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Abstract. In this paper, we propose an original computational approach to assist knowledge discovery in complex biological
networks. First, we present an integrated model of the evolution of regulation networks that can be used to uncover organization
principles of such networks. Then, we propose to use the results of our model as a benchmark for knowledge discovery
algorithms. We describe a first experiment of such benchmarking by using gene knock-out data generated from the modeled
organisms.

1. Introduction

Since Jacques Monod and François Jacob discovered the lactose operon in Escherichia coli, genetic
regulation has been recognized as one of the main control centers in cells and organisms. Influenced
by the lac operon, biologists have long considered gene networks as sets of simple independent “reflex”
regulations. However, it is now recognized that these networks are very complex and tightly linked,
putting all the activities and functions in interaction with one another. A great deal of work have shown
that the structure of regulation networks is far from being random, showing regularities at all scales
from small motifs [4,12] to global connectivity patterns [6,43]. The understanding of these regularities
challenge modern biology and two fundamental questions have emerged during the last decade: What
is the origin of such complex connectivity patterns and how can we decipher the emergent dynamic
behavior of such networks? In fact, these questions are tightly related since a network’s behavior is
selected for by the Darwinian process that created the network itself.

The question of the behavior of regulation networks is at the heart of the so-called “systems biology”
approach that has emerged ten years ago [17,21,22]. Given the complex connectivity patterns of biological
networks, the objective of systems biology is to understand the global behavior of these networks. On
the one hand, this global challenge can be decomposed into questions like “Can we understand the
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behavior of specific organisms under some specific conditions?” (e.g., carbon starvation response in E.
coli [36]). On the other hand, one can raise the question of general principles of genetic regulation: Does
the complex gene network structure correspond to a particular – i.e., integrated – way of controlling the
metabolic activity of biological organisms?

Various hypotheses have been proposed to explain the structure of these networks in terms of evolu-
tionary forces: Mutational patterns (i.e., neutral evolution), direct selective forces or indirect selection
for robustness or evolvability. To cite but a few, it was proposed (i.) that the power-law connectivity of
regulation networks could be a consequence of gene duplication-divergence [28], (ii.) that the modu-
larity of regulation networks could be selected for because it allows fast adaptation to variations of the
environment [20] or (iii.) that overrepresented Feed-Forward Loop motifs are selected for because they
allow a fine tuning of the response delays in regulation networks [4].

Every engineer knows how to design large systems by building a hierarchy of modules in order
to reduce the inter-dependence between modules and to rationalize the system’s conception. Yet the
modular organization of our engineered systems is a consequence of our intellectual limits as system
designers. But evolution is not an engineer. It acts by trial and error, keeping the structures that are
most effective, whatever their complexity and intricacy, ignoring our attempts to understand its product.
Systems biology is often considered as a reverse engineering process applied to biological entities:
Given the observations of the behavior of the biological system (and possibly, its response to man-made
perturbations [18]), biologists are to decipher the organizational principles of the system. However,
in the case of reverse engineering, it can be assumed that the observed system was conceived by an
engineer, following reasonable conception rules and reasoning. In the case of biological systems, we
cannot suppose evolution to be rational at all (at least in our common – i.e., human – sense). Yet, this does
not mean that there are no rules in evolution: Under some specific conditions (e.g., cyclic environments)
it has been shown that evolution can behave as an engineer and produce organized systems [2,20]. The
existence of other general laws that could govern the organization of biological networks depending on
external conditions is an open question. Our grand challenge is hence to identify the “language” that
evolution has created for regulation networks and how it can be translated from a structural description
(i.e., the set of weighted links, motifs and modules) to a functional description (the cell behavior) [41].

These questions are very difficult to tackle with real organisms, either because they require long
and complex experimental setups or because results are difficult to analyze given the little knowledge
available. In particular, it is difficult to trace changes in genomes and to identify selected traits in real
organisms. A possible solution is then to develop in silico models of evolution – i.e., digital genetic
models [1] – and to test how, within these models, organisms evolve depending on the environmental
conditions. Such models have already shown to be interesting to study how organisms have their structure
and complexity adapted, resulting in an increased robustness [40]. As far as regulation networks are
concerned, computational evolution has been used to investigate the evolvability of networks [9] or the
development of modular structures under cyclic environmental conditions [20]. One of the best-known
models – namely the GRN model – has been proposed by Wolgang Banzhaf [5] and used to investigate
the emergence of specific topological properties in regulatory networks [28]. More recently, Claudio
Mattiussi and Dario Floreano have proposed the “Analog Genetic Encoding” framework [32] which has
been latter on used to investigate the modular structure of regulation networks [31]. Other authors have
used computational evolution in order to evolve small networks performing predefined functions such as
oscillators [12,29], clocks [23] or switches [12].

In this paper, we propose an original computational approach to assist the understanding of complex
biological networks. First, we describe the RAevol model, an integrated model of the evolution of
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Fig. 1. Overview of the central position of proteins in the model. Proteins play different roles depending on the elements they
interact with. They are translated from the genome (actually from mRNA), they can carry out a phenotypic function and they
can regulate transcription activity.

regulation networks (Section 2) that can be used to uncover organization principles of such networks.
Then, going from modeling to data-mining tools, we propose to use the results of our model as a
benchmark in order to experiment with knowledge discovery algorithms. We present a first experiment
of such benchmarking by using gene knock-out data generated from our in silico organisms (Section 3).

2. The RAevol model

To study the evolution of the structure of gene networks, we have developed an integrated model,
RAevol (Regulatory Aevol), that extends the “Artificial Evolution” (Aevol) model previously developed
in our team to study robustness and evolvability in artificial organisms [24]. In Aevol and RAevol, the
structure of the genome is inspired by prokaryote DNA structure: It is organized as a circular double-
strand binary string with a variable number of genes separated by non-coding sequences. The genetic
sequence is translated into a set of “proteins” that interact with one another to produce a phenotype that
can be more or less adapted to its environment. Although Aevol does not include any regulatory process
(a gene is transcribed at a constant rate, depending only on the sequence of its promoter), it includes all
the organization levels needed to build an integrated model of genetic regulation. That’s the reason why
we used it as a basis for the development of the RAevol model.

2.1. Artificial chemistry in RAevol

In a model like RAevol, a complete realistic biochemichal description of organisms is obviously
impossible. We hence define an “artificial chemistry” [10] that describes the organism metabolism in a
mathematical language. In Raevol, this artificial chemistry is centered on the protein level1 (Fig. 1).

Basically, proteins are elements able to perform metabolic functions: In the model we defined an
abstract space of metabolic functions Ω wherein the proteins will act with a certain degree of efficiency
(a real number within the interval [0, 1]). Thus, each protein Pi is described as a parametric function
fi : Ω → [−1, 1] that can activate (if positive) or inhibit (if negative) a subset of the metabolic space with
a particular efficiency |fi|. The parameters of the function fi are computed from the genetic sequence of
the protein through a transcription-translation-folding process: Transcribed sequences are identified on

1A complete description of the model can be found in [37].
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the genome by consensus promoter sequences (translation initiation) and ρ-independent-like structures
(transcription termination). These sequences are transcribed into RNA sequences. RNAs are then parsed
to extract the genes (that are detected thanks to a shine-dalgarno-like sequence and a START triplet, a
STOP triplet being used to detect the end of the gene). These genes are then translated into the primary
sequence of the corresponding protein thanks to an artificial genetic code which associates triplets of bits
(i.e., codons) with artificial Amino-Acids. Since our genetic sequence is composed of binary “bases”,
we have 23 = 8 different codons among which two must be reserved for the START and STOP codons. In
RAevol, the metabolic activity of proteins is represented by simple symmetric triangle-shaped functions.
Thus any function fi can be fully defined by three parameters: The mean (M i which characterizes the
main metabolic function of the protein), the width (Wi which characterizes the pleiotropy of the protein)
and the height (Hi which indicates the efficiency of the protein in performing its metabolic function). An
artificial folding process converts each protein primary sequence (amino-acid sequence) into a specific
set of values for these three parameters, thus characterizing the function of the protein. The conversion
is achieved by using three interlaced variable-length binary codes (one per parameter).

However, the efficiency of a protein Pi depends not only on its primary sequence but also on its
concentration in the organism at each time step t: ci(t). Thus, the metabolic activity of a given protein
is also time-dependent, meaning that the metabolic functions performed by this protein will change over
time. The Amino-Acid sequence of the protein is used to compute its intrinsic activity hi ∈ [−1, 1] (i.e.,
its activity when at a concentration of 1; all concentrations are expressed in arbitrary units). Then the
actual activity of the protein in the organism at a specific time t is given by H i(t) = |hi|.ci(t), where
the concentration of the protein Pi is computed through a synthesis-degradation process with a constant
degradation rate φ and a promoter-dependent synthesis rate (see below).

Once all the proteins encoded on the genotype of the organism have been identified and characterized,
the global phenotype can be computed by combining the whole set of proteins. This phenotype is
the result of fuzzy set operations performed on two protein subsets: Those which activate metabolic
functions (i.e., hi > 0) and those which inhibit metabolic functions (i.e., hi < 0). The global metabolic
capabilities of an organism are the functions which are activated by a protein of this organism and not
inhibited by another protein (all the fuzzy-set operations are performed using the Lukasiewicz fuzzy
operators):

F = (∪i(Pi|hi > 0)) ∩ (∪j(Pj |hj < 0)) (1)

At this stage, the model fully conforms to the so-called “central dogma of molecular biology”: The
information flows linearly from DNA to the phenotype through the RNA and protein levels. However,
with the work of Monod and Jacob in the early 60’s, things turn out to be far more complex. In particular,
it is now well known that proteins can regulate the RNA transcription activity, thus constituting the
genetic network that governs the dynamic of the cell. In prokaryotic organisms, the regulatory activity
of a protein is mainly caused by its direct interactions with the DNA strands. If it is able to bind to a
promoter region on the DNA, it may have a regulatory activity. In RAevol, we modeled this process
by introducing a new module in our artificial chemistry: The possibility of a given protein to bind to
a specific promoter is determined by a “value of affinity” between the primary sequence of the former
and the genetic sequence of the latter. Small amino-acid sequences, that will henceforth be refered
to as regulation domains, are able to bind to specific DNA subsequences with a given affinity. If a
protein contains several regulation domains, its global affinity value over the promoter will be given
by the strongest. This value of affinity is used to determine the strength of the protein’s regulation of
the transcriptional activity of the promoter it binds to. Like in most bacterial promoters, the nature of
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Fig. 2. Computation of the binding between TFs and regulation sites. (1) The protein primary sequence slides in front of the
20-bp regulation site and all 5-AA-long motifs are tested. (2) For each AA-subsequence pair, the binding value Bij is read in a
binding matrix B (see main text for the initialization of the binding matrix). (3) The binding strength, Sm, of the whole motif is
the product of the five Bij values and (4) the binding strength, Sp, of the whole protein is the maximum strength over the L− 4
motifs it contains (L being the length of the proteins primary sequence). The regulatory activity of the protein p then depends
on the global strength value Sp: For a given promoter i, a protein p is aligned both upstream and downstream of the promoter
resulting in two different Sp values (Sp up and Sp down). The upstream alignment enables us to compute the activation abilities
of the protein (Api = Sp up) while the downstream alignment gives its inhibition abilities (Ipi = Sp down).

the regulation (activation or inhibition) depends on whether the binding occurs before (upstream) or
after (downstream) the position of the first transcribed nucleotide [19]. Thus, in RAevol, a promoter
is composed of three DNA subsequences: The consensus sequence (where the RNA polymerase starts
the transcription process) and its two flanking regions. When bound upstream from the promoter (on its
enhancer site), a protein enhances the transcriptional activity; on the opposite, when bound downstream
(on the operator), it represses the activity of the polymerase, thus reducing the transcriptional activity.

The sequences that are able to bind to a specific DNA subsequence (thus constituting the possible
regulation domains) are randomly determined at the beginning of the evolutionary run (through a random
regulatory matrix that associates Amino-Acid subsequences with nucleotide subsequences). In RAevol,
regulation domains are small 5-Amino-Acid (AA) sequences that may have an affinity with 20 base pairs
(bp) DNA sequences. To compute this affinity value, we align the regulation domain with the DNA
sequence and compute the local affinity of each AA with the 4-bp subsequence it faces (Fig. 2). The
motif will be able to bind to the DNA sequence only if all five AA have strictly positive affinities with
their corresponding DNA subsequences. Given our artificial chemistry principles, we have 7 possible
Amino-Acids (START, M0, M1, H0, H1, W0 and W1) and 24 = 16 4-bp sequences. A 7 × 16 binding
matrix B is defined which contains the affinity of each amino-acid with each 4-bp sequence. By choosing
the initialization procedure of the regulatory matrix, we are able to choose the probability for a given
motif to have a regulation activity. In the experiment presented here,B was randomly initialized (uniform
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distribution in [0, 1]) and subsequently filled with 75% of null values. Thus, the probability that a given
motif will bind to a specific binding site is less than 0.1%. As a consequence, the probability that a
20-AA-long protein will be able to regulate a given promoter can be estimated at around 5% (probability
to contain a motif that binds to either the enhancer or the operator flanking the promoter).

The overall activity of a given promoter i thus depends on: (i) the quality of its consensus sequence
(measured as the hamming distance d with the consensus sequence) which gives the transcriptional
ground state βi (or “basal transcription level”, see Eq. (2)), (ii) the sum of the activities of activators Ai

Eq. (3) and (iii) the sum of the activities of repressors Eq. (4) [38].

βi = 1 − di

dmax + 1
(2)

where di is the hamming distance between the promoter i and the consensus sequence and dmax is the
maximum admissible hamming distance for the RNA polymerase to recognize the promoter sequence.

Ai(t) =
∑

j

cj(t)Aji (3)

Ii(t) =
∑

j

cj(t)Iji (4)

where Aji (resp. Iji) is the affinity of protein j on the enhancer (resp. operator) of the promoter i and
cj(t) is the concentration of protein j at time t.

The general equation that describes the transcription rate over time is then given by a Hill-like function:

ei(t) = βi ·
(

θn

Ii(t)n + θn

)(
1 +

(
1
βi

− 1
) (

Ai(t)n

Ai(t)n + θn

))
(5)

where n and θ are constant coefficients that determine the shape of the Hill-function (in the simulations
presented below dmax = 4, n = 4 and θ = 0.5).

Finally, given the transcription rate, one can compute the protein concentration (for the sake of sim-
plicity, we assume here that the protein concentration is linearly proportional to the RNA concentration)
through a synthesis-degradation rule (with a degradation rate φ, Eq. (6)). Thus, when a protein is
regulated, its concentration is scaled up or down depending on its transcription rate. Note that this also
implies that the phenotype of the organisms is now a function of time.

∂ci
∂t

= ei(t) − φci(t) (6)

The transcription activity in RAevol is of course a huge simplification of the real mechanisms of DNA-
protein interactions. However, it catches the main mechanisms of genetic regulation while remaining
computationally tractable, thus enabling us to study the evolution of regulation in artificial – digital –
organisms. It allows for a lots of different situations that are indeed observed in real bacteria: Operon
structures (more than one gene on a single transcribed sequence), overlapping genes (either on the
same strand or not), gene clustering along the DNA . . . It also allows for proteins that perform a
metabolic activity without any regulatory activity or, on the opposite, for proteins without any metabolic
activity (i.e.,

∫ 1
0 |f(x)| = 0) that can nevertheless have a regulatory activity. These proteins are called

“Transcription Factors” (TFs). Eventually, genes and proteins can form a genetic network of variable
complexity.
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Fig. 3. Measure of an individual adaptation. Dashed curve: Environmental distribution E. Solid curve: Phenotypic distribution
F (resulting function profile obtained after combining all proteins). Filled area: Metabolic error g. In RAevol, all distributions
may change over time and the metabolic error can be computed in different ways (see main text for details).

2.2. Evolutionary process

Thanks to our artificial chemistry, we are able to map a genotype to a phenotype, the former being a
circular double-strand binary sequence and the latter being a dynamic function F (t) which expresses, at
each time step t, the metabolism of the organism in the abstract functional space Ω. This enables us to
evaluate the organism and to determine its “metabolic error” g in a given environment: The environment
is described as a set of functions that have to be fulfilled by the cell in order to be able to reproduce (the
lower the metabolic error, the higher the reproduction probability). The metabolic error is computed as
the gap between both functions (Fig. 3).

Since the phenotype is a dynamic function, the environment may also be a dynamic function E(t).
Depending on the experiment one wants to do with the model, the metabolic error can be computed only
once (e.g., after a transient period), at regular steps (e.g., each ten time steps), during a time interval
(e.g., between t = 10 and t = 20) or after a particular environmental event. In this last case, the
environment function is changed regularly or randomly and the changes are characterized by a signaling
molecule introduced into the “cell” (this molecule is a manually-designed amino-acid chain. It can have
a metabolic function or not, but it must contain a regulation domain in order to be able to interact with
the regulation network). After a short transient period, the metabolic error is computed by comparing
the phenotype to the new environmental function. In such experiment, the cell must evolve a regulatory
network in order to react to the environmental perturbation. We are then able to analyze the structure of
the network depending on the environmental complexity and on the evolutionary parameters. Figure 4
shows a typical phenotype evolved under such conditions.

In RAevol, the evolutionary process is based on a reproduction loop: A population of genomes
(typically 1000 individuals) is initially created at generation 0. At each generation, each genome is
translated into a phenotype which is evaluated. Then, a selection procedure and a biased random process
(based either on the metabolic error g of the individuals, on their rank in the population ordered by
decreasing g values or on the exponential of this rank) enable us to determine the number of offsprings
each individual will have in the next generation. Then, all the organisms reproduce to create the next
generation. In the current version of RAevol, the population size is constant and the population is
completely renewed at each generation (generational algorithm).



Galley Proof 29/01/2010; 13:59 File: ida415.tex; BOKCTP/llx p. 8

8 G. Beslon et al. / From digital genetics to knowledge discovery: Perspectives in genetic network understanding

Fig. 4. At each time step t the phenotype is expressed as the efficiency of the organism in performing the metabolic functions
in the abstract set Ω. Here, at time t = 10, an external signal is sent to the organism which reacts by modifying its metabolic
profile.

The reproduction process itself is based upon error inducing DNA replication. These errors (mutations)
are governed by operators that are directly inspired by prokaryotic reproduction. Genomes can undergo
seven different types of mutations, the first three being point mutations and the four others, large
chromosomic rearrangements:

Switch One base of the genome is randomly chosen and switched from 0 to 1 or vice versa.
InDel Insertion and Deletion are two different mutation operators. A short sequence – 1 to 6 bases – is

inserted (repect. deleted) at a random position in the genome.
Translocation A randomly chosen segment of the genome is moved from its current position to a

randomly chosen position (“cut-and-paste”).
Inversion A randomly chosen segment is inverted from one strand to the other and from one direction

to the opposite one.
Duplication A randomly chosen segment is duplicated and reinserted at a randomly chosen position

(“copy-paste”).
Deletion A randomly chosen segment is deleted from the genome.

The rate at which mutations occur, formally u (probability of mutation per base pair), is a parameter
of the model, to be chosen for each particular simulation. It can be uniform (for all type of mutations)
or it can be chosen specifically for each one of them. Mutations affect the genome but can be neutral.
They can change the size of genome, the number of genes or the function of the proteins. Indirectly, they
can modify the regulatory network’s topology by either duplicating/deleting genes or promoter regions.
Finally, they can modify the affinities between transcription factors and regulatory regions by changing
either the promoter sequences or the regulation domain in the proteins’ primary sequence.
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2.3. In silico experimental evolution with RAevol

The typical use of digital evolutionary models is quite close to experimental evolution procedures [11]:
Populations of organisms are initialized and left to evolve in controlled conditions (i.e., controlled
parameters). By observing the products of the evolutionary process in different conditions and by
comparing them, we can unravel the direct or indirect pressures that constrain the structure of organisms.

Using first Aevol, we had performed numerous in silico evolutionary experiments that had enabled
us to uncover an indirect mechanism that regulates the balance between robustness and variability in
evolving organisms [30]. In particular, we had been able to show that the amount of non-coding DNA
that accumulate in a genome is inversely proportional (in a log-log space) to the mutation rate. This
is the consequence of an indirect pressure exerted by the mutational burden brought by chromosomic
rearrangement on non-coding sequences [25–27]. More recently, we also tested the effect of the mutation
rate on the RAevol model and found that not only is the genetic sequence under the influence of the
mutation rate but that the regulation network is also under the same pressure: Both the number of
nodes and the overall connectivity of the regulation network clearly scale down when the mutation
rate increases [7,8]. Moreover, as far as the number of nodes is concerned, this scaling follows a
power-law distribution, whose exponent is larger for Transcription Factors (i.e., proteins that have a
regulation activity in the network) than for metabolic elements (i.e., proteins that directly contribute to
the metabolism of the organism). This is very similar to what is observed in comparative genomics
studies among the prokaryotic kingdom [33,39].

Eventually, our main objective is to use RAevol to understand how the regulation network evolves
depending on environmental conditions. Thus, while all these previous experimental setups were using
static environments, we tried to evolve digital organisms in a more demanding dynamic environment.
In the experiments presented here, organisms must adapt to a variable environment: During the first ten
time steps, the ideal metabolic function is the one displayed on Fig. 3 (a three lobe function). Then,
during the ten following steps, the rightmost lobe was removed. The metabolic error g is then computed
as the mean between the metabolic error at t = 10 and the one at t = 20. When the environment is
changed, a signaling protein is sent to the cell to trigger the change in the activity of the genetic regulation
network. The organism must thus evolve a regulation network with the appropriate dynamic in order to
react efficiently to this signal.

We let 3 different populations of 1000 organisms evolve for 40 000 generations under medium mutation
rates (u = 1.10−5 per mutation type per base pair) and a mild selective pressure (later on, experiments
are labeled S1, S2 and S3). During the evolutionary process, the organisms progressively acquire new
genes and connect them in order to fulfill the regulation task they are selected for (Fig. 5). All the
simulations proceed qualitatively in a similar way, evolving quickly in the first stage of evolution (rapid
gene recruitment) then slowing down the process of gene acquisition while optimizing gene and promoter
sequences. At the end of the evolutionary process, we discovered that the organisms had acquired some
specific proteins that contribute to the regulation process while having no metabolic activity. We call
these proteins pure Transcription Factors (TFs).

After 40 000 generations, we focus on the best individual of each experiment. All three experiments
show complex regulation networks with 51 (S1), 34 (S2) and 58 (S3) genes respectively. These genes
are connected by hundreds of links, but while the number of genes is only slightly variable from one
simulation to the other, the number of connections strongly differs: Network S1 has 328 connections,
network S2, 153 and S3, 908. Note that there is no direct correlation between the size of the network
and the metabolic error: S2, being the smallest network, is better than S1 which is much larger (Fig. 5).
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Fig. 5. Evolution of the organisms during 40 000 generations. Left: Simulation S1. Right: Simulations S2 (top) and S3
(bottom). Left axis: Metabolic error (black decreasing line). Right axis: Number of genes (soft grey) and genes which do
not contribute to the metabolic activity (dark grey). The increasing number of non-metabolic genes in the second stage of the
evolutionary process is characteristic of the recruitment of pure Transcription Factors (TFs).

Figure 6 (squared part) shows the variation of protein concentration during the lifetime of the best final
individual in S1. One can easily see that, at time t = 10 (i.e., when the signaling protein is provided to
the “cell”) and t = 20 (i.e., when this signal is switched off), the protein concentrations quickly change to
stabilize on new values. When looking at the phenotype (Fig. 7, squared part), we see that the signaling
protein triggers a reorganization of the phenotype, one lobe of the metabolic function vanishing from
t = 10 to t = 20.

When looking at the genetic networks created by evolution (Fig. 8), it clearly appears that the dynamic
behavior of the network is impossible to decipher directly from the network structure. Thus, when
analyzing the results of our experiments, we face the same problem as practitioners do with real biological
networks: We need automatic mining algorithms to help us understand the structure of the networks and
link it to their dynamic behaviors. Going one step beyond, we decided to perform, with our in silico
organisms, the same experiments biologists do with real bacteria: We generated mutant variants in which
single genes are invalidated one at a time (KO-mutants, Section 3.1) and measured their transcriptional
activity. The resulting dynamic data can then be analyzed to understand the structure of the regulation
network (Sections 3.2 and 4). Following this idea, we propose to use them as benchmarks, available for
the scientific community to test knowledge discovery algorithms.2

3. Mining digital data

In this section, we present a simple data mining method we developed and evaluated on the artificial
data generated by RAevol. The main purpose of this method is to help the expert get some insights
about cell regulation processes. Using protein concentration data coming from realistic in silico models

2All data are available on Internet: http://liris.cnrs.fr/guillaume.beslon/IDAj.data/.
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Fig. 6. Variations of protein concentrations over time in the wild-type organism (squared) and in five KO mutants: From top
to bottom and left to right: Wild type, KO of gene 1, KO of gene 17, KO of gene 19, KO of gene 20 and KO of gene 34. x
axis: Organism’s live time (time steps). y axis: Protein concentrations (arbitrary units). Displayed mutants have been chosen
because the show clear differences when compared to the wild-type.

of regulation networks, we can quickly collect some evidence about the possible effectiveness of the
method. Such an evaluation aims to help us decide if the method is sufficiently promising to undertake
further developments and more complex applications on real data.

3.1. Gene knock-outs in digital models

Gene Knock-Out (KO) [13] is a widely used technique in molecular biology. It provides geneticists
with an insight into complex mechanisms, focusing on the contribution of a particular gene or set of genes.
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Fig. 7. Phenotypes of the wild-type organism (squared) and of five KO mutants. x axis: Time life of the organisms (time steps).
y axis: Functional space. z axis: Efficiency of the organism in performing the function. Mutants are the same as those shown
on Fig. 6 (KO of genes 1, 17, 19, 20 and 34).

It consists in producing a mutant lineage in which a targeted gene is invalidated (knocked-out), hence
preventing the corresponding protein from being produced by the organism under study. This mutant
organism is then compared to the original one (the “wild-type”) with the objective of understanding the
role of the knocked-out gene in the organism.

Using KO mutants, both the direct phenotypic contribution of a given protein and its role in the
regulation network can be studied. To study the, network, one needs to focus on transcriptome data
that gives information about the expression of genes. Systematically knocking out every gene within
a genome allows the geneticists to carry out broad comparative studies that could shed light on the
complex structure of gene networks [15]. Indeed knock-outs can be used to create perturbations on a
gene network in order to help inferring its hidden structure [16]. However, systematic knock out of genes
in any genome, even the smallest, yields a vast amount of data that is very difficult to process by hand.
It is hence necessary to develop data mining tools that can help analyse knock out data [14].

In silico models have the advantage of providing us with access to any piece of data we would need
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Fig. 8. Structure of the regulatory network after 40 000 generations (experiment S1). The network contains 51 genes, 4 of
which being pure transcription factors (hexagons, genes 17, 35, 38, 49), the remaining having all a metabolic activity (ellipses).
The signaling protein (dark grey diamond) is connected to the network through a complex connectivity pattern whose behavior
is quite impossible to decipher manually. Solid lines represent activation links. Dashed lines represent inhibition links.

in order to understand the system’s behaviour, even after the experiment is finished. They are hence
particularly suited to be used as a benchmark for data mining methods. We have simulated a systematic
knock-out process on an evolved RAevol organism, generating time series representing the concentration
of proteins over time for each gene’s knock-out. Figures 6 and 7 show some examples of mutant behaviors
represented by variations of protein concentrations (Fig. 6) and of the phenotype (Fig. 7). This set of
data was then used to understand the underlying gene regulation network thanks to the mining algorithm
described below.

3.2. Mining the KO sequences

The objective of this method is to provide the expert with some information about genes having similar
KO effects. More precisely, the method aims to exhibit groups of genes whose KO lead to similar
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changes in protein concentration values.3 This information is obviously useful if we do not know the
regulation network, to suggest genes that are involved in the same regulation process. Such groups are
also interesting when we know the regulation network (or at least part of it), since in this case these
groups can help the expert to focus on genes acting together in the regulation network, and then to gain
some understanding of the underlying regulation processes. Here, we are facing the latter case since we
perfectly know the network’s structure (Fig. 8). Note that the data produced by RAevol can be used in
both cases. Computer scientists as well as bioinformaticians are invited to test inference algorithms on
the datasets provided on-line (see section “availability” below).

The data describe a set of experiments, where each experiment corresponds to the KO of one single
gene, for which we recorded the concentration of all proteins during the life of the cell. We also have at
hand an additional experiment used as a reference, that is an experiment where no KO is performed, and
that provides the protein concentrations in the original cell (wild-type experiment).

In each experiment, all the concentrations are recorded at the same time and this measure is repeated
m times, at a regular time interval. Let the genes be numbered from 1 to n and let us denote exp i the
data obtained from the KO of gene i. Then expi can be represented as a n×m matrix of concentration
values cj,t, where cj,t denotes the concentration of protein j at time t. Similarly, the wild type experiment
denoted expwt is also represented as a n×m matrix of concentration values. The global mining process
contains three main steps:

– discretization of the concentration values;
– identification of the main concentration values;
– extraction of groups of genes, such that, within a group, the same main concentration values disappear

when a KO is performed on the genes of the group.

3.2.1. Discretizing and finding the main concentration values
Discretization is performed using a function fd which maps, by intervals, the concentration values to

integer values called the concentration levels. The bounds of the intervals of concentration values used
by fd are set after visual inspection of the distribution of the values. Each element cj,t of each matrix
expi (and of expwt) is then replaced by a discrete label of the form (j, fd(cj,t)). Notice that this label
encodes the gene number j and the concentration level fd(cj,t).

Letα be a given percentage, then we retain as main concentration values only the labels (j, f d(cj,t)) that
appear in the wild type experiment expwt and in at leastα percent of the KO experiments exp1, . . . , expn.
The set of main concentration values is denoted M.

3.2.2. Finding groups of genes
Let p be the number of main concentration values (i.e., the size of M). Then a unique identifier in

{1, . . . , p} is associated to each element x ∈ M, and is denoted id(x).
Let L be a p × n Boolean matrix defined as follows. An element lk,i (row k column i) of L is equal

to 1 if the element y ∈ M having identifier id(y) = k is not present in the discretized version of matrix
expi. Otherwise lk,i is set to 0. Thus an element lk,i is simply equal to 1 if the kth main concentration
value has disappeared in the KO of gene i. Notice that in this method we do not take into account the
time stamps of occurrence of the main concentration values.

3Note that, in RAevol, the protein concentrations are expressed in arbitrary units and are linearly proportional to the mRNA
concentrations. Thus the protein concentrations and the expression values are used indifferently in the mining experiments.
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Group measure support

4 19 20 26 32 38 44 119 17
17 34 37 38 49 115 23

4 19 20 26 32 44 108 18
17 34 38 49 100 25

17 34 49 84 28

Fig. 9. Top five groups of genes w.r.t. measure A.

Let σ be a given integer, we extract the σ-frequent closed sets [35] from the Boolean matrix L. A
σ-frequent set in a Boolean matrix L is a set S of column indexes (i.e., a set of gene numbers) such that
the support of S is at least σ, where the support of S is the number of rows in L having 1 values in all
column indexes in S. Such a set S is called a closed set if there is no superset of S having the same
support as S.

Intuitively, in the method applied here, a σ-frequent closed sets S is a set of genes such that the KO of
these genes have in common at least σ missing main concentration values and are in some sense locally
maximal (since no superset of S have the same missing main concentration values).

We are interested in sets of genes containing a large number of genes and having a large support
(sharing many missing main concentration values). Thus, we used as a ranking criterion a measure A
combining both aspects. Let G be a group of genes, A is defined by: A(G) = |G| × support(G). The
sets of genes are sorted by decreasing value of A.

Finally, we remove the sets of size less than 2, since we want groups of genes not singletons.

4. Results

In this section, we present some results of the mining process. The expression data used here
corresponds to the regulation network obtained in simulation S1 and depicted Fig. 8. There are 51 genes,
on which we performed KO experiments, leading to 51 matrices expi. Then we built the expwt matrix
corresponding to the protein concentration in the original cell (i.e., without KO). From visual inspection
of the distribution of concentration values we chose the following discretization bounds: 0.05, 0.12,
0.175, 0.225, 0.275, 0.325, 0.375, 0.425, 0.475, 0.525, 0.575, 0.625, 0.675, 0.725, 0.775, 0.825, 0.875,
0.925, 0.975, 1.025, 1.075, 1.125, 1.175, 1.225, 1.275, 1.325, 1.375, 1.425, 1.475, 1.525, 1.575, 1.625,
1.675, 1.725. The first discretization interval contains the concentrations strictly lesser than 0.05, the
second intervals contains the values greater or equal to 0.05 and strictly lesser than 0.12, and so on, up
to the last interval that contains the values greater or equal to 1.725.

The parameter α was set to 75% to select as main concentration values, only the discrete labels
appearing in the wild type experiment and in at least 75% of the KO experiments matrices exp i. We
obtained 105 main concentration values. We built the corresponding Boolean matrix L, on which we
ran a frequent closed set extraction tool. The σ threshold was set to 5, in order to collect groups of genes
such that the KO of the genes in a group have at least 5 missing main concentration values in common.
This resulted in 75 groups of genes that we ranked according to the A measure. The top five groups are
given Fig. 9.

Among these groups, the third one is a subset of the first, and the fourth and fifth are subsets of
the second one. Thus, we focus on the first and second groups of genes (the highest A values):
{4, 19, 20, 26, 32, 38, 44} (A = 119) and {17, 34, 37, 38, 49} (A = 115).
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Fig. 10. Sketch view of the network of experiment S1 (see Fig. 8 for the full network). The two groups identified by the mining
algorithm are depicted by the grey ellipses. Module A (bottom) is composed of five genes forming a positive-feedback-loop
motif. Module B (left) is composed of four genes that are not connected with one another: These genes fulfill the same role
in the network although they are not interconnected. Gene 38 can be considered as belonging to the same module even though
it does not activate gene 4. The external signal (grey diamond) triggers the activity of module A. Vee-Arrows: Activations;
Tee-Arrows: Inhibitions.

Using these two groups as entry-points into the otherwise very difficult network, we were able to fairly
easily understand the way this network works and how it manages to respond to the appearance of the
external signal. Figure 10 shows a sketch of the network in a way that is meaningful to a human being.
It is basically made up of two functional modules that we were able to distinguish from the groups given
by our mining process. The first module (module A), whose proteins all code for a metabolic activity
in the leftmost lobe of the environment (i.e., the lobe that has to be turned off when the external signal
appears), displays a positive-feedback-loop-like motif, which is known to adopt a bistable behaviour [3].
This module is directly inhibited by the external protein as well as by the second module (module B).
Module B has a double negative effect on module A: Not only does it down-regulate A but it also
phenotypically inhibits the functions performed by A. The positive regulation of module B on module A
through gene number 4 seems incoherent but it probably helps the organism to fine-tune the expression
of the genes of module A.4 It is important to note that, while we might have been able to detect module A

4This gene and the two modules form an incoherent Feed-Forward Loop – iFFL. Such a loop is known to accelerate state
switch [4]. However, since in our case the network has ten time steps to switch, it is not clear whether the iFFL has been selected
to decrease the switch delay when the signal is perceived or simply to tune precisely the module activity.
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“by hand”, we would surely not have discovered module B since its constituting nodes are not connected
with one another. Thus we are facing a functional module, whose unity is important for the “cell”, but
that does not correspond to any structural module in the network. Such a module would obviously have
been missed by any link-pruning algorithm [34]. The emergence of such modules during the evolution
process, as well as its discovery by our KO-mining algorithm, was a surprise. We now plan to reproduce
similar experiments to test whether or not this type of structure emerges repeatedly.

5. Conclusion

Understanding complex structures such as bacterial regulatory networks is a challenging objective.
Obviously, such an objective cannot be efficiently tackled with a single, isolated, tool or within a
single, isolated, discipline. In order to complement direct analysis of biological data (genomics and
comparative genomics, transcriptomics, systems biology, etc.), we propose an in silico model of the
evolution of regulation networks. This model can be used to understand how the historical process of
evolution can account for the complex structures observed in real organisms, both at the genomic and
transcriptomic levels. This model, called RAevol, is an integrated model which realistically accounts
for all the organization levels of a real bacterial organism. In particular, the regulatory network is only
indirectly submitted to the evolutionary operators (mutation and selection): Mutations act on the genomic
level (which indirectly encodes the regulation network) and selection is based on the global metabolic
activity of the organisms (which is indirectly encoded by the regulation network). In other words, the
structure of the regulation network is never directly manipulated nor evaluated. Thus, although indirectly
constrained, the networks evolve freely and progressively acquire complex structures that we can analyze
later on in the light of the evolutionary conditions under which they appear.

The experiments we present here show that, although the organisms were facing quite simple tasks, they
developed complex regulation networks whose connectivity is impossible to decipher manually (Fig. 8).
Surprisingly, we had to face the same problems practitioners face when they analyze real biological data.
This is the reason why we decided to use the artificially generated data as a benchmark for data-mining
and inference algorithms. Following this idea, we generated knock-out mutants of one of the evolved
organisms and used a motif-detection algorithm to identify groups of genes on the basis of their KO-
similarities. Interestingly, we discovered two main groups that, when analyzed further, gave us a sketchy
grasp of the network structure and behavior (Fig. 10). The structure we discovered during the mining
process shows the great potential of using computational evolution as benchmark generators. Indeed, the
computational evolutionary process is able to surprise us by creating such unexpected structures while
they can hardly be created by traditional benchmarking tools based on random graph generation.

We now plan to use RAevol as an in silico experimental evolution platform in order to go further
in the understanding of the evolutionary dynamics of regulation networks. Simultaneously, we will
produce various datasets that will be available for the scientific community for, e.g., testing data-mining
algorithms, phylogeny reconstruction or network inference. Since we are able to generate networks of
variable complexity [8], we can produce collections of benchmarks of different sizes and complexity.
We are confident that both directions are to help practitioners to better take-up the challenge of systems
biology.

6. Availability

RAevol software is currently in alpha version, supported by the LIRIS-Turing group at INSA-Lyon.
For any request, please contact directly the authors. All the data of the three simulations (genomes,
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networks, protein variations for the wild type and for all KO mutants) are available on the website of the
authors: http://liris.cnrs.fr/guillaume.beslon/IDAj.data/.
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April 2006, pp. 290–299.

[30] R.E. Lenski, J.E. Barrick and C. Ofria, Balancing robustness and evolvability, Plos Biol 4(12) (2006), e428.
[31] D. Marbach, T. Scha ter, C. Mattiussi and D. Floreano, Generating Realistic In Silico Gene Networks for Performance

Assessment of Reverse Engineering Methods, Journal of Computational Biology 16(2) (2009), 229–239.
[32] C. Mattiussi and D. Floreano, Analog Genetic Encoding for the Evolution of Circuits and Networks, IEEE Transactions

on Evolutionary Computation 11(5) (2007), 596–607.
[33] N. Molina and E. van Nimwegen, The evolution of domain-content in bacterial genomes, Biol Direct 3 (2008), 51.
[34] M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys Rev E 69(2) (2004),

026113.
[35] N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal, Efficient mining of association rules using closed itemset lattices,

Information Systems 24 (1999), 25–46.
[36] D. Ropers, H. de Jong, M. Page, D. Schneider and J. Geiselmann, Qualitative simulation of the carbon starvation response

in escherichia coli, BioSystems 84(2) (2006), 124–152.
[37] Y. Sanchez-Dehesa, D.P. Parsons, J.-M. Pe na and G. Beslon, Modelling evolution of regulatory networks in artificial

bacteria, Math Model Nat Phenom 3(2) (2008), 27–66.
[38] K. Struhl, Fundamentally di erent logic of gene regulation in eukaryotes and prokaryotes, Cell 9(1) (1999), 1–4.
[39] E. van Nimwegen, Scaling laws in the functional content of genomes, Trends Genet 19(9) (2003), 479–484.
[40] C.O. Wilke, J.L. Wang, C. Ofria, R.E. Lenski and C. Adami, Evolution of digital organisms at high mutation rates leads

to survival of the attest, Nature 412(6844) (2001), 331–333.
[41] D. Wolf, Motifs, modules and games in bacteria, Current Opinion in Microbiology 6(2) (2003), 125–134.
[42] E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R.Y. Pinter, U. Alon and H. Margalit, Network motifs in

integrated cellular networks of transcription-regulation and protein-protein interaction, Proc Natl Acad Sci USA 101(16)
(2004), 5934–5939.

[43] X. Zhu, M. Gerstein and M. Snyder, Getting connected: analysis and principles of biological networks, Genes &
Development 21(9) (2007), 1010–1024.


