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Abstract

In the past few years, numerous research projects have focused on identifying and understanding scaling properties in
the gene content of prokaryotes genomes and the intricacy of their regulation networks. Yet, and despite the increasing
amount of data available, the origins of these scalings remain an open question. The RAevol model, a digital genetics
model, provides us with an insight into the mechanisms involved in an evolutionary process. The results we present here
show that (¢) our model reproduces qualitatively these scaling laws and that (i) these laws are not due to differences in
lifestyles but to differences in the spontaneous rates of mutations and rearrangements. We argue that this is due to an

indirect selective pressure for robustness that constrains the genome size.
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1. Introduction

Despite the huge diversity of living beings — from the
smallest life forms to the biggest trees or mammals — some
allometric ratios have been shown to be remarkably con-
served among the living kingdom. For instance, it has
been shown that various physiological characteristics of
all organisms scale with their body mass and follow sim-
ple power-law behaviors whose exponents are multiples of
i (West et al., 2002). These scaling laws may reveal some
fundamental principles of life, typically the necessity, for
all organisms, to distribute energy and nutrients efficiently
within their whole body (West and Brown, 2005).

At the molecular level, the ever-increasing number of
sequenced genomes allows large comparative analysis. This
analysis has revealed that several molecular traits also fol-
low characteristic scaling laws. For instance, the genome
size has been shown to scale as a power-law of the sponta-
neous mutation rate in DNA-based microbes (Drake, 1991;
Drake et al., 1998). More recently, different genomic prop-
erties have been shown to follow power-law distributions
(Luscombe et al., 2002; Koonin et al., 2002).

In prokaryotes, genomic structures can be very diverse,
with genome sizes ranging from ~500 kb for the endosym-
biont Buchnera aphidicola (Vifiuelas et al., 2007) to more
than 6 Mb for Pseudomonas aeruginosa (Stover et al.,
2000). Similarly, the number of genes ranges from a few
hundred (~600 for B. aphidicola) to more than 5500 for
P. aeruginosa. Variations in the functional content of the
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genomes are also visible at the transcription level: Some
organisms (e.g. B. aphidicola) are hardly able to regu-
late their transcriptional activity (Reymond et al., 2006)
while others display complex regulation networks made
up of thousands of tightly interconnected nodes (Stover
et al., 2000). When the sequenced bacterial genomes are
considered globally, the diversity of genomic structure in
prokaryotes is even more striking. Through the analysis
of the annotated sequences, it was shown that the number
of genes in each functional category scales as a power-law
of the total number of genes in the genome and that the
exponent of this law depends on the functional role of the
family: The number of transcription factors (TFs), in par-
ticular, scales quadratically with the total number of genes
while metabolic genes scale at most linearly with it (van
Nimwegen, 2003; Molina and van Nimwegen, 2008). More-
over, this increase is also correlated with the size of the
genome (Konstantinidis and Tiedje, 2004). These results
suggest that the intricacy of regulation networks grows
faster than the size of the network itself.

The question of the origin and universality of such
scaling laws remains open (Cordero and Hogeweg, 2007;
Molina and van Nimwegen, 2009). Some evolutionary mod-
els based on gene duplication and deletion can produce
power-law relations (Luscombe et al., 2002; Foster et al.,
2006) but these models directly consider the mutations
that went to fixation in the population, without distin-
guishing the respective influences of the various under-
lying processes — genetic drift, natural selection, muta-
tional biases. However, the classical hypothesis is that the
scaling has a selective origin. It is often assumed that
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these scaling laws result from a selection process linked to
bacterial lifestyle: Complex environments would require
the coordination of multiple metabolic pathways (Cases
et al., 2003). Alternatively, it has been argued that any
increase in the genetic repertoire of an organism (e.g., a
new metabolic pathway) generates a need for new tran-
scription factors in order to regulate its activity within
the existing metabolism (Maslov et al., 2009).

Actually, despite the tremendous advance in the fields
of genomics and transcriptomics, it is still not clear whether
these “molecular allometric laws” result from selective con-
straints (e.g., selection for short genomes or integrated net-
works), from the intrinsic dynamics of the evolutionary
process or from any other mechanism still to be revealed
(Molina and van Nimwegen, 2009).

In order to explore the evolutionary pressures on the
genomic and transcriptomic structures and their depen-
dence on external conditions (e.g., environmental condi-
tions, population size, selection strength, mutation rates),
an interesting approach is to use digital genetic models
(Adami, 2006) where a finite population of virtual or-
ganisms is explicitly simulated in a virtual environment.
These “organisms” are complex enough to be analysed
in terms of molecular structure but they are also simple
enough to allow for the computation of a fitness value,
based on their genetic sequences and on the virtual en-
vironment. It is hence possible to implement a selection
procedure. In such models, the evolutionary forces are
precisely tuned and it is possible to test experimentally
how they shape the structure of the organisms. Digi-
tal genetics have already shown that darwinian evolution
can have counter-intuitive effects, due to indirect selective
pressures. For example, it was shown that the long-term
survival of a lineage not only depends on its fitness, but
also on its mutational robustness (Wilke et al., 2001).

In this paper, we propose an integrated model of the
evolution of regulatory networks, where the network level
is not considered on its own but as a key layer between
the genome sequence (where the mutations occur) and the
phenotype (on which selection acts). We present our first
large campaign of in silico experimental evolution with
this model. Our results show that the model reproduces
some known allometric laws, enabling us to propose hy-
potheses regarding their origin.

2. RAevol in a nutshell

To study the evolution of the structure of genomes and
gene networks, we have developed an integrated model,
RAevol (Regulatory-Aevol). This model extends the Aevol
model (Artificial evolution), previously developed in our
team to study robustness and evolvability in artificial or-
ganisms (Knibbe et al., 2007a,b, 2008). We provide here
an overview of the Raevol model. A detailed description
of the model is available in the Methods section.

In both Aevol and RAevol, each artificial organism
owns a genome whose structure is inspired by prokary-
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Figure 1: Overview of the transcription-translation-folding process
in Aevol and Raevol. The genome is a circular, double-stranded, bi-
nary sequence (left and top). Transcribed sequences are those that
start with a promoter consensus sequence and end with a terminator
sequence. Coding sequences (genes) are searched within the tran-
scribed sequences; they begin with a Shine-Dalgarno-START sequence
and end with a STOP codon. An artificial genetic code (right) is used
to convert a gene into the primary sequence of the corresponding
protein and a “folding process” enables us to compute the metabolic
activity of this protein (functional abilities). In Aevol, the expression
level e depends only on the sequence of the promoter and is constant
throughout the lifetime of the artificial organism. In RAevol, e may
vary over time due to the regulation activity of transcription factors.
In both models, the expression level modulates the contribution of
the protein (height of the triangle).

otic genomes. It is organized as a circular double-strand
binary string containing a variable number of genes sepa-
rated by non-coding sequences (figure 1). A set of prede-
fined signaling sequences (promoters, terminators, Shine-
Dalgarno-like sequences, start and stop codons) allows us
to detect the coding sequences. These coding sequences
are translated into abstract “proteins” that interact with
one another and produce a phenotype that can be more or
less well-adapted to the environment.

To model the activity of proteins and the resulting phe-
notype, we defined a simple “artificial chemistry” (Dittrich
et al., 2001) that describes the organism’s metabolism in a
mathematical language. In our simplified artificial world,
we assume that there is an abstract, one-dimensional space
of possible metabolic processes (that is, in this model, a
metabolic process is just a real number). In this “metabolic
space”, each protein is involved in a subset of processes
which is described using the fuzzy set formalism: A given
protein can be involved in a metabolic process with a possi-
bility degree comprised between 0 and 1. A protein is thus
fully characterized by a mathematical function that asso-
ciates a possibility degree to each metabolic process. For
simplicity, we use piecewise-linear functions with a sym-
metric, triangular shape (figure 1). In this way, only three
numbers are needed to characterize the metabolic activity
of a protein: The position m of the triangle on the axis, its
half-width w and its height h. This means that the pro-
tein contributes to the range [m — w, m 4+ w] of metabolic
processes, with a preference for the processes closest to
m (for which the highest efficiency, h, is reached). Thus,
various types of proteins can co-exist, from highly efficient
and highly specialized ones (small w, high h) to polyvalent
but poorly efficient ones (large w, low h).



In this framework, each coding sequence is translated
into a chain of abstract “Amino-Acids” (AA) using an
artificial genetic code (shown in figure 1). This primary
sequence is decomposed into three interlaced binary sub-
sequences that will in turn be interpreted as the values
for the m, w and h parameters. For instance, the codon
010 (resp. 011) is translated into the AA WO (resp. W1),
which means that it contributes to the value of w by adding
a bit 0 (resp. 1) to its binary code. Thus, small muta-
tions in the coding sequence (substitutions, indels, possi-
bly causing frameshifts) will change these parameters, and
hence the metabolic activity of the protein.

In the RAevol model each protein may have a regula-
tory activity beside its metabolic activity: It can interact
with promoter sequences, thus enhancing or inhibiting the
transcription of other genes. To determine whether a pro-
tein can regulate a particular promoter, we test whether
the AA-chain of the protein contains a small motif that
can bind to a subsequence of this promoter. The set of
motifs that can bind to a particular DNA subsequence is
randomly determined once and for all at the beginning of
the evolutionary run. Like in most bacteria, the sign of
the regulation depends on whether the binding occurs be-
fore or after the position of the first transcribed nucleotide
(Janga and Collado-Vides, 2007). The resulting transcrip-
tion level is used to scale up or down both the metabolic
activity (height of the triangle) and the regulatory activi-
ties of the protein. We call the proteins that actually have
a regulation activity Transcription Factors (TFs). Note
that proteins with no metabolic activity (null w or h) can
nevertheless be TFs. In this case, they are called pure
TFs.

Due to this regulatory process, the transcription levels
of the genes (and hence the protein concentration levels)
may vary during the lifetime of the organism. At each
time t, the global metabolism is computed by combin-
ing all the protein curves scaled by their concentrations.
The phenotype of an artificial organism is thus defined
as the dynamic curve showing the degree of realization of
each possible metabolic process at each time ¢. The fit-
ness of the organism is then computed as the distance be-
tween the phenotypic curve and a pre-defined target curve
(representing the metabolic functions needed to survive
in the environment). The fittest organisms are allowed
to replicate, with small mutations and large rearrange-
ments (duplications, deletions, inversions, translocations)
occurring at random locations during genome replication.
Genome size, gene number and gene order are hence free
to evolve. Rearrangements can also modify the topology
of the network (duplication or deletion of genes or pro-
moter regions). Small mutations in coding sequences or in
promoters can also affect the DNA-protein bindings and
hence the wiring of the network.

3. Results

The typical use of digital genetics models is quite close
to experimental evolution procedures (Elena and Lenski,
2003): Populations of organisms are initialized and left
to evolve in controlled conditions (i.e., controlled parame-
ters). By observing the products of the evolutionary pro-
cess in different conditions and by comparing them, we can
unravel the direct or indirect pressures that constrain the
structure of the organisms.

Eventually, our objective is to use RAevol to under-
stand how regulation networks evolve depending on exter-
nal conditions and on the complexity of the environment
(e.g., number of states, frequency or periodicity of envi-
ronment variations...). RAevol makes it possible to evolve
digital organisms in demanding environments where they
must react to external signals. However, we first wanted
to check whether the organisms would evolve regulation
networks in simple, steady, environments. Thus, we let
the organisms evolve in a constant environment: 18 dif-
ferent populations of 1000 organisms evolved under 6 dif-
ferent mutation rates u (from 5.107° to 2.107* — defined
as the per-nucleotide probability of a small mutation or a
rearrangement occuring during replication), the selective
pressure being exactly the same for all the experiments.

During the evolutionary process, the organisms pro-
gressively acquire new genes and connect them in such a
way that they fulfill the task they are selected for (figures
2, 3 and 4). All the simulations proceed qualitatively in a
similar way, evolving quickly in the first stage of evolution
(rapid gene acquisition) then slowing down the process of
gene acquisition while optimizing the sequence of existing
genes and promoters. However, looking at the evolution
of the size of the genome and the number of genes, we can
see a clear trend for lower mutation rates to have larger
genomes (figure 3) containing more genes (figure 4).
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Figure 2: Evolution of the metabolic error of the best organisms of
each simulation during 15000 generations (log scale). Whatever the
mutation rate (except the highest), all organisms perform similarly.

We analyzed the structure of both the genomes and
the regulation networks of the best organisms after 15000
generations. We found that all the features of the evolved
organisms are influenced by the mutation rate: The or-
ganisms are clearly more complex when the mutation rate
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Figure 3: Evolution of the size of the genomes (in bp, log scale) of the
best organisms during 15000 generations. The size of the genomes
appears to be strongly dependent on the mutation rate u. Note that,
in the model, genome size depends on both the number of genes and
the size of non-coding sequences.
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Figure 4: Evolution of the number of genes of the best organisms (log
scale) during 15000 generations. After a short period of fast gene
recruitment, the number of genes stabilizes. The number of genes
in the organisms appears to be strongly dependent on the mutation
rate u.

is low (figures 5 and 6) even though they all evolved in an
identical and steady environment.

These results confirm the ones we had previously ob-
tained with Aevol: The total coding length is influenced
by the mutation rate and, much more surprisingly, the
amount of non-coding sequences is also regulated (figure
7). With RAevol, we observe that the genetic network
scales as well: The size and complexity of the network are
clearly correlated with the mutation rate. In the simula-
tions presented here, the environment is steady during the
lifetime of the organisms. Thus, there is no direct pres-
sure to evolve a regulatory network at all. Despite this,
the lower the mutation rate, the more complex the evolved
network. Both the number of genes and the number of TF's
are inversely correlated with the mutation rate (figure 8).
But as the mutation rate decreases, the number of TFs
increases faster than the number of genes. This trend is
even clearer in our runs if we consider the pure TFs (pro-
teins with a regulatory activity but no contribution to the
metabolism, figure 9).

10000 bp

(a) A low mutation rate (u = 5.1079) leads to large genomes (here
120583 bp) with huge non-coding regions (here 97% of the genome).
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(b) A medium mutation rate (left, u = 5.107°) leads to medium size
genomes (here 4964 bp) with large non-coding regions (here 65% of
the genome). A high mutation rate (right, v = 2.10%) leads to
smaller genomes (1180 bp) with smaller non-coding regions (37%).

Figure 5: After 15000 generations, the genomes range from large ones
(a) to intermediate and small (b) ones depending on the mutation
rate u.

4. Discussion

As figures 10 and 11 show, our experiments with RAevol
reproduce qualitatively the scaling laws observed in the
prokaryotic kingdom (Cases et al., 2003; van Nimwegen,
2003; Konstantinidis and Tiedje, 2004; Molina and van
Nimwegen, 2008). Small genomes with few genes only have
a very basic regulation activity while large ones develop
complex regulation networks with many genes. Both the
number of genes having a metabolic activity and the num-
ber of genes having a regulatory activity scale as power-
laws of the total gene number, but when the former scales
with an exponent below 1, the latter shows a super-linear
scaling (figure 10).

In our experiments, all organisms evolved in the same
— simple — environment. Thus, environmental conditions
cannot have caused the scaling of the genetic complex-
ity here. The only difference between our organisms was
the mutation rate u that ranged from a very high one
(u = 2.10~* mutations per bp per replication) to a low one
(u = 5.10~% mutations per bp per replication). As figures 7
to 9 show, the mutation rate is the crucial factor determin-
ing the organisms’ complexity. This is what we observed
with the Aevol model in which proteins had no regulatory
activity. We showed that this scaling was the consequence
of an indirect selection of lineages whose genomic structure
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(a) Low mutation rate (u = 5.107%) leads to high complexity (here
93 genes and 73 TFs, 13 of which being pure TFs).
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(b) Medium mutation rate (left, u = 5.107%) leads to medium com-
plexity (here 38 genes and 18 TFs). High mutation rate (right,
u = 2.10~%) leads to low complexity (16 genes and 2 TFs).

Figure 6: After 15000 generations, the complexity of the gene net-
works ranges from a high connectivity (a) to mild and low (b) ones
depending on the mutation rate u. Solid lines represent activation
links while dashed lines represents negative links. Genes having a
metabolic activity are represented by ellipses. Hexagons represent
genes without any metabolic activity.

allows for an appropriate trade-off between robustness and
evolvability (Knibbe et al., 2007a, 2008, 2007b). If the
per-base mutation rate is high, large genomes with many
genes cannot maintain their fitness due to the mutational
load they undergo. Large non-coding sequences cannot be
maintained either because they promote large chromoso-
mal rearrangements that can affect some genes. On the
contrary, if the mutation rate is low, large genomes can
maintain themselves in the population and they can even
outcompete the smaller ones, because they can fit the tar-
get more precisely with more genes, and because they are
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more likely to find a beneficial mutation. We showed for
Aevol that this trade-off between robustness and evolvabil-
ity manifested itself by the survival of the lineages whose
expected fraction of neutral offpring F,, (the expected frac-
tion of offspring without mutation or only neutral ones at
each reproduction) was close to %, where W is the number
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of reproductive trials of the best individual (Knibbe et al.,
2007a). In the experiments presented here, the evolved
F, is again close to g in most runs (figure 12). This
suggests that the present results can also be explained by
indirect pressures on the global mutational variability of
the genome.

All the scaling laws observed in RAevol can derive from
this pressure for robustness and from the scaling it imposes
on the number of genes. Indeed, as the number of genes
increases, the number of promoters also grows (possibly
a little slower because of operon structures). Thus, the
number of putative regulatory gene-promoter associations
grows quadratically. Since, in the model, the regulatory
activity is computed through a combinatorial algorithm
that associates protein primary sequences with promoter
sequences (see Methods), a linear increase in the number of
promoters leads, for a protein with a regulatory motif, to
a linear increase in the number of potential targets in the
genome. As a consequence, a protein owning a regulatory
motif has a higher probability of being a TF (number of ac-
tual targets in the genome greater or equal to 1) in a large
genome than in a smaller one. Thus, RAevol appears as a
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Figure 12: Evolved fraction F, of neutral offspring. F, was estimated
by forcing the final best organism of each run to reproduce itself
10000 times (with the same mutation rate as during the run) and
by counting the number of offspring that have the same fitness as
their progenitor. The gray area represents organisms whose fraction

of neutral offspring is lower than %

null model in which links in the networks are added with
an almost constant probability when the number of gene-
promoter pairs increases. Consequently, in the model, the
scaling of the number of genes (due to mutational robust-
ness constraints) leads naturally to a super-linear increase
in the number of regulatory nodes.

Whether a similar mechanism can explain the quadratic
growth of Transcription Factors observed by van Nimwe-
gen (2003) and Molina and van Nimwegen (2008) is an
open question. Since all their observations were based on
genome annotation rather than on direct measures of the
regulation networks’ connectivity, it is difficult to assume
such a combinatorial process to be at work. Yet, several
authors have reported the combinatorial properties of the
binding between TFs and their DNA targets. According
to Itzkovitz et al. (2006), the number of degrees of free-
dom of the binding mechanism can partly account for the
increase in the number of TFs. Moreover, it is also known
that TFs can bind to a broad spectrum of binding sites
with different affinities and change targets widely among
species (Balleza et al., 2009).

Maybe the most striking result of our simulations is
that the super-linear growth of the number of TFs is also
observed for pure TFs. Moreover, these proteins scale
more than quadratically with the number of genes (fig-
ure 11). One can propose different hypotheses to explain
the appearance and fixation of pure TFs. They can ap-
pear due to random mutations but they most likely result
from duplication/divergence events (e.g., genes copies that
lose their metabolic activity while retaining their regula-
tion activity). The interesting question is why evolution
maintains such genes in the simple environment where our
organisms live. One can assume that, when the number of
genes increases, there is a need for more regulation in order
to position the attractor of the network more precisely in a
space in which the number of dimensions increases. In this
hypothesis, pure TFs could be directly selected. Alterna-
tively, one can suppose that they are indirectly selected;



However, their contribution to the robustness/evolvability
balance is very difficult to assess. They can contribute to
the organism’s robustness if they have a canalizing effect.
They can also contribute to the organism’s evolvability by
enabling small mutational variations that may be more
likely to be positive than mutations in metabolic genes.
In this hypothesis, pure TFs would be conserved because
their mutation can finely tune the activity of their target
proteins without changing the metabolic processes these
targets are involved in. We now plan to analyze the phy-
logeny of our organisms to study specifically the mecha-
nisms that lead to the appearance and to the fixation of
these “pure” regulators. We also plan to use KnockOut ex-
periments to better understand their contribution to the
dynamics of the regulation network.

To conclude, our results show that, at least in our
model, the scaling laws reflect fundamental principles of
bacterial evolution, i.e. the selection for an appropriate
balance between robustness and evolvability (Lenski et al.,
2006). Our simulations show that the pressure for com-
plexification of the network can be indirect, unrelated to
differences in the environment or the lifestyle: When facing
identical environmental constraints, the organisms’ struc-
ture can range from very simple life forms (with a reduced
gene set and loose connectivity) to very complex ones, the
main determinant of the structure being “only” the muta-
tion rate here. Of course, this does not imply that, if faced
with an environment of variable complexity and demand,
organisms with the same mutation rate will have a similar
structure. However, we can deduce from our results that
the molecular complexity of the organism will be bound
by the robustness constraint, meaning that the mutation
rate will still be a major factor in determining organismal
complexity.

5. Methods

5.1. Population initialization

Each population is seeded with 1000 asexual individ-
uals with an identical genome. This initial genome is a
random binary sequence of 5000 base pairs (bp) contain-
ing at least one coding sequence. Each run is seeded with
a different initial genome.

5.2. Detection of transcribed regions

The transcription algorithm searches for promoters on
each strand. Then, for each promoter, it follows the strand
until it finds a terminator. This delimits the transcribed
region. Note that several promoters can share the same
terminator. In this case transcribed regions overlap.

Promoters are sequences similar to a pre-defined con-
sensus. In the experiments presented here, the consensus
sequence was 0101011001110010010110 and d < dpax = 4
mismatches were allowed. Terminators are sequences able
to form a stem-loop structure, as the p-independent bac-
terial terminators do (here the stem size was set to 4 and
the loop size to 3).

We assign a ground expression level [ to the tran-
scribed region depending on the similarity of the promoter
with the consensus (Struhl, 1999): =1 — ﬁ.

5.8. Detection of coding sequences and translation process

Once all transcribed regions have been localized, they
are parsed to detect the initiation and termination signals
of translation. These signals delimit the coding sequences.
The initiation signal is the motif 011011 * % % 000 (Shine-
Dalgarno-like signal followed by a START codon, 000 here).
The termination signal is the next sTOP codon (001) on
the same reading frame. Each time an initiation signal
is found, the following positions are read three by three
(codon by codon) until a stop codon is encountered. A
transcribed region can contain several coding sequences
(overlapping or not), meaning that operons are allowed.

Each coding sequence found inside a transcribed region
is read triplet by triplet (codon by codon) and an artificial
genetic code is used to translate it into a chain of artifi-
cial amino-acids. In this genetic code (shown in figure 1),
there are 6 different amino-acids, grouped into three pairs
(M()/Ml, Ho/H1 and Wo/Wl)

5.4. Metabolic activity of proteins

Let © be the abstract space of metabolic processes.
To keep the model simple, 2 is one-dimensional space,
more precisely a real interval: Q = [a,b] € R (with a =
0 and b = 1 in the experiments presented here). Each
protein i can contribute to (or inhibit) a fuzzy subset of 2.
This fuzzy subset is fully characterized by a mathematical
function f; : Q = [a,b] — [0,1]. This function is called
a possibility distribution. It defines, for each metabolic
process x the degree of possibility f;(x) with which the
protein 4 can perform the process x. A metabolic process
x belongs to the fuzzy set of a protein if f;(z) > 0. We use
piecewise-linear distributions with a symmetric triangular
shape. Such distributions can be characterized by three
parameters: The position m (mean) of the triangle on the
axis, its height h and its half-width w. Hence a protein i
can be involved in the metabolic processes ranging from
m; — w; to m; + w;, with a maximal degree of possibility
for the process m;. The fuzzy subset of the protein is thus
the interval |m; — w;, m; + w;].

In computational terms, the amino-acid chain of a pro-
tein is interpreted as three interlaced variable-length bi-
nary codes, giving the values of m;, w; and h; respectively.
To compute the value of m; for example, we extract all M
and M; amino-acids found in the chain. They will form
the Gray encoding of m (the Gray code is a binary numeral
system where two successive values differ in only one bit).
If the first M amino-acid of the chain is a My (resp. a
M), then the first bit of the Gray code of m; is a 0 (resp.
a 1), and so on. Thus, if the chain contains n amino-acids
of type M, we get a Gray code of size n, which encodes
an integer comprised between 0 and 2"~!. A normaliza-
tion enables us to bring the value of the parameter into



the allowed range, that is, [a,b] for m. The same method
is used to compute the values of w; and h; (-1 < h; <1
and 0 < w; < Wax, Wmax = 0.03 here). If h; is positive,
the protein contributes to the metabolic processes.If h; is
negative, it impedes these processes. If h; or w; = 0 equals
0 it has no metabolic activity.

5.5. Regulatory activity of proteins

In Raevol, the transcription rate of a protein may vary
throughout the lifetime of the artificial organism. It de-
pends both on the intrinsic activity of the promoter (ground
level, see above) and on the regulatory activity of the other
proteins. Thus the concentration of a protein ¢ is a func-
tion of time ¢;(t). This concentration is used to scale up
or down the metabolic activity of the protein: The intrin-
sic distribution described above (triangle centred on m;, of
half-width w; and of hight h;) is multiplied by ¢;(t) at each
time step. These scaled possibility distributions are those
used to compute the phenotype at each time step (see be-
low). This reflects the fact that a very efficient protein
(high h;) has actually no effect when it is not expressed.
Similarly, the current concentration ¢;(t) of a protein also
scales up or down the regulatory influence of the protein @
on the other proteins at time ¢.

The possibility that a given protein will bind to a spe-
cific promoter is determined by a “value of affinity” be-
tween the amino-acid chain of the former and the genetic
sequence of the latter. Small amino-acid motifs, that will
henceforth be referred to as regulation domains, are able
to bind to specific DNA subsequences with a given affin-
ity. If a protein contains several regulation domains, its
global affinity value over the promoter will be given by
the best one among them. This value of affinity is used
to determine the strength of the protein’s influence on the
transcriptional activity of the promoter it binds to. Like
in most bacterial promoters, the nature of the regulation
(activation or inhibition) depends on whether the binding
occurs before (upstream) or after (downstream) the posi-
tion of the first transcribed nucleotide (Janga and Collado-
Vides, 2007). Thus, in RAevol, a promoter is composed of
three DNA subsequences: The consensus sequence (where
the RNA polymerase starts the transcription process) and
its two flanking regions. When bound upstream, a protein
enhances the transcriptional activity and, on the opposite,
when bound downstream, it represses the activity of the
polymerase, thus reducing the transcriptional activity.

The sequences that are able to interact with a specific
DNA subsequence (thus constituting the possible regula-
tion domains) are randomly determined at the beginning
of the evolutionary run. In RAevol, regulation domains
are small 5-Amino-Acid (AA) sequences that may have an
affinity with 20-bp DNA sequences. To compute this affin-
ity value, we align the regulation domain with the DNA
sequence and compute the local affinity of each AA with
the 4-bp subsequence it faces (figure 13). The motif will
be able to bind the DNA sequence only if all five AA have

;
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Figure 13: Computation of the binding between TFs and regulation
sites. (1) The protein primary sequence slides in front of the 20-bp
regulation site and all 5-AA motifs are tested. (2) For each AA-
subsequence pair, the binding value B;; is read in a Binding Matrix
B (see main text for the initialization of the binding matrix). (3)
The binding strength of the whole motif is the product of the five
B;j values and (4) the binding strength of the whole protein is the
maximum strength over the L — 4 motifs it contains (L being the
length of the proteins primary sequence).

strictly positive affinities with their corresponding DNA
subsequences.

A binding matrix B is defined which contains the affin-
ity of each amino-acid with each 4-bp sequence. Given our
artificial chemistry principles, we have 7 possible amino-
acids (START, My, My, Hy, Hy, W and W7) and 2* = 16
4-bp sequences. Thus, B is a 7 x 16 matrix. By choos-
ing the initialization procedure of the regulatory matrix,
we are able to choose the probability for a given motif to
have a putative regulation activity. In all the experiments
presented here, B was randomly initialized (uniform dis-
tribution in [0, 1]) and subsequently filled with 75% of null
values. Thus, the probability that a given motif will bind
to a specific DNA sequence of 20-bases long (length of the
regulation sites in RAevol) is less than 0.1%. As a conse-
quence, the probability that a 20-AA-long protein will be
able to up-regulate (resp. down-regulate) a given promoter
can be estimated at around 5% (probability to contain a
motif that binds the promoter of the regulated gene).

The activity of a promoter depends on the sum of the
activities of activators (4;(t) = >, ¢;(t)A;i) and on the
sum of the activities of the inhibitors (;(t) = 3_; ¢;(t)1;:),
where Aj; (resp. Ij;) is the affinity of protein j on the
enhancer of the promoter ¢ (resp. on its operator) and
¢;(t) is the concentration of protein j at time ¢. When
A; = I, = 0 (no regulation), the promoter has a ground
activity 8; (Struhl, 1999). If A, > 0 this activity increases
progressively up to a maximum level. If I; > 0, it decreases
progressively to zero. The transcription rate e; over time
is then given by Hill-like functions:

«0= i ()
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where n and 6 are constant coefficients that determine
the shape of the Hill-function. In the simulations presented
here, n = 4 and 6 = 0.5. Finally, given the transcription
rate, one can compute the protein concentration (for the
sake of simplicity, we assume here that the protein concen-
tration is linearly proportional to the RNA concentration)
through a synthesis-degradation rule (equation 2). Thus,
when a protein is regulated, its concentration is scaled up
or down depending on its transcription rate.

%~ eaft) — deilt) )
¢ being a temporal scaling constant.

The transcription regulation in RAevol is a simplifica-
tion of the real mechanisms of DNA-protein interaction.
However, it catches the main mechanisms of genetic regu-
lation while remaining computationally tractable. It also
allows for proteins that perform a metabolic activity with-
out any regulatory activity or, on the opposite, for pro-
teins without any metabolic activity (i.e. fol |f(z)] = 0)
ta have a regulatory activity. We call “Transcription Fac-
tors” (TFs) the proteins that have a regulatory activity
(regardless of their metabolic activity). Proteins having a
regulation activity without contributing to the metabolism
are called pure Transcription Factors).

5.6. Phenotype computation

Once all the proteins encoded on the genotype of the
organism have been identified, the global phenotype can be
computed by combining the whole set of proteins. We use
the same formalism for the phenotype as for the proteins:
The phenotype is the fuzzy subset of metabolic processes
that the organism is able to perform. This fuzzy subset is
described by a possibility distribution P indicating to what
extent the organism is able to perform each process of €.
The fuzzy logic framework provides us with logical opera-
tors to compute the complement, the union and the inter-
section of fuzzy subsets. Here, in logic terms, the global
functional abilities of an individual are the metabolic pro-
cesses that are enabled AND NOT disabled by the pro-
teins of the organism.

P = (Ui(filhi > 0)) 0 (U;(f51h; < 0)) (3)

Here, we use Lukasiewicz’ fuzzy operators. For two
proteins characterized by the distributions f; and fo re-
spectively, Lukasiewicz’ operations are defined as follows:

= 1- fl(fﬂ)
= min(fi(z) + fa(x),1) (4)
= max(fi(z)+ fo(z) — 1,0)

NOT: fnot(l)(x)
OR: f1U2<x§
(

AND: f1mg T
5.7. Fitness evaluation
Using our artificial chemistry, we are able to map a

genotype to a phenotype, the latter being a dynamic func-
tion P(t) which expresses the metabolism of the organism
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Figure 14: Measure of an individual adaptation. Dashed curve: En-
vironmental distribution E. Solid curve: Phenotypic distribution P
(resulting metabolic profile obtained after combining all proteins).
Filled area: Metabolic error g.

in the abstract functional space §2. This enables us to eval-
uate each organism and to compute its “metabolic error”
g in a given environment: The environment is described as
a target (fuzzy) set of metabolic processes that have to be
fulfilled by the cell in order to be able to reproduce. The
metabolic error is computed as the area of the gap between
both functions (figure 14). The lower the metabolic error,
the higher the reproduction probability.

Since the phenotype is a dynamic function, the envi-
ronment may also be a dynamic function E(t). Depend-
ing on the experiment one wants to do with the model,
the metabolic error can be computed only once (e.g., after
a transient period), at regular steps, during a time inter-
val or after a particular environmental event. In this last
case, the event can be sensed by the cell through “signal-
ing molecule” which concentration may follow the environ-
ment variation. Here, the phenotype is computed during
20 time steps, the gap being computed at each time step
during the second half. The metabolic error is then the
mean of the 10 gap values.

5.8. Reproduction, mutations and rearrangements

In the current version of RAevol, the population size is
constant (N = 1000 individuals here) and the population
is completely renewed at each generation. At each gener-
ation, each individual is evaluated and a selection process
is used to determine the number of offspring it will have.
Then, all the selected organisms reproduce to create the
next generation.

We use the “exponential ranking” selection scheme. At
each generation, the individuals are sorted by decreasing
metabolic error, such that the best individual has rank N.
Then the probability of reproduction of the individual with
rank 7 is s?(_ll sN=" where s €]0, 1] tunes the intensity of
the selection (s = 0.995 here). Finally, the actual numbers
of reproductions are drawn by a multinomial drawing.

During their replication genomes can undergo seven
different kinds of mutations, the first three being point
mutations (switches and 1 to 6 bases indels) and the four
others, large chromosomal rearrangements:

e Translocation: A randomly chosen segment of the
genome is moved from its current position to a ran-
domly chosen position.



e Inversion: A randomly chosen segment is inverted
from one strand to the other and from one direction
to the opposite one.

e Duplication: A randomly chosen segment is dupli-
cated and reinserted at a randomly chosen position.

e Deletion: A randomly chosen segment is deleted.

Mutations affect the genome but can be neutral, for
instance when they happen inside non-transcribed, non-
coding regions. They can change the size of the genome,
the number of genes or the functions of the proteins. In-
directly, they can modify the topology of the regulatory
network, by either duplicating/deleting genes or promoter
regions. Finally, they can modify the affinities between
transcription factors and regulatory regions by changing
either the promoter sequences or the regulation domain in
the proteins’ primary sequence.

The rate at which mutations occur, u (probability of
mutation per base pair), is a parameter of the model. Here,
in a given run, u was the same for all types of mutations.
Six rates were tested: u = 5.107%, 1075, 2.1075, 5.107°,
10~* and 2.10~* per base pair. For each value, 3 indepen-
dent runs were carried out.
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