

M apfs JI int s * map H int s N ew ( int b I o ck jd enl) : This
operation creates a new hint structure for the block
with identifler block-ident.
v o id map H int s Fre e ( M apfs JI int s * hint ): Thi s oper-
ation releases a hint structure.
int map H ints S et( M apfs JI ints *hint, int c ode -field,
voü * value): This operation modifies a field of the
hint structure with a value. The operation returns 0
if successful and -1 otherwise.
void * mapHintsGet(MapfsJlinn xhint, int
code$eW): This operation returns the value of a
concrete field of the hint structure. If the field is not
defi ned, mapHintsG etQ returns NULL.

Hints in MAPFS are built based on the concept of
attribute. An attribute can take different values. which
provides useful information for the VO operations. The
control user operations have a similar structure:

M apfs -Ctrl U s e r * map C t IU s e rN ew( M apfs -Tup I e s
*tupl): This operation creates a new Control User
structure for a set oftuples represented by tupl.
v oid map CtrlU s e r Fre e( M apfs -Ctr I U s e r x c trl U s e r ) :
This operation releases a Control User structure.
int map C trIU s e rS e t( M apfs -C t r I U s e r * c t r I U s e t int
codejeld, void *expr): This operation modifies a
field of the Control User structure with an expres-
sion. The operation returns 0 if successful and -l

otherwise.

M.S. Pérez et al. / Future Generation Computer Systems 22 (2006) 620432
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v o id * map CtrlU s e rG et( M apfs -C tr I U s e r * c trl U s e t
int code$eld): This operation returns the value of
a concrete field of the Control User structure. If
the field is not defined, mapCtrlUserGet) returns
NULL.

Control User operations are higher level operation
using expressions instead of simple attributes, which
are translated to hints by the MAPFS system. These
expressions are formed by boolean operations applied
to attributes. An example is shown in Section 4.1 .

4. Performance analysis

4.1. MAPFS evaluation

In order to validate our implementation, it is neces-
sary to evaluate its performance. Experiments were run
on a cluster of four Athlon 650 MHz nodes, each with
256MB of RAM memory, attached to a Gigabit Eth-
ernet network. Thls cluster constitutes our trial storage
group.

Our experiment consists of four processes running a
multiplication of two matrices, where the matrices are
stored in the cluster, using MAPFS as underlying plat-
form. The resultant matrix is also stored in a distributed
fashion.

Assume a matrix multiplication of two matrices:

A[M, Nl r, B[N, P): CÍM, Pl

The rows of the matrices A and B are stored in row
order in two different files.

With a traditional product algorithm:
f  o r  ( i = 0 ;  i < M ;  j . + + )

f o r  ( j = 0 ;  j c P ;  j + + )

f o r  ( k = 0 ;  k < N ;  k + + )
c  t i l  t j  I  + = A  t i l  t k l  * B  t k l  t j  I  ;

We assume that a row may be larger than the cache
(we are considering large size matrices). It is not suit-
able to prefetch the complete row associated to a con-
crete element because:

¡ Every time a row is finished (that is, the index "i"

is changed, after using the row P times), it is appro-
priate to prefetch elements of row "i+ 1".

¡ If the row is larger than the cache, it is better to
prefetch a window of K values, which conesponds
to the K following elements with respect to the con-
sidered element, but in a circular way (mod N). K
may depend on different factors, such as cache size,
system load or even it may be dynamic.

In this case, it is possible to use "row prefetching",
with circular window K (mod N), a cycle of P rep-
etitions per row, sequential advance of the rows and
without cycle of repetition per matrix. That is:

read(A[i,7]) =4
If it is not the last cycle (number of accesses A[i, j] <

P):

o Prektching from AÍi, j + ll to Ali, (i +
K)VoN)

If it is the last cycle (--P) ==+ (advance to the fol-
lowing row):

. Prefetching of the K following elements, both
from the current row,

if there are enough elements, and the first ones
from the row "j * 1",

ifitis necessary and i < M.

Therefore, the control user structures provided by
the applications are the configuration parameters of the
prefetching process. These are:

o Type: It may be per row or per column.
o Window type: It may be circular or not.
o Window size: Number of elements to read in everv

cycle of prefetching.

Cycle per row or per column: It specifies if there
exists cycle per row or per column or not. This last
case is indicated with a value 0.
Cycle per matrix: It specifies if there exists cycle per
matrix or not. This last case is indicated with a value
0.
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(1)  Mapfs-Ctr luser  *mapCtr lUser  = mapCtr lUserNew (data)  ;
(2)  mapCtr lUserSet  (mapCtr lUser ,  posi t ion,  ' 'Type=row AND Window-Type=Circu1ar

AND Window-Size=K AND Cvcle-Per-Row=P AND Cvcle-Per-Matrix=0" )

The control user structure provided by the applica-
tion follows this expression:

Type=Roh¡ AND l¡üindow-T14ge=
Circular AND Vüindow-Size=K

AND Cycle-Per-Row=P AND
Cycl e-Per-lvtatrix= 0

Therefore, the sequence of configuration operations
made by the application is:

{TF¡ _..É

i  l l í la,  4rs"-
-""-***--"***'+****'

2K 4K
Access size (bytes)

Fig. 6. Comparison of MAPFS and local application.

2K 4K
Access size(bytes)

Fig. 7. Speedup of the MAPFS solution on a cluster of four nodes
vs. Local solution.

This control user structure is translated to hints by
the multiagent subsystem. Hints are used as data tags
for processing the elements in an efficient manner,
prefetching data provided by the corresponding rule.
This experiment was compared to another one, which
consists of multiplying the same matrices stored on the
local disk through the usage of a traditional VO system.
The size of the matrices was 100M8. Fig. 6 shows the
execution times of both applications.

Fig. 7 shows the speedup of the MAPFS solution
versus local solution, varying the access size used in

the UO operations. As can be seen, the speedup is very
close to 4, the number of nodes, which is the maximum
speedup, limited by the'Amdahl's law".

4.2, Comparison with PVFS

The best way of evaluating MAPFS is to compare
the performance of an application using this parallel file
system and another one. PVFS [3,14] has been chosen
due to the followins reasons:

It is a parallel file system developed for Linux clus-
ters.
It provides high bandwidth for concurent
read/write operations from multiple processes or
threads to a parallel file.
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(3) It is robust and scalable.
(4) It gives support for multiple APIs, including a na-

tive PVFS API, the UNDIPOSX API and MPI-
IO API. We have used the first one for implement-
ing the application.

Again, we have compared the multiplication of two
matrices distributed among different nodes both in
MAPFS and PVFS. Fig. 8 shows the execution time
of the application using both parallel file systems. As
can be seen in the figure, the difference is significant,
although it decreases as the access size is increased.
It is important to emphasize the fact that PVFS is a
high-performance parallel file system.

5. Conclusions and future work

In this work we have presented MAPFS, a new mul-
tiagent architecture for high performance VO in clus-
ters. MAPFS provides the following properties: (i) sys-
tem topology configuration; (ii) access patterns specifi-
cations by applications, and (iii) usage of a multiagent
subsystem to support specific functionalities, such as
caching and prefetching.

MAPFS has been compared to both a local solu-
tion and PVFS, a high performance parallel file system
developed for Linux clusters, concluding that MAPFS
provides a speedup very close to the maximum, im-
proving upon the results of PVFS.

For future work, it would be interesting to evalu-
ate the performance of the system with the usage of
several storage groups and other different applications.
Furthermore, the growing proliferation of data grids in
heterogeneous and geographically distributed environ-
ments provides a new framework in which MAPFS can
offer the parallel VO features described in this paper.
In this sense, [29] constitutes a proposal for the usage
of MAPFS in data grids. Nevertheless, there are a great
number of open research issues and work for finalizing
this solution. One such issue is the adaptation of the
concept of storage group to a grid environment.
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