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a b s t r a c t

In multi-label learning, the training set is made up of instances each associated with a set
of labels, and the task is to predict the label sets of unseen instances. In this paper, this
learning problem is addressed by using a method called MLNB which adapts the traditional
naive Bayes classifiers to deal with multi-label instances. Feature selection mechanisms are
incorporated into MLNB to improve its performance. Firstly, feature extraction techniques
based on principal component analysis are applied to remove irrelevant and redundant fea-
tures. After that, feature subset selection techniques based on genetic algorithms are used
to choose the most appropriate subset of features for prediction. Experiments on synthetic
and real-world data show that MLNB achieves comparable performance to other well-estab-
lished multi-label learning algorithms.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Multi-label learning originated from the research into text categorization problems, where each document may belong to
several predefined topics, such as government and health [26,34]. Besides text categorization, multi-label learning tasks
widely exist in other real-world problems. For instance, in automatic video annotation, each video clip may belong to a num-
ber of semantic classes, such as urban and building [28]; in functional genomics, each gene may be associated with a set of
functional classes, such as metabolism, transcription and protein synthesis [12]. In all these cases, each instance in the training
set is associated with a set of labels, and the task is to output a label set for each unseen instance through analyzing training
instances with known label sets.

Multi-label learning could encompass traditional binary and multi-class problems as particular cases, restricting each in-
stance to have only one label. Although the generality of multi-label problems inevitably makes it more difficult to learn,
researchers have proposed a number of algorithms to learn from multi-label instances, such as multi-label decision trees
[8,9], multi-label neural networks [10,45], and multi-label kernel methods [2,12,17,23], etc. In this paper, we adapt the pop-
ular naive Bayes classifiers to deal with multi-label instances where a new method called MLNB, i.e. multi-label naive Bayes, is
proposed. In order to improve its performance, a two-stage filter-wrapper feature selection strategy is also incorporated. Spe-
cifically, in the first stage, feature extraction techniques based on principle component analysis (PCA) are used to eliminate
irrelevant and redundant features. In the second stage, feature subset selection techniques based on a genetic algorithm (GA)
are used to choose the most appropriate subset of features for classification, where the correlations between different labels
of each instance are explicitly addressed by the GA fitness function.
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The main contributions of this work are twofold. Firstly, MLNB has enriched the research paradigm of multi-label learning
by introducing a novel multi-label learning algorithm derived from naive Bayes. Secondly, it is the first time that feature
selection techniques have been introduced into the design process of multi-label learning algorithms. As indicated by the
experimental results reported in Section 5, feature selection techniques have significantly boosted the performance of MLNB

and it is quite competitive to several state-of-the-art multi-label learning algorithms.
The rest of this paper is organized as follows: Section 2 gives the formal definition of multi-label learning and its specific

evaluation metrics. Section 3 reviews the related works. Section 4 proposes the MLNB method. Section 5 reports experimental
results on several synthetic and two real-world multi-label data sets. Section 6 discusses the effectiveness of our feature
selection techniques in addressing the inter-label relationships. Finally, Section 7 summarizes and sets up several issues
for future work.

2. Multi-label learning

Let X ¼ Rd denote the input space and let Y ¼ f1;2; . . . ;Qg denote the finite set of possible labels. Given a multi-label
training set D ¼ fðxi;YiÞj1 6 i 6 mg, where xi 2 X is a single instance and Yi #Y is the label set associated with xi, the goal
of the multi-label learning system is to learn a function h : X! 2Y from D which predicts a set of labels for each unseen
instance. In most cases, instead of outputting a multi-label classifier, the learning system will produce a real-valued function
of the form f : X�Y! R. It is supposed that, given an instance xi and its associated label set Yi, a successful learning system
will tend to output larger values for labels in Yi than those not in Yi, i.e. f ðxi; y1Þ > f ðxi; y2Þ for any y1 2 Yi and y2 R Yi.

The real-valued function f ð�; �Þ can be transformed into a ranking function rankf ð�; �Þ, which maps the outputs of f ðxi; lÞ for
any l 2 Y to f1;2; . . . ;Qg such that if f ðxi; l1Þ > f ðxi; l2Þ then rankf ðxi; l1Þ < rankf ðxi; l2Þ. Note that the corresponding multi-label
classifier hð�Þ can also be derived from the function f ð�; �Þ: hðxiÞ ¼ fljf ðxi; lÞ > tðxiÞ; l 2 Yg, where tð�Þ is a threshold function
which is usually set to be the zero constant function.

In multi-label learning, performance evaluation is much more complicated than single-label learning as each instance
could have multiple labels simultaneously. One direct solution is to calculate the classic single-label metric (such as preci-
sion, recall and F-measure [35]) on each possible label independently, and then combine the outputs from each label through
micro- or macro-averaging [17,23,39,43]. However, this intuitive way of evaluation does not consider the correlations be-
tween different labels of each instance. Therefore, given a test set S ¼ fðxi;YiÞj1 6 i 6 pg, the following evaluation metrics
[34] specifically designed for multi-label learning are used in this paper:

(1) Hamming loss:

hlossSðhÞ ¼
1
p

Xp

i¼1

1
Q
jhðxiÞDYij

where D stands for the symmetric difference between two sets.
(2) One-error:

one-errorSðf Þ ¼
1
p

Xp

i¼1

s½arg max
y2Y

f ðxi; yÞ� R Yit

where for any predicate p, spt equals 1 if p holds and 0 otherwise.
(3) Coverage:

coverageSðf Þ ¼
1
p

Xp

i¼1

max
y2Yi

rankf ðxi; yÞ � 1

(4) Ranking loss:

rlossSðf Þ ¼
1
p

Xp

i¼1

1
jYijjYij

jfðy1; y2Þjf ðxi; y1Þ 6 f ðxi; y2Þ; ðy1; y2Þ 2 Yi � Yigj

where Yi denotes the complementary set of Yi in Y.
(5) Average precision:

avgprecSðf Þ ¼
1
p

Xp

i¼1

1
jYij

X
y2Yi

j y0jrankf xi; y0ð Þ 6 rankf ðxi; yÞ; y0 2 Yi
� �

j
rankf ðxi; yÞ

The first metric hamming loss is defined based on the multi-label classifier hð�Þ, which evaluates how many times an in-
stance-label pair is misclassified. The other four metrics are defined using the real-valued function f ð�; �Þ concerning the rank-
ing quality of different labels for each instance. One-error evaluates how many times the top-ranked label is not in the set of
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proper labels of the instance; Coverage evaluates how many steps are needed, on average, to move down the label list in
order to cover all the proper labels of the instance; Ranking loss evaluates the average fraction of label pairs that are misor-
dered for the instance; Average precision evaluates the average fraction of labels ranked above a particular label y 2 Y which
actually are in Y.

Note that for the first four metrics, the smaller the value the better the system’s performance. For average precision, on the
other hand, the bigger the value the better the system’s performance.

3. Related works

The majority of works on multi-label learning focus on the problem of text categorization. ADABOOST.MH [34] is one of the
famous approaches, which is an extension of ADABOOST and is the core of a successful text categorization system BOOSTEXTER

[34]. This approach maintains a set of weights on every instance-label pairs and those pairs that are hard (easy) to predict
correctly will get incrementally higher (lower) weights. McCallum [26] proposed a Bayesian approach to multi-label doc-
ument classification, where a mixture probabilistic model (one mixture component per category) is assumed to generate
each document and the EM [11] algorithm is used to learn the mixture weights and the word distributions in each mixture
component. Ueda and Saito [40] presented two types of probabilistic generative models for multi-label text called paramet-
ric mixture models (PMM1, PMM2). The basic assumption under PMMS is that multi-label text has a mixture of characteristic
words appearing in single-label text that belongs to each category of the multi-categories. Gao et al. [15] generalized the
maximal figure-of-merit (MFoM) approach [14] for binary classifier learning to the case of multiclass, multi-label text cat-
egorization. They defined a continuous and differentiable function of the classifier parameters to simulate specific perfor-
mance metrics and assign a uniform score function to each category of interest with which classic Bayes decision rules can
be applied.

There are also a number of multi-label text categorization algorithms derived from traditional machine learning methods.
Comité et al. [9] extended alternating decision trees [13] to handle multi-label data, where the ADABOOST.MH algorithm [34] is
used to train the multi-label alternating decision trees. Crammer and Singer [10] generalized the classic Perceptron algo-
rithm [31] to deal with multi-topic documents by associating a prototype to each possible topic. Topics are ranked according
to the prototypes’ similarity to the vector representation of the document where the prototypes are learned with an online
style algorithm. Zhang and Zhou [45] designed the multi-label version of the Backpropagation algorithm [33] by using a no-
vel error function capturing the characteristics of multi-label learning, i.e. the labels belonging to an instance should be
ranked higher than those not belonging to that instance. Later, Zhang [44] adapted traditional RBF for multi-label learning
by constituting the RBF network’s first layer through conducting clustering analysis on instances of each possible class.
Ghamrawi and McCallum [16] and Zhu et al. [47] both extended the maximum entropy model [27] to learn from multi-label
data by adding extra constraints of second order statistics capturing the correlations between categories.

Godbole and Sarawagi [17] extended the traditional SVM method for text categorization [20], where features indicating
relationships between classes are combined with original text features and a general kernel function for these combined het-
erogeneous features is constructed. Kazawa et al. [23] converted the original multi-label learning problem into a multi-class
single-label one by treating a set of topics as a new class. Labels are embedded into a similarity-induced vector space to cope
with the data sparseness caused by the huge number of possible classes. Besides these eager-style learning algorithms,
researchers have also proposed several lazy-style approaches where no training phase is involved and labels of each test in-
stance are predicted based on their similarity to training instances [4,22,46]. Recently, several algorithms have also been pro-
posed to improve the performance of learning systems through exploring additional information provided by the
hierarchical structure of the classes [5,32,42] or unlabeled data [7,24].

In addition to text categorization, multi-label learning has also been applied to the area of bioinformatics. Clare and King
[8] adapted the C4.5 decision tree [29] to handle multi-label data through modifying the definition of entropy. They chose
decision trees as the baseline algorithm as the learned model is equivalent to a set of symbolic rules, which is interpretable
and can be compared with existing biological knowledge. Through defining a special cost function based on ranking loss and
the corresponding margin for multi-label models, Elisseeff and Weston [12] proposed a kernel method for multi-label clas-
sification and tested their algorithm on the gene functional classification problem with positive results. Brinker et al. [3]
introduced learning by pairwise comparison techniques to the multi-label scenario, where an additional virtual label is intro-
duced to each instance acting as a split point between relevant and irrelevant labels. Barutcuoglu et al. [1] proposed a Bayes-
ian framework to gene function prediction based on the structure of functional class taxonomies, where a hierarchy of
support vector machine classifiers are trained in multiple data types and their predictions are combined to obtain the most
probable predictions.

Boutell et al. [2] applied multi-label learning techniques to scene classification. They broke the multi-label learning prob-
lem down into multiple independent binary classification problems and provided various labeling criteria to predict a test
instance’s label set based on its outputs on each binary classifier. Qi et al. [28] studied the problem of automatic multi-label
video annotation. They transformed instances into high-dimensional vectors by encoding correlation information between
inputs and outputs up to the second order and proposed a maximum-margin type algorithm to learn from the transformed
vectors. Furthermore, multi-label learning has also been applied to data mining tasks such as association rule mining
[30,37,41] and music information analysis [38].
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4. The MLNB method

4.1. The basic method

For an instance x 2 Rd associated with label set Y #Y, a category vector ~yx is defined for x where the lth component
~yxðlÞ ¼ 1 if l 2 Y and 0 otherwise. Given test instance t ¼ ðt1; t2; . . . ; tdÞT, let Hl

1 be the event that t has label l and Hl
0 be the

event that t does not have label l. Based on the above notations, the category vector~yt of the test instance is determined using
the following maximum a posteriori (MAP) principle:

~ytðlÞ ¼ arg max
b2f0;1g

P Hl
bjt

� �
; l 2 Y ð1Þ

Using the Bayesian rule and adopting the assumption of class conditional independence among features as classic naive Bayes
classifiers do, Eq. (1) can be rewritten as:

~ytðlÞ ¼ arg min
b2f0;1g

P Hl
b

� �
P tjHl

b

� �
PðtÞ ¼ arg min

b2f0;1g
P Hl

b

� �Yd

k¼1

P tkjHl
b

� �
ð2Þ

In this paper, the class conditional probability P tkjHl
b

� �
in Eq. (2) is computed as:

P tkjHl
b

� �
¼ g tk;llb

k ;r
lb
k

� �
; 1 6 k 6 d ð3Þ

Here g �;llb
k ;rlb

k

� �
is the Gaussian probability density function for the kth feature conditioned on Hl

b with mean llb
k and standard

deviation rlb
k . Note that other forms of distribution functions can be used as well to model P tkjHl

b

� �
. By substituting Eq. (3)

into Eq. (2) and ignoring constant values, the MAP estimate of the category vector ~yt is now calculated as:

~ytðlÞ ¼ arg max
b2f0;1g

P Hl
b

� �
exp /l

b

� �
; where /l

b ¼ �
Xd

k¼1

tk � llb
k

� �2

2rlb
k

2 �
Xd

k¼1

ln rlb
k ð4Þ

Note that in practice, when the dimensionality of input space (i.e. d) is high, the term /l
b as shown in Eq. (4) may be too neg-

atively large which makes the computation of exp /l
b

� �
exceed the floating precision of any computing machine. To avoid

this problem, we can firstly compute the probability of P Hl
1jt

� �
as:

P Hl
1jt

� �
¼

P Hl
1

� �
P tjHl

1

� �
P Hl

1

� �
P tjHl

1

� �
þ P Hl

0

� �
P tjHl

0

� � ¼ P Hl
1

� �
P Hl

1

� �
þ P Hl

0

� �
P tjHl

0ð Þ
P tjHl

1ð Þ

¼
P Hl

1

� �
P Hl

1

� �
þ P Hl

0

� �
exp /l

0 � /l
1

� � ð5Þ

where exp /l
0 � /l

1

� �
becomes computable, in practice, as the difference of /l

0 � /l
1 would generally be of moderate size.

After that, P Hl
0jt

� �
is set to 1� P Hl

1jt
� �

and ~ytðlÞ is calculated in accordance with Eq. (1). As defined in Section 2, the mul-

ti-label classifier hð�Þ corresponds to hðtÞ ¼ flj~ytðlÞ ¼¼ 1; l 2 Yg while the corresponding real-valued function f ð�; �Þ is deter-

mined as f ðt; lÞ ¼ P Hl
1jt

� �
� P Hl

0jt
� �

.

Fig. 1. Pseudo-code of MLNB-BASIC.
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Fig. 1 gives the complete description of the basic method (MLNB-BASIC). Note that the input argument s is a smoothing
parameter controlling the strength of uniform prior. In this paper, s is set to be 1 which comes from the Laplace smoothing.
For each possible class in Y, based on training instances contained in D ¼ fðxi;YiÞj1 6 i 6 mg, MLNB-BASIC firstly estimates the
prior probabilities P Hl

b

� �
(step 2). After that, MLNB-BASIC calculates the unbiased estimate of the Gaussian distribution param-

eters as used in Eq. (3) (steps 3–6) and then estimates the posteriori probabilities P Hl
bjt

� �
(steps 7–8). Finally, using the MAP

principle, MLNB-BASIC computes the outputs based on the estimated probabilities (step 9).
Note that although MLNB-BASIC has endowed naive Bayes with the abilities to learn from multi-label instances, there are

two factors that may negatively affect its performance. Firstly, MLNB-BASIC takes the classic naive Bayes assumption of class
conditional independence, i.e. the effect of a feature value on a given class is independent of the values of other features.
In real-world applications, however, this assumption does not usually hold which in turn may deteriorate the learning per-
formance. Secondly, MLNB-BASIC solves the multi-label learning problem by breaking it down into a number of independent
binary learning problems (one per label). In this way, the correlations between different labels of each instance are ignored
carelessly and the performance of the algorithm may be penalized.

As shown in the next subsection, we resort to feature selection techniques (PCA + GA) to mitigate the harmful effects
caused by class conditional independence assumption. Furthermore, correlations between different labels are also explicitly
addressed through the specific fitness function used in the GA process. In Section 6, a comparative analysis of an alternative
method to consider label dependencies is also carried out to justify the effectiveness of the proposed method.

4.2. Feature selection in MLNB

PCA [21] is one of the most popular methods for dimension reduction. It is a filter-style approach where the process of
dimension reduction is independent of the learning method used to build the classifier. Specifically, PCA is based on a linear
transformation of the original feature space X of d dimensions into another space Z of q dimensions, where q is usually
much smaller than d. This transformation is carried out by:

z ¼ ATx; where x 2 X; z 2 Z; ATA ¼ I

Here A is a d� q transformation matrix whose columns are the q orthonormal eigenvectors corresponding to the first q larg-
est eigenvalues of the covariance matrix EðXXTÞ. Here, E represents the expectation operator and X denotes the random vec-
tor in X. With the help of PCA, irrelevant and redundant features could be removed so that subsequent procedures can be
enhanced in terms of both effectiveness and efficiency.

GA [18] is one of the most common population-based techniques for feature subset selection (FSS). It is a wrapper-style
feature selection approach where the actual learning algorithm used to build the classifier is also involved in the process of
feature selection. In this paper, the genetic algorithm and direct search toolbox of MATLABTM 7.0 is adopted to implement the GA
algorithm. In order to run this toolbox, users have to specify the representation of individuals as well as their fitness
functions2:

Population type: Individuals in the population are simply represented by d-dimensional binary vectors. Specifically, given
an individual~h,~hðlÞ equals 1 means that the lth feature is retained from the original feature space while~hðlÞ equals 0 means
that the lth feature is excluded from the original feature space.

Fitness function: The fitness value for the individual ~h is computed as follows. Firstly, the original training set is trans-
formed into a new data set E by retaining the selected features specified by ~h; Secondly, the transformed data set E is ran-
domly divided into 10 parts E1; . . . ; E10, each one approximately the same size. Finally, 10-fold cross-validation is carried out
to compute the fitness value of ~h as follows:

Fitnessð~hÞ ¼ 1
10

X10

i¼1

hlossEi
ðhiÞ þ rlossEi

ðfiÞ
2

ð6Þ

Here hlossEi
ðhiÞ and rlossEi

ðfiÞ represent the multi-label metrics of hamming loss and ranking loss as defined in Section 2,
where hi and fi are the multi-label classifier and the corresponding real-valued function learned by training MLNB-BASIC on
E� Ei. There are two reasons for choosing hamming loss and ranking loss to compute individual fitness values. Firstly, ham-
ming loss concerns the quality of the predicted label set while ranking loss concerns the ranking quality of different labels.
Secondly, both metrics have been used as the objective functions to be optimized by a number of multi-label learning algo-
rithms [9,12,34,45].

With the help of GA, the subset of features which are most useful in classifier building are selected. More importantly, the
fitness function as shown in Eq. (6) explicitly exploits ranking loss, which concerns the ranking quality between output labels.
Therefore, correlations between output classes are appropriately addressed by MLNB. Note that other feature selection tech-
niques may also be used in place of PCA and GA [25,6,36,19] in order to enhance MLNB-BASIC.

2 Default parameters of the toolbox is used. To name a few, the size of population is set to 20 and the maximum number of generations is set to 100. In
creating a new generation, 2 elite individuals in the previous generation with the highest fitness values retained. Uniform crossover is carried out while the
crossover fraction is set to 0.8.
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Fig. 2 gives the complete description of the proposed algorithm. MLNB uses PCA to remove redundant and irrelevant fea-
tures (steps 1–2) and then uses GA to choose the most appropriate feature subset for classification (steps 3–5). After that,
MLNB computes the outputs based on the transformed test instance (steps 6–7). Actually, MLNB can be viewed as a hybrid fil-
ter-wrapper feature selection approach to multi-label learning. Obviously, MLNB-BASIC is a degenerated version of MLNB where
no feature selection mechanisms are used to improve the learning performance. Furthermore, let MLNB-PCA and MLNB-GA denote
other two degenerated versions of MLNB where either PCA or GA is used to enhance MLNB-BASIC, respectively.

5. Experiments

In this paper, MLNB and its degenerated versions are compared with several state-of-the-art multi-label learning algo-
rithms including ADTBOOST.MH [9], RANK-SVM [12] and a transductive style algorithm CNMF [24]. Moreover, PARALLELNB, which works
by breaking down the multi-label learning problem into a set of binary classification problems, is also evaluated.

For ADTBOOST.MH,3 the number of boosting rounds is set to 50 as after which its performance does not significantly change. For
RANK-SVM and CNMF, the best parameters reported in the literatures [12,24] are used. For PARALLELNB, naive Bayes classifier combin-
ing the same feature selection mechanisms of MLNB (i.e. PCA + GA) is used as the base binary classifier.

5.1. Synthetic data sets

In this section, several synthetic multi-label data sets are generated to evaluate the performance of the multi-label learn-
ing algorithms. The synthetic sets are created as follows: suppose there is a hyper-sphere HS with radius r located in a d-
dimensional feature space. Randomly generating Q inner hyper-spheres hsl ðl 2 f1;2; . . . ;QgÞ all embedded in the outer hy-
per-sphere HS, where each hsl corresponds to a concept class to be learned. Based on this, data points (instances) are ran-

Fig. 2. Pseudo-code of MLNB.

+
+

+ + 
+

++ +
+

+

dim0

dim1

: point with three labels

+ : point with two labels

: point with one label

: point without labels

Fig. 3. Illustrative example of the artificial data in a two-dimensional case. Three inner circles (dashed ones) are generated inside the outer circle (solid
one), each of which represents a concept class. Each data point is generated within the outer circle whose labels are determined by the inner circles covering
it. Data points with 0 � 3 labels are marked with �, M, + and *, respectively.

3 http://www.grappa.univ-lille3.fr/grappa/index.php3?info=logiciels.
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domly generated in HS, each point x is associated with a set of labels Y ¼ fljx covered by hsl; l 2 f1;2; . . . ;Qgg. Fig. 3 gives an
example of the artificial data in the two-dimensional case.

In this paper, 12 synthetic data sets are created based on the above process, where the outer hyper-sphere is set to be the
unit sphere (with radius 1) whose centre is placed at the origin of the 2d-dimensional space. The data sets are called as
DIMd_CLASSQ, where d is the number of relevant features and Q is the number of inner hyper-spheres (i.e. concept classes),
d=2 irrelevant features with random values and d=2 redundant features replicating half of the relevant features are added
to the original data. Therefore, each instance in data set DIMd_CLASSQ embodies a total of 2d features. Furthermore, classifica-
tion noise is added to the data to make them simulate real-world cases where noise is inevitable, where for instance x with
category vector ~yx, each bit of ~yx is randomly flipped with probability of 0.05. For each data set, 1000 multi-label training
instances and 1000 multi-label test instances are generated. Table 1 summarizes the characteristics of these artificial data
sets, where d ranges with values 40, 60, 80 and 100 and Q ranges with values 10, 15 and 20.

To illustrate whether feature selection mechanisms could help improve the performance, Fig. 4 depicts the performance
of MLNB and its degenerated versions, i.e. MLNB-PCA, MLNB-GA and MLNB-BASIC, on four synthetic data sets. The horizontal axis of
each figure represents the fraction of features that remains when PCA is utilized to carry out dimension reduction.4 As shown
in Fig. 4a–d, all the three methods incorporated with feature selection techniques, i.e. MLNB, MLNB-PCA and MLNB-GA, significantly
and consistently outperform MLNB-BASIC on all data sets. Furthermore, there is no significant difference between the perfor-
mance of MLNB-PCA and MLNB-GA while MLNB outperforms both of them when PCA and GA are incorporated together to improve
its performance. Experimental results on other data sets and evaluation metrics yield similar observations. Therefore, the
rest of this paper only compares MLNB with some well-established multi-label learning algorithms rather than its degenerated
versions. The fraction of remaining features after PCA is set to the moderate value of 0.3.

Table 2 summarizes the experimental results of the compared algorithms averaged over 12 synthetic data sets. The best
result on each evaluation criterion is highlighted in bold.5 Table 2 shows that MLNB performs quite well on almost all the eval-
uation criteria. Specifically, pairwise t-tests at 0.05 significance level reveal that MLNB outperforms all the compared algo-
rithms in terms of one-error, coverage, ranking loss and average precision; it is only inferior to ADTBOOST.MH in terms of
hamming loss. Note that although ADTBOOST.MH performs quite well in terms of hamming loss, its performance is rather poor
in terms of one-error and average precision.

The above results indicate that even when irrelevant and redundant features extensively exist, as is the case for the syn-
thetic data, MLNB could still effectively learn from them.

5.2. Real-world data sets

In this section, the performance of the compared algorithms are also evaluated on two real-world multi-label learning
problems:

� Natural scene classification: The first real-world multi-label task studied is natural scene classification, the goal is to predict
the label set automatically for unseen images by analyzing images with known label sets. The experimental data set con-
sists of 2000 natural scene images. All the possible class labels are desert, mountains, sea, sunset and trees and a set of labels

Table 1
Characteristics of the artificial data sets. A triplet x–y–z is used to illustrate the composition of each data set’s dimensionality. Specifically, x, y and z denote the
number of relevant, irrelevant and redundant features respectively and the total number of features equals xþ yþ z. PMC denotes the percentage of instances
belonging to more than one class, ANL denotes the average number of labels for each instance.

Data set Dimensionality #Classes Training set Test set

PMC (%) ANL PMC (%) ANL

DIM40_CLASS10 40-20-20 10 51.9 2.947 56.5 3.241
DIM40_CLASS15 40-20-20 15 67.6 5.875 68.2 5.841
DIM40_CLASS20 40-20-20 20 67.8 6.341 64.3 6.062
DIM60_CLASS10 60-30-30 10 55.1 1.792 57.1 1.800
DIM60_CLASS15 60-30-30 15 66.8 4.624 64.4 4.332
DIM60_CLASS20 60-30-30 20 70.3 5.091 73.2 5.304
DIM80_CLASS10 80-40-40 10 56.4 3.362 57.8 3.509
DIM80_CLASS15 80-40-40 15 62.7 4.398 61.7 4.203
DIM80_CLASS20 80-40-40 20 70.5 6.501 70.2 6.578
DIM100_CLASS10 100-50-50 10 55.4 2.631 56.3 2.723
DIM100_CLASS15 100-50-50 15 67.0 5.259 69.1 5.397
DIM100_CLASS20 100-50-50 20 66.9 5.898 68.6 6.081

4 It is obvious that neither MLNB-BASIC nor MLNB-GA involve the procedure of PCA. Therefore, as shown in Fig. 4, the performance curves of these two methods
level up as the fraction of remained features increases.

5 Note that hamming loss is not available for CNMF while ranking loss is not provided in the outputs of the ADTBOOST.MH implementation.
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is manually assigned to each image. The number of images belonging to more than one class (e.g. sea + sunset) comprises
over 22% of the data set, many combined classes (e.g. mountains + sunset + trees) are extremely rare. The average number
of labels for each image is 1:24� 0:44. In this paper, each image is represented by a 294-dimensional feature vector using
the same method as in [2].6
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Fig. 4. The performance (in terms of average precision) of MLNB and its degenerated versions changes as the fraction of remained features after PCA increases.

Table 2
Comparison (mean ± std. deviation) on the synthetic data sets. For each evaluation criterion, ‘‘;” indicates ‘‘the smaller the better” while ‘‘"” indicates ‘‘the
bigger the better”.

Evaluation criterion Algorithm

MLNB ADTBOOST.MH RANK-SVM CNMF PARALLELNB

Hamming loss ; 0:086� 0:009 0:074� 0:006 0:301� 0:068 N/A 0:090� 0:011
One-error ; 0:274� 0:059 0:410� 0:047 0:381� 0:105 0:292� 0:056 0:304� 0:061
Coverage ; 6:422� 2:739 6:645� 2:771 7:268� 3:092 10:142� 4:012 6:562� 2:793
Ranking loss ; 0:181� 0:023 N/A 0:251� 0:069 0:269� 0:039 0:191� 0:023
Average precision " 0:750� 0:050 0:611� 0:034 0:673� 0:072 0:690� 0:057 0:729� 0:050

6 Specifically, each color image is firstly converted to the CIE Luv space, which is a more perceptually uniform color space such that perceived color
differences correspond closely to Euclidean distances in this color space. After that, the image is divided into 49 blocks using a 7� 7 grid, where in each block
the first and second moments of each band are computed, corresponding to a low-resolution image and to computationally inexpensive texture features,
respectively. Finally, each image is transformed into a 49� 3� 2 ¼ 294-dimensional feature vector.
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� Yeast gene functional analysis: The second real-world multi-label task studied in this paper is to predict the gene functional
classes of the Yeast Saccharomyces cerevisiae, which is one of the best studied organisms. Specifically, the Yeast data set
investigated in [12] is used. Each gene is described by the concatenation of micro-array expression data and phylogenetic
profile and is associated with a set of functional classes whose maximum size can be potentially more than 190. Actually,
the whole set of functional classes is structured into hierarchies of up to four levels deep. In this paper, the same as in [12],
only functional classes in the top hierarchy are considered. The resulting multi-label data set contains 2417 genes each
represented by a 103-dimensional feature vector. There are 14 possible class labels and the average number of labels
for each gene is 4:24� 1:57.

Ten-fold cross-validation is carried out on both data sets. In detail, the original data set is randomly divided into 10 parts
each of approximately the same size. In each fold, one part is held-out for testing and the learning algorithm is trained on the
remaining data. The above process is iterated 10 times so that each part is used as the test data exactly once, where the aver-
aged metric values out of 10 runs are reported for the algorithm. Note that all the compared algorithms use the same 10-fold
division of the experimental data.

Table 3 summarizes the experimental results of the compared algorithms on the image data. The best result on each eval-
uation criterion is highlighted in bold. Pairwise t-tests at 0.05 significance level reveal that, in terms of all evaluation criteria,
MLNB is comparable to ADTBOOST.MH and PARALLELNB and significantly outperforms RANK-SVM and CNMF. It is also worth noting that
CNMF performs quite poorly compared to other algorithms. The reason may be that the key assumption of CNMF, i.e. two exam-
ples with high similarity in the input space tend to have a large overlap in the output space, does not hold on image data as a
result of the big gap between low-level image features and high-level image semantics.

Table 4 summarizes the experimental results of the compared algorithms on the yeast gene data. Best results on each
metric are also in bold. Based on pairwise t-tests at 0.05 significance level, MLNB performs fairly well as it is only inferior
to PARALLELNB in terms of hamming loss. On the other hand, MLNB is significantly superior to PARALLELNB in terms of one-error, cov-
erage, ranking loss and average precision, significantly superior to ADTBOOST.MH in terms of average precision and significantly
superior to RANK-SVM in terms of coverage and ranking loss. Furthermore, MLNB outperforms CNMF significantly in terms of all
the evaluation criteria. Just like the image data, CNMF does not perform well as the basic assumption of this method may also
not hold in this gene data set.

The above results indicate that, in addition to the synthetic multi-label data sets, MLNB also works well in dealing with
real-world multi-label learning problems.

6. Discussion

As introduced in Section 4, MLNB-BASIC works by directly breaking down the multi-label learning problem into a number of
independent binary classification problems. In this way, the correlations between labels are not considered by MLNB-BASIC.
However, the inter-label relationships are explicitly addressed by subsequent feature selection procedures in MLNB, i.e. the
GA fitness function as shown in Eq. (6). In this section, we will show that the fitness function used suffices to exploit effec-
tively the useful information embodied in the correlations between labels.

Table 3
Comparison (mean ± std. deviation) on the natural scene image data set. For each evaluation criterion, ‘‘;” indicates ‘‘the smaller the better” while ‘‘"” indicates
‘‘the bigger the better”.

Evaluation criterion Algorithm

MLNB ADTBOOST.MH RANK-SVM CNMF PARALLELNB

Hamming loss ; 0:196� 0:013 0:193� 0:014 0:253� 0:055 N/A 0:194� 0:019
One-error ; 0:366� 0:042 0:375� 0:049 0:491� 0:135 0:635� 0:049 0:369� 0:034
Coverage ; 1:097� 0:132 1:102� 0:111 1:382� 0:381 1:741� 0:137 1:108� 0:101
Ranking loss ; 0:204� 0:030 N/A 0:278� 0:096 0:370� 0:032 0:207� 0:021
Average precision " 0:760� 0:029 0:755� 0:027 0:682� 0:092 0:585� 0:030 0:769� 0:025

Table 4
Comparison (mean ± std. deviation) on the Yeast data set. For each evaluation criterion, ‘‘;” indicates ‘‘the smaller the better” while ‘‘"” indicates ‘‘the bigger the
better”.

Evaluation criterion Algorithm

MLNB ADTBOOST.MH RANK-SVM CNMF PARALLELNB

Hamming loss ; 0:209� 0:009 0:207� 0:010 0:207� 0:013 N/A 0:207� 0:011
One-error ; 0:237� 0:037 0:244� 0:035 0:243� 0:039 0:354� 0:184 0:244� 0:030
Coverage ; 6:456� 0:250 6:390� 0:203 7:090� 0:503 7:930� 1:089 6:674� 0:269
Ranking loss ; 0:175� 0:017 N/A 0:195� 0:021 0:268� 0:062 0:181� 0:014
Average precision " 0:753� 0:022 0:744� 0:025 0:749� 0:026 0:668� 0:093 0:745� 0:019
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Firstly, we propose to investigate the label correlations before the feature selection process begins, i.e. improving MLNB-
BASIC by endowing it with the abilities of addressing inter-label relationships. After that, the improved MLNB-BASIC method
(called MLNB-BASIC-I) is incorporated with the same PCA and GA mechanisms used by MLNB to see whether better performance
can be achieved. If not, it would be reasonable to assume that it is sufficient to address the inter-label relationship at the
stage of feature selection, instead of at the stage of MLNB-BASIC in advance.

Based on the same notations as used in Section 4.1, let L #Y be the a priori set of labels predicted by MLNB-BASIC for the test
instance t. Then, MLNB-BASIC-I attempts to adjust the probability of P Hl

1jt
� �

by multiplying it with an extra term P Hl
1jL

� �
, i.e. the

probability that t has label l when the predicted label set of MLNB-BASIC corresponds to L. Accordingly, P Hl
0jt

� �
is revised by

multiplying it with P Hl
0jL

� �
. For the test instance t with a priori label set L, let bHl

1
bHl

0

� �
be the event that l 2 L ðl R LÞ. Then,

MLNB-BASIC-I determines the category vector ~yt of t as follows:

~ytðlÞ ¼ arg max
b2f0;1g

P Hl
bjt

� �
� P Hl

bjL
� �

¼ arg max
b2f0;1g

P Hl
bjt

� �
�
P Hl

b

� �
� P LjHl

b

� �
PðLÞ

¼ arg max
b2f0;1g

P Hl
bjt

� �
� P Hl

b

� �
� P LjHl

b

� �
ð7Þ

The second line of Eq. (7) is derived by applying the Bayesian rule while the third line is derived by ignoring the irrelevant
term PðLÞ. To compute P LjHl

b

� �
, we assume the independence among labels given Hl

b and rewrite Eq. (7) as follows:

~ytðlÞ ¼ arg max
b2f0;1g

P Hl
bjt

� �
� P Hl

b

� �
�
Y

l02Y�flg

P bHl0

bl0
L
jHl

b

� 	
ð8Þ

Here, bl0

L takes the value of 1 if l0 2 L and 0 otherwise. Note that the term P LjHl
b

� �
can also be calculated in other ways. As

shown in Eqs. (7) and (8), through the revision term P Hl
bjL

� �
, MLNB-BASIC-I could appropriately exploit information embodied

in class labels other than l in determining whether t has the lth label or not. For those terms shown in Eq. (8), MLNB-BASIC-I

computes P Hl
b

� �
and P Hl

bjt
� �

in the same way of MLNB-BASIC. In addition, P bHl0

b0 jH
l
b

� �
is directly estimated from the training data

based on frequency counting.
The same feature selection mechanisms used by MLNB, i.e. PCA + GA, are also incorporated into MLNB-BASIC-I to yield the

counterpart of MLNB named MLNB-I. Fig. 5 illustrates the performance of MLNB-BASIC, MLNB and their counterparts MLNB-BASIC-I,
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Fig. 5. The performance of MLNB-BASIC, MLNB-BASIC-I, MLNB and MLNB-I on the Yeast data change as the fraction of remained features after PCA increases. In (e),
1-average precision is plotted instead of average precision so that for (a)–(e), the lower the curve the better the performance. The training time (in seconds) is
also given in (f) with log-linear scale.

M.-L. Zhang et al. / Information Sciences 179 (2009) 3218–3229 3227



Author's personal copy

MLNB-I on the Yeast data set. The horizontal axis of each figure represents the fraction of original features that remains when
PCA is used to carry out dimension reduction.

Fig. 5a–e reveal that in terms of all metrics, MLNB-BASIC-I significantly outperforms MLNB-BASIC, but the performance between
MLNB and MLNB-I are totally indistinguishable when feature selection techniques are incorporated into the learning procedure.
Furthermore, as shown in Fig. 5f, MLNB-BASIC-I and MLNB-I are more computationally intensive than MLNB-BASIC and MLNB, respec-
tively. These results indicate that although MLNB-BASIC does not address label correlations by itself, the fitness function
adopted by GA process in MLNB is sufficient to exploit inter-label relationships effectively to yield competitive performance.

7. Conclusion

This paper presents a new multi-label classification method based on naive Bayes. Feature selection strategies based on
principal component analysis and genetic algorithms are incorporated into the method to improve its performance. Exper-
iments on both synthetic and real-world multi-label data sets show that our method achieves highly competitive perfor-
mance with several well-established multi-label learning algorithms.

The success of MLNB suggests that incorporating feature selection is helpful in multi-label learning based on naive Bayes
classifiers. It is not clear whether they are also helpful for other kinds of multi-label learning methods and whether there are
better choices than PCA and GA for this purpose. These are interesting issues worth further investigation.

Because of the embedded GA process, MLNB would be too time consuming when learning from high-dimensional data such
as texts. Moreover, MLNB can only be applied to data with continuous attributes since it uses PCA. Designing variants of MLNB

that can handle data with high-dimensionality and nominal attributes is another interesting problem to be explored.
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