
Learning Hybridization Strategies in

Evolutionary Algorithms

Antonio LaTorre, José-Maŕıa Peña and Santiago Muelas

Computer Architecture Department, Facultad de Informática
Universidad Politécnica de Madrid, Spain
{atorre, jmpena, smuelas}@fi.upm.es

Alex A. Freitas

Computing Laboratory, University of Kent
United Kingdom

A.A.Freitas@kent.ac.uk

December 23, 2009

Abstract

Evolutionary Algorithms are powerful optimization techniques which
have been applied to many different problems, from complex mathematical
functions to real-world applications. Some studies report performance im-
provements through the combination of different evolutionary approaches
within the same hybrid algorithm. However, the mechanisms used to con-
trol this combination of evolutionary approaches are not as satisfactory
as would be desirable. In most cases, there is no feedback from the al-
gorithm nor any regulatory component that modifies the participation of
each evolutionary approach in the overall search process. In some cases,
the algorithm makes use of some information for an on-line adaptation
of the participation of each algorithm. In this paper, the use of Rein-
forcement Learning (RL) is proposed as a mechanism to control how the
different evolutionary approaches contribute to the overall search process.
In particular, three learning policies based on one of the state-of-the-art
RL algorithms, Q-Learning, have been considered and used to control
the participation of each algorithm by learning the best-response mixed
strategy. To test this approach, a benchmark made up of six large-scale
(500 dimensions) continuous optimization functions has been considered.
The experimentation carried out has proved that RL control mechanisms
successfully learn optimal patterns for the combination of evolutionary
algorithms in most of the proposed functions, being able to improve the
performance of both individual and non RL hybrid algorithms.

Multiple Offspring Sampling, Reinforcement Learning, Q-

Learning, Hybrid Evolutionary Algorithms.

1

1 Introduction

Reinforcement learning (RL) is a powerful AI technique to construct best-
response strategies for an agent interacting within an environment. As a ma-
chine learning topic, RL deals with the identification of the sequence of actions
an agent has to carry out in order to maximize a reward function. RL has
successfully been applied to different domains from classic games to control
systems.

Furthermore, this paper considers the MOS (Multiple Offspring Sampling)
[20] hybrid evolutionary framework. This framework is able to combine differ-
ent population-based optimization heuristics, such as genetic algorithms (GA),
estimation of distribution algorithms (EDA), evolutionary strategies (ES) or dif-
ferential evolution (DE). MOS uses the mechanisms offered by these heuristics
to create the offspring for the next generation. In each generation, MOS selects
the sampling quota, by means of a Participation Function (PF), applied to each
of the participant techniques.

MOS has been used, with remarkable results, to solve different complex op-
timization benchmarks [18, 21]. These results have been obtained using a short-
term evaluation of the quality of the techniques, mainly from the individuals
generated by each technique during the last generation.

This paper proposes a different approach to deal with MOS offspring sam-
pling quota assignment. This approach considers the adjustment of this quota
as a decision problem that can be solved using a long-term strategy. The ratio-
nale behind this idea is inspired by the objective not to maximize the quality
(fitness) of the best individual in a given generation but the quality (fitness)
of the best individual in the last generation. As a result of this approach, the
reward obtained by this long-term situation should be propagated back to the
decision taken at a given point during the evolutionary process.

Moreover, it should be taken into account that the problem of parameter-
ization of a heuristic algorithm is a complex scenario for RL because actions,
decided by the strategies, perform stochastically. This stochastic behavior comes
from both randomness in single individual generation and survival of the fittest
individuals depending on the selection schema (and the fitness of the rest of the
individuals in the population). Consequently, this study requires the applica-
tion of RL techniques that are able to deal with stochastic reward functions,
like those used for stochastic games, such as WoLF [4], PHC [4] or TERSQ [24].

The goal of this paper is two-fold: (i) improving the results obtained by
MOS deciding the sequence of actions that performs the best when looking for
the long-term objective, and (ii) validating whether RL techniques are able to
learn the best-response mixed strategy for a complex scenario where the reward
function is stochastically determined.

Finally, this paper is structured as follows: Section 2 briefly reviews pre-
vious work on Hybrid Evolutionary Algorithms and Reinforcement Learning
techniques. In Section 4 the proposed hybrid evolutionary algorithm with RL-
based participation adjustment is presented. Section 5 describes the experimen-
tal scenario: benchmark functions considered, configuration of the algorithms

2

and procedure for the experimentation. In Section 6 the experimental results
are detailed and discussed, whereas Section 7 presents the main conclusions of
this study.

2 Related Work

This section will review some of the most relevant work on Hybrid Evolutionary
Algorithms (Section 2.1) and Reinforcement Learning (Section 2.2)

2.1 Hybrid Evolutionary Algorithms

In spite of the wide range of application fields and good results that Evolution-
ary Algorithms have obtained in complex optimization problems, their results
are not always as good as one would expect. Normally, most researchers only
test a few different algorithms when trying to solve a particular optimization
problem. Even if the most suitable algorithm for that problem has been selected,
it is hard to find its best configuration (parameters and set of operators). Ad-
ditionally, different algorithms work better on some problems than on others.
This is in accordance with the No Free Lunch Theorem [36], which states that
for any algorithm with an outstanding performance on a given problem there is
always another problem where a different algorithm performs better. Although
NFL is based on certain extreme theoretical considerations [7, 23], real-world
problems also show differences in the comparative performance of several algo-
rithms. Some studies into Hybrid Evolutionary Algorithms [12, 21] show that
with the combination of different search strategies it is possible to obtain better
results compared to their individual performance.

According to Sinha and Goldberg [29], there are three main reasons for
hybridization in Evolutionary Algorithms:

1. An improvement in the performance of the Evolutionary Algorithm (for
example, the speed of convergence).

2. An improvement in the quality of the solutions obtained by the Evolu-
tionary Algorithm.

3. To incorporate the Evolutionary Algorithm as a part of a larger system.

A comprehensive review of Hybrid Evolutionary Algorithms can be found in
[10]. In this section we will focus on the first two reasons for hybridization in
Evolutionary Algorithms: improvement in performance of the EAs and quality
of the obtained solutions.

Much work has been done on the hybridization of different recombination
operators in Genetic Algorithms. Some good examples in this line are the
fuzzy logic controller proposed in [11] to control the participation of different
crossover operators or the experiments by Hong [13] where the participation of
several crossover operators is adjusted based on the progress introduced into the

3

population by using each of them. Other algorithms propose island GAs where
each island evolves a population by means of recombination operators with
different characteristics, trying to achieve a good trade-off between exploration
and exploitation mechanisms by controlling migratory processes [30]. Finally,
some studies propose the use of two different populations: one for the problem
itself and another one for the set of operators that will be used [17].

However, hybridization is not restricted to taking place within the same
evolutionary paradigm. Some studies propose Hybrid Evolutionary Algorithms
where two or more different algorithms collaborate through the search process.
This is the case for the GA-EDA algorithm [25] where a GA and an EDA
are combined and applied to the resolution of both discrete and continuous
problems. Shi et al. [27] proposed a hybrid EA-PSO algorithm where both
subsystems are carried out in parallel, and a few individuals are exchanged every
generation. Tseng and Liang [33] proposed a hybrid approach that combines
Ant Colony Optimization (ACO), a Genetic Algorithm and a Local Search for
the Quadratic Assignment Problem (QAP). In their experiments, alternative
phases of ACO and GAs are executed. The pheromone values necessary for the
ACO are also updated while the algorithm is in the GA phase to assure the
correct behavior of the ACO. The Local Search improves solutions produced by
both algorithms.

Finally, a third way of hybridization in Evolutionary Algorithms deals with
the encoding of solutions. Studies carried out by [15] on the difficulty of different
optimization problems have measured one of the aspects of problem complexity
by correlating the difference between fitness function values and the Euclidean
distance in the solution space. Experimental results show that a translation of
the fitness landscape can make a problem easier or harder to solve. However,
few works have taken this issue into consideration. In [26] the authors propose
a Genetic Algorithm to solve different optimization functions where the individ-
uals can be encoded with a cartesian or a pseudo-polar coding and be combined
by using either of them. In [21], five Genetic Algorithms are combined to solve
several instances of the TSP (Travelling Salesman Problem). Four of these GAs
used an integer path representation, while the other one used a real ranking
encoding.

2.2 Reinforcement Learning

In [16], the authors define Reinforcement Learning (RL) as “The problem faced
by an agent that must learn behavior through trial-and-error interactions with
a dynamic environment”. In the standard Reinforcement Learning model, the
agent is connected to its environment in a bidirectional way. On the one hand,
the agent receives an input, via perception, and some information about the
state of the environment. On the other hand, the agent interacts with its en-
vironment by carrying out an action than can potentially change the state of
the environment. A reinforcement signal is associated with each action and the
behavior of the agent should chose actions maximizing the long-term sum of the
reinforcement signal. This behavior can be learnt if a systematic trial-and-error

4

search is guided by the appropriate algorithm.
Formally, the Reinforcement Learning model is made up of:

• A discrete set of states, S.

• A discrete set of actions, A.

• A set of reinforcement signals (typically 0, 1 or real numbers).

An important issue in Reinforcement Learning is how the agent will take
the future into account. There are basically three models that try to optimize
the reward in different moments. The finite-horizon model tries to optimize
the reward in the following h steps. The infinite-horizon model considers the
attenuated long-term rewards as if they were an interest rate. Finally, the
average-reward model takes into account the long-term average reward.

Problems with delayed reinforcement, such as Reinforcement Learning, are
well modeled as Markov Decision Processes (MDPs). An MDP is defined as
a tuple (S,A, T,R), where S is the set of states, A is the action set of the
agent and T is the transition function. As MDPs have non-deterministic state
transitions, T is defined as S × A× S → [0, 1]. R is the reward function of the
agent, and it is defined as a probability distribution: S ×A → PD(R).

There are two alternatives for obtaining an optimal policy for an MDP.
First, a controller can be learnt without learning a model (Model-free approach).
Second, a model can be learnt and, then, a controller can be derived from it
(Model-based approach). In this contribution more attention will be paid to the
Model-free approach and, especially, to a family of algorithms called Q-learning.

In Q-learning a matrix of Q-values is maintained. These values are the
expected discounted reinforcement of taking action a in state s. This matrix is
initialized to zero and its values are updated by means of the typical Q-learning
rule:

Q(s, a) = Q(s, a) + α
(

r + γ max
a′

Q(s′, a′) − Q(s, a)
)

where {s, a, r, s′} is an experience tuple summarizing a single transition in
the environment, α is the learning rate and γ is the discount factor. In this
tuple, s represents the state of the agent before the transition, a the action
carried out, r the instantaneous reward it receives and s′ the resulting state.
This algorithm was proposed by Watkins in [35] and proved to converge to the
optimal policy Q∗ with probability 1 if each action is executed in each state an
infinite number of times in infinite runs and if α is decayed appropriately [14].

Some variants of these algorithms have been successfully applied to MDPs.
PHC and WoLF [5] are extensions of the Q-learning algorithm particularly de-
signed to deal with stochastic scenarios. Both approaches maintain a learning
rate in the form of a selection probability for each action-state pair. The main
difference is that, in PHC, the learning rate is constant while WoLF changes
this value whether it is winning or losing, following the idea of learning fast
(higher rates) while losing and learning at a slower rate when winning.

5

In [3], the authors extend the WoLF algorithm to incorporate the concept of
Infinitesimal Gradient Ascent (IGA) presented by [28] to define the “winning”
situations required to update the learning rate in WoLF. GIGA-WoLF [2] is an
extension of the latter considering the concept of Generalised IGA [37]. BL-
WoLF [6] is an enhanced version of WoLF that provides a bounded-loss where
the cost of learning is measured by the losses suffered by the learning agent
(rather than the number of rounds). Another variant is Hyper-Q [32], in which
values of mixed strategies rather than base actions are learnt, and in which other
agents’ strategies are estimated from observed actions via Bayesian inference.
WPL (Weighted Policy Learner) [1] is a new RL algorithm which does not
assume any knowledge of the underlying game structure.

A new Q-Learning variant called TERSQ was presented in [24]. The main
idea underlying this algorithm is the use of a global stochastic quota, σ, in order
to select the action to be carried out. The action with the best Q-value will be
selected with a probability σ, whereas the remaining actions are stochastically
selected with a probability of 1 − σ according to their Q-value ranking.

It is important to mention that few works have used RL as a regulatory
mechanism for metaheuristics. In [22], the authors propose a hyper-heuristic
where the basic heuristics are selected by a procedure inspired by Reinforcement
Learning. In [8] the authors used RL techniques for the online control of some
of the parameters of a Steady State Genetic Algorithm, which slightly improves
the performance of the standard algorithm. However, none of these papers
have explored the ability of RL to control the behavior of hybrid Evolutionary
Algorithms, which is the goal of this work.

3 A Short Review of the MOS Algorithm

In our previous work [18], MOS is introduced as a hybrid adaptive algorithm
capable of simultaneously handling several evolutionary approaches and of dy-
namically adjusting the participation of each of them in the overall search pro-
cess. The Algorithm 1 presents a pseudocode of MOS describing the general
functioning of this hybrid approach.

In MOS, the main algorithm handles the mechanisms to produce new in-
dividuals of the different evolutionary approaches (recombination operators in
GAs, probabilistic models in EDAs, etc.). Each of these mechanisms capable
of producing a new offspring is called a technique. Specifically, a technique
can be defined as (a) a particular evolutionary model, (b) with an appropriate
encoding, (c) using specific operators (if needed), and (d) configured with its
necessary parameters.

Each of these techniques is able to produce a subset of the offspring from
the current population, that is shared by all the techniques.

In this context, the tuple (n, T ,P,O) is called an MOS system, where n is
the number of techniques in the technique set T = {Ti}. P = {Pi} is the m-size

set of common population per generation and O = {O
(j)
i } is the n × m set of

offspring population per technique and generation.

6

Algorithm 1: Multiple Offspring Sampling Algorithm

begin1

Uniformly distribute participation among the n used techniques → ∀j Π
(j)
0 =

|O0|
n

2

Create initial global population of candidate solutions P0. Each technique3

produces a subset of individuals according to its participation (Π
(j)
0)

Evaluate initial population P04

while termination criterion not reached do5

for every available technique Tj do6

while ratio Π
(j)
i not exceeded do7

Create new individuals from current population Pi8

Evaluate new individuals9

Add new individuals to an auxiliary population O
(j)
i10

end11

Update Quality of Tj → Q
(j)
i = Q(O

(j)
i)12

end13

Combine populations O
(j)
i ∀j and Pi according to a pre-established criterion14

to generate Pi+1

Update participation ratios from Quality values computed in step 1215

→ ∀j Π
(j)
i+1 = PF (Q

(j)
i)

end16

end17

The number of individuals that each technique can generate each generation

(Π
(j)
i) is called its participation ratio. This ratio is uniformly distributed at the

beginning of the search process, and it is periodically updated according to a
given policy. In the canonical version of MOS, this adjustment is carried out
by what is known as a Participation Function. These functions can carry out
simple static assignments or, more interestingly, dynamic adjustments according
to a Quality Measure that evaluates how good the offspring of each technique

is from the point of view of that measure (Q
(j)
i).

At this point, different measures can be proposed, depending on the con-
cept of quality that we consider. One option would be to consider the Fitness
Average of the subset of the best individuals of the offspring generated by each
technique as our measure of quality. Other alternatives could be used (Negative
Slope Coefficient [34], Age, Diversity, etc.). If the Fitness Average measure is
selected, the quality value computed from the offspring population produced by

a technique j in generation i (O
(j)
i) is obtained as defined in Equation 1.

Q(O
(j)
i) =

∑

o∈O
(j)
i

fit(o)

|O
(j)
i |

(1)

Every generation, the quality of each of the available techniques is recom-
puted, as depicted in step 12 of the MOS algorithm. As from now, the notation
in Equation 2 will be used:

7

Q
(j)
i = Q(O

(j)
i) and Q

(best)
i = Q(O

(best)
i) (2)

best = argmax
j

(Q
(j)
i)

Additionally, several Participation Functions (PFs) can be proposed. For
this work, a dynamic Participation Function has been considered (Equation 3).
This PF computes, in each generation, a trade-off factor for each technique,

∆
(j)
i , that represents the decrease of participation for the j − th technique in

the i− th generation, for every technique except the best performing one. This

technique will increase its participation by the sum of all those ∆
(j)
i .

PF dyn(Q
(j)
i) =

{

Π
(j)
i + η if j = best,

Π
(j)
i − ∆

(j)
i otherwise

(3)

η =
∑

k 6=best

∆
(k)
i

In our previous work [19], two different strategies for computing the afore-

mentioned ∆
(j)
i factors have been proposed. In the first one, this factor is com-

puted from the relative difference between the quality of the best and the j− th
offspring populations (Equation 4), where n represents the number of available
techniques. This strategy keeps the overall population size fixed throughout
the process. A minimum participation ratio can be established, but no maxi-
mum participation ratio is considered (apart from the implicitly maximum ratio
1− ((n− 1) · ratiomin) when using n techniques and the minimum participation
ratio has been fixed to ratiomin).

∆
(j)
i = ξ ·

Q
(best)
i − Q

(j)
i

Q
(best)
i

· Π
(j)
i ∀j ∈ [1, n] / j 6= best (4)

In previous equation, ξ is a reduction factor for the ratio that is transferred
from one technique to the other (usually 0.05).

The second strategy (defined in Equation 5) also considers the quality value
to carry out the participation adjustment. However, in this case the overall
population size can change from one generation to the next. This means that
an initial population size |O0| must be defined, and that the current population
size can be decreased or increased through the evolutionary process, but it can
never exceed the initial value. Additionally, a minimum participation ratio per
technique is also allowed, as in the previous case, but a maximum participation

ratio should be also defined, usually Π
(j)
0 = |O0|

n
, n being the number of available

techniques.

∆
(j)
i =

(

1 −
Q

(j)
i

Q
(best)
i

)

· Π
(j)
i ∀j ∈ [1, n] / j 6= best (5)

8

Algorithm 2: Multiple Offspring Sampling with RL Algorithm

begin1

Initialize Matrix of Q-values (Q(s, a) = 0)2

Create an initial overall population of candidate solutions P0.3

Evaluate initial population P04

while termination criterion not reached do5

if maximum number of generations per state reached then6

Move from state s to s′7

end8

while |Oi| < |Pi| do9

Apply Learning Policy to create a new individual and add it to the10

offspring population Oi.
end11

Combine populations Oi and Pi according to a pre-established criterion to12

generate Pi+1

end13

end14

For the experimentation reported in this paper, only the first strategy has
been considered as it obtained a better overall performance.

4 RL to Control MOS Strategies

In the previous sections we have reviewed the Multiple Offspring Sampling al-
gorithm and the possibility of using RL to control its behavior. In this section,
MOS will be extended to make use of the specific RL mechanisms reviewed in
Section 2.2.

Each action in the MOSRL algorithm (MOS with RL extensions) is the cre-
ation of new offspring by means of one of the available reproductive techniques.
The set of available states has been established by discretizing the participation
of each reproductive techniques into eleven possible values ({0.0, 0.1, . . . , 1.0})
with the only constraint being that the sum of the participation of each tech-
nique must be equal to 1. In addition, to favor the exploration, a maximum
number of generations are allowed for each state. After every N generations, a
state transition is automatically carried out to a new state where the discrete
participations stay unchanged and the generation information is updated.

State = (Φ × G) (6)

P = (ϕ
(1)
j , . . . , ϕ

(n)
j) ∈ {0.0, 0.1, . . . , 0.9, 1.0}n /

n
∑

i=1

ϕ
(i)
j = 1.0 (7)

G ∈ {[k · N, (k + 1) · N) : k = 0 . . . M} (8)

For example, if a hybrid algorithm with four techniques is being run and
the current state is represented by the tuple {parts = {0.1, 0.3, 0.4, 0.2}, gen ∈
[100, 200)} and the generation 200 arrives, then a new state transition is carried

9

out to a new state represented by the tuple {parts = {0.1, 0.3, 0.4, 0.2}, gen ∈
[200, 300)}.

Let (n, T ,P,O) be an MOS system, as seen in the previous section, and let
(S,A, T,R) be the tuple that describes an MDP. We say that this MDP is an
MOS control strategy where:

S = {si : ∃j ∈ [0,m]si = sp(j, Pj)} (9)

A = {ai : i ∈ [1, n]} (10)

T = {(si, aj , ak, πi,j,k)} (11)

R = {(si, aj , ri,j)} (12)

Where sp is a state projection function that maps all possible population
configurations into a set of MDP states (Equations 13, 14 and 15), ndval being
a function that approximates a real participation value to its nearest discrete
value in {0.0, 0.1, . . . , 1.0}.

sp(j, Pj) = (Φ, G) (13)

Φ =
(

ϕ
(1)
j , . . . , ϕ

(n)
j

)

/ ϕ
(i)
j = ndval

(

|P
(n)
j |

∑n

i=1 |P
(i)
j |

)

(14)

G = [k · N, (k + 1) · N) / k =
⌊ j

N

⌋

] (15)

Each a represents the action “create a new individual using the offspring
mechanisms of technique i”. State transitions (si, aj , ak, πi,j,k) express that
there is a probability πi,j,k of changing from state si to state sk when creating a
new individual with technique j, action aj . This probability depends on (i) the
quality of the new individual, (ii) the selection pressure also based on the quality
of other individuals, and (iii) the state projection function (multiple populations
are mapped to the same states).

The elements in the reward function R, (si, aj , ri,j), mean “the immediate
reward obtained from creating a new individual with technique j in state si”.
This reward value ri,j can be expressed as the improvement in the quality of
the existing population derived from the contribution of the newly created in-
dividual.

For this work, three learning policies have been considered (PHC, WoLF
and TERSQ) which are based on the state-of-the-art Q-learning algorithm. Al-
gorithm 2 provides a detailed description of the common parts of the proposed
algorithm, while a more thorough description of the three policies used will be
offered in Sections 4.1, 4.2 and 4.3.

4.1 PHC Learning Policy

Policy Hill Climbing (PHC) was proposed in [4] as an extension to the Q-learning
algorithm. In addition to Q-values, the algorithm also maintains the current

10

Algorithm 3: Policy Hill Climbing Algorithm

begin1

Let α and δ be learning rates, Initialize2

Q(s, a)← 0, π(s, a)←
1

|A|

while current generation not finished do3

From state s select action a with probability π(s, a)4

Q-values are updated observing reward r and next state s′,5

Q(s, a) = Q(s, a) + α

„

r + γ max
a′

Q(s′, a′)−Q(s, a)

«

Update π(s, a) and constrain it to a legal probability distribution6

π(s, a)← π(s, a) +

8

<

:

δ ifa = argmax
a′

(Q(s, a′))

−δ
|A|−1

otherwise

end7

end8

mixed policy (π(s, a)). This policy controls the probability of selecting a given
action during the learning phase. It is updated by increasing the probability of
selecting the best performing action according to a learning rate δ ∈ (0, 1].

A detailed description of this policy is provided by Algorithm 3.

4.2 WoLF Learning Policy

WoLF policy was proposed in [4] as an extension of the PHC policy reviewed
in the previous section. The basic idea is to modify the learning rate used dy-
namically to encourage convergence without sacrificing rationality. Intuitively,
the algorithm tries to learn quickly when it is losing and more slowly when it is
winning. To determine whether the algorithm is winning or losing, the current
policy’s payoff is compared with that of the average policy over time. For this
purpose, the algorithm requires two learning parameters: δl, that will be used
when the algorithm is losing, and δw, that will be used when the algorithm is
winning, with δl > δw.

Algorithm 4 provides a detailed description of this policy.

4.3 TERSQ Learning Policy

In [24] the TERSQ algorithm was introduced. The main idea of this algorithm
is to use an overall stochastic quota, σ, in order to select the action to be carried
out. A binomial decision process is carried out in such a way that actions with
best Q-values are selected with a probability of σ while the remaining actions
are stochastically selected with a probability of 1−σ according to their Q-value
ranking.

11

Algorithm 4: WoLF Algorithm

begin1

Let α, δl > δw be learning rates, Initialize2

Q(s, a)← 0, π(s, a)←
1

|A|
, C(s)← 0

while current generation not finished do3

From state s select action a with probability π(s, a)4

Q-values are updated observing reward r and next state s′,5

Q(s, a) = Q(s, a) + α

„

r + γ max
a′

Q(s′, a′)−Q(s, a)

«

Update estimate of average policy, π̄,6

C(s)← C(s) + 1

∀ a′ ∈ A π̄(s, a′)← π̄(s, a′) +
1

C(s)
(π(s, a′)− π̄(s, a′))

Update π(s, a) and constrain it to a legal probability distribution7

π(s, a)← π(s, a) +

8

<

:

δ ifa = argmax
a′

(Q(s, a′))

−δ
|A|−1

otherwise

where,

δ =

(

δw if
P

a π(s, a)Q(s, a) >
P

a π̄(s, a)Q(s, a)

δl otherwise

end8

end9

The σ value is selected for each round based on three different criteria. From
these criteria, three phases can be established: (1) the Tentative Phase in which
the algorithm tries all the possible σ values (from a finite set of values, named Γ)
to get an initial estimation of the performance of every possible σ value; (2) the
σ Adjustment Phase where σ values are proportionally chosen according to their
average performance τ(σ) (which is updated at the end of each round), and; (3)
the Optimal σ Phase where the σ value with highest average performance is
selected for the rest of the learning process. The usual Q-learning technique is
applied throughout all the process.

A detailed description of this policy can be found in Algorithm 5.

5 Experimental Scenario

For the experiments carried out in this work, the benchmark proposed for the
CEC’08 Special Session and Competition on Large Scale Global Optimization
[31] has been considered. This benchmark is made up of six scalable continuous
functions with some of the characteristics that make these type of functions
hard to be solved: multi-modality, non-separability, shifted global optimum

12

Algorithm 5: TERSQ Learning Policy

begin1

Let2

A be the set of possible actions for the state s, and a ∈ A one action for this3

state,
α, γ the learning parameters,4

σ ∈ Γ = {0.0, 0.1, . . . , 1.0} the overall quota used to select Amax,5

τ(σ) the average performance of σ6

σ be selected from Γ following the specific criteria of the current phase.7

Initialize Q(s, a)← 08

while current generation not finished do9

for each action a on each state s do10

Compute π(s, a), a basic probability obtained by a ranking process where11

actions are sorted according to their Q-values in an increasing order:

{A′
i} = sort({a}) (16)

∀n
i=1π(s, {A′

i}) = i× π0 /
X

π(s, {A′
i}) = 1 (17)

end12

These probabilities are adjusted by the σ quota as follows,13

π(s, a) = π(s, a)× (1− σ), a 6= Amax (18)

and for the Amax (action with the best actual Q-value)

π(s, Amax) = (π(s, Amax)× (1− σ)) + σ (19)

Select action a with probability π(s, a).14

Q-values are updated observing reward r and next state s′,15

Q(s, a) = Q(s, a) + α

„

r + γ max
a′

Q(s′, a′)−Q(s, a)

«

end16

Update the τ(σ) according to the evaluation of the round.17

end18

etc. Specifically, the six considered functions are: Ackley, Griewank, Rastrigin,
Rosenbrock, Schwefel and Sphere. These types of benchmarks, and this one
in particular, are being used more and more in Conferences and Special Issues
on Continuous Optimization as they ease the comparison of different search
algorithms on a complete and predefined set of functions.

The first part of this section details the configuration used for the different
tested approaches (single GAs, standard MOS algorithm and MOS algorithm
combined with RL techniques), while the second part of this section presents
the experimental procedure carried out.

5.1 Algorithms

Table 1 presents the configuration used by each of the evolutionary approaches
considered in this experimentation (single GAs, Standard MOS and MOS with
RL techniques). The number of executions has been set so that the RL algo-
rithms have enough information to learn optimal hybridization strategies (2.5M

13

evaluations per execution). The convergence criterion has been fixed to a max-
imum number of evaluations as proposed in [31]. No minimum participation
ratio has been imposed to the MOS algorithm because, as we will see in Section
6, two of the proposed techniques have a performance much worse than the other
two, what makes undesirable to waste computational efforts on maintaining a
marginal participation of these algorithms. The complexity of the considered
functions has been established to 500 dimensions, a considerably large size which
makes these functions quite hard to solve.

Table 1: Algorithm Configuration

GAs Standard MOS MOSRL
Executions 111

Convergence Criterion 2500000 FEs1

Problem Size 500 dimensions
Population Size 50

Elitism Full Elitism
Participation Function - Dynamic2 Constant -
Minimum Participation - 0% - -

1 Fitness Evaluations, as specified in [31]
2 Dynamic PF, with constant population size

Table 2 presents the set of techniques used by the hybrid configurations.
This set of techniques has been constructed by combining two crossover and
two mutation operators classic in the literature for continuous optimization.
Many researchers have considered the combination of the BLX-α Crossover and
the Gaussian Mutator but, as we will see in Section 6, the combination of the
BLX-α Crossover with the Uniform Mutator reports better results.

Table 2: Set of Techniques for the Hybrid Evolutionary Algorithm

BCUM UCUM BCGM UCGM
Crossover BLX-α1 Uniform BLX-α1 Uniform
Mutator Uniform Gaussian

Crossover Rate 90%
Mutation Rate 1%

Selection Roulette-Wheel
1 BLX-α with α = 0.5

Table 3 shows the values for the parameters needed by the different RL
policies. The learning rate (α) and the discount factor (γ) common to the three
Q-Learning based policies have been selected following the guidelines provided
in [9]. For the learning rates specific to PHC and WoLF (δ, δl and δw), the

14

recommended values from [4] have been used. The σ values needed by the
TERSQ policy are adjusted by the policy itself, as it was explained in algorithm
5, and do not need to be fixed.

Table 3: Parameters of the RL policies

PHC WoLF TERSQ
α 0.7
γ 0.6
δ 0.01 -
δl - 0.02 -
δw - 0.005 -

5.2 Procedure

For each of the proposed problems, the following experimental procedure is
carried out:

• Each evolutionary technique is executed individually.

• The four proposed evolutionary techniques are combined within MOS with
both constant and dynamic participation functions and the configuration
presented in Table 1.

• The four proposed evolutionary techniques are combined within the RL
version of MOS with the configuration presented in Table 1.

• For the TERSQ algorithm, 11 rounds are carried out in the Tentative
Phase (one for each of the possible σ values), 50 rounds in the σ Adjust-
ment Phase and 50 rounds in the σ Optimal phase. These values have
been identified as optimal in terms of performance and execution time
in a previous experimentation. For the other two algorithms, PHC and
WoLF, the same total number of 111 rounds are executed.

• For the non-RL algorithms (single GAs and standard MOS configurations)
111 independent runs have been carried out (the same number of execu-
tions as the RL algorithms).

• The average error in comparison with the global optimum is reported for
each problem and configuration.

• A ranking analysis based on the fitness of each algorithm is carried out.

• The results obtained by each algorithm are pair-wise compared using a
Wilcoxon non-parametric t-test against the others.

15

• A new ranking analysis is carried out, this time based on the results of
the Wilcoxon t-test. The goal of this global analysis is to rank the per-
formance of the proposed algorithms. In this analysis, if one algorithm is
significantly better than other (p-value < 0.05), the winning algorithm is
granted +1 “wins” and the losing algorithm is penalised with -1 “wins”.
As all the algorithms are compared against each other, they are ranked
(depending on how many other configuration are better/worse).

• The evolution of the participation of the different techniques in hybrid
algorithms (both standard MOS and MOSRL) is analysed to check how
different search strategies can boost the performance of individual tech-
niques and how this participation evolves in the case of the RL algorithms.

6 Results and Discussion

Table 4 presents the average error obtained by each of the configurations on
the six proposed problems. For each column, the smallest error is shown in
bold. From these data, it can be observed that one of the RL policies, PHC,
obtains the best results in 4 out of the 6 considered functions. In the other two
functions, one of the single GAs, the BCUM configuration (BLX-α Crossover
+ Uniform Mutation), reports the lowest average error. The differences in
performance between PHC and the best single GA ranges from 4% to 40% for
the four functions where it obtains lower average error and from 1% to 8% in
the other two functions. The other RL policies (WoLF and TERSQ) report
worse average errors as a result of their more conservative behavior, as will be
seen when the participation plots are analysed.

Table 4: Average error on the six proposed functions when the four reproductive
techniques are considered.

Ackley Griewank Rastrigin Rosenbrock Schwefel Sphere
BCGM 8.80e+00 2.26e+02 2.19e+03 1.46e+09 4.82e+01 2.65e+04
BCUM 3.17e+00 8.84e+00 1.24e+03 7.65e+06 3.61e+01 9.14e+02

UCGM 8.08e+00 1.78e+02 5.67e+02 5.84e+08 3.82e+01 2.02e+04
UCUM 3.67e+00 1.58e+01 2.29e+02 4.18e+06 3.21e+01 1.68e+03
MOS Const 5,31e+00 3.57e+01 6,52e+02 4,04e+07 4,54e+01 4,08e+03
MOS Dyn 4.41e+00 1.94e+01 4.89e+02 7.92e+06 3.78e+01 2.22e+03
PHC 3.04e+00 9.57e+00 2.22e+02 2.51e+06 3.18e+01 9.56e+02
WoLF 3.98e+00 1.85e+01 3.13e+02 1.27e+07 3.67e+01 2.11e+03
TERSQ
Tentative 4.80e+00 3.17e+01 5.28e+02 1.78e+07 3.76e+01 3.52e+03
Adjustment 4.63e+00 2.89e+01 5.21e+02 1.84e+07 3.80e+01 3.33e+03
Optimal 4.31e+00 2.82e+01 5.01e+02 1.74e+07 3.77e+01 3.21e+03

It is interesting to note that at least two of the single GAs report average
errors with the same order of magnitude for the four functions where the PHC
policy obtains the best results. In the other two functions, one of the single
GAs obtains significantly better results than the others, with an average error
at least one order of magnitude lower than the rest of the GAs. This can

16

explain that, even if the hybrid approaches are able to detect this difference
of performance, they still waste some valuable fitness evaluations with the less
performant techniques, especially at the early stages of the search process.

Figs. 1, 2, 3 and 4 present a comparative view of the participation progress
for two of the six proposed functions. These problems have been selected as
representative of the remaining functions. Regarding the problems for which
plots have not been provided, they exhibit similar behaviors to those observed in
the Sphere function in the case of Ackley, Griewank and Rosenbrock functions
and to those observed in the Rastrigin function in the case of the Schwefel
problem.

Fig. 1 presents the participation progression of the four hybrid approaches in
the Sphere function. For each of the RL policies, two snapshots of the learning
procedure are provided: after 61 executions and after 111 executions. The
first snapshot coincides with the end of the adjustment phase of the TERSQ
policy, while the second one is taken at the end of the last execution. There are
similarities and differences among the different learning policies. The first one is
how differently PHC performs participation transitions compared to the other
three hybrid approaches. This policy, which obtained the best results in this
problem among the hybrid approaches, systematically swaps between BCUM
and UCUM techniques with participation ratios that are close to 1 for one of
the techniques in most of the cases. On the other hand, the other two RL policies
are more conservative in this respect, especially the TERSQ policy that, in the
last executions, almost performs an uniform distribution of the participation.
From the results reported in Table 4 it seems that, the more conservative the
algorithm, the worse average error it obtains.

Fig. 2 depicts the participation progression for the four hybrid algorithms
on the Rastrigin function. In this problem, the behavior of the PHC policy is
different to the one it had in the previous function. In this case, the systematic
exchange of algorithms lasts only until generation 10, 000 − 15, 000. From this
point, the UCUM technique executes most of the time, with occasional collab-
oration of the UCGM technique. WoLF presents a similar behavior but, as we
have seen in the Sphere function, with a more conservative strategy. The fluctu-
ations are, in this case, more remarkable than in the previous problem but not
as much as with the PHC policy. The other two hybrid approaches present a
more conservative behavior, as in the previous problem. It is important to note
that these two algorithms assign more participation to the UCGM than to the
UCUM unlike PHC and WoLF policies. This seems to be directly correlated
with the average error reported by each algorithm, as the performance of PHC
and WoLF on this problem is comparable, while the TERSQ and MOS Dynamic
approaches obtain similar average errors.

In Table 5 the results of both ranking analyses are presented. The first
column, Average Ranking, orders the algorithms based on their average error
in the six proposed functions. The second column, Wins, reports the number
of wins for each algorithm in the pair-wise statistical comparison carried out.
Both rankings provide more or less the same information, except for a small
difference in the ranking of the WoLF and BCUM algorithms (WoLF obtains a

17

worse ranking according to its average error but a better one according to its
statistical results). These results confirm that there is statistical evidence to
establish that the PHC policy to learn the hybridization strategy obtains the
best results for this benchmark. However, as the WoLF and TERSQ strategies,
as well as the MOS Dynamic approach, obtained worse results, in general, than
the UCUM and BCUM individual techniques, a second experimental phase was
carried out, considering only these two techniques for hybridization.

Table 5: Ranking and statistical test results for both the single and the hybrid
algorithms for the first experimental configuration.

Average Ranking Wins
PHC 1.33 7
UCUM 2.50 5
BCUM 3.00 1
WoLF 4.00 2
MOS Dyn 5.00 1
TERSQ 5.50 0
MOS Const 7.17 -4
UCGM 7.50 -4
BCGM 9.00 -8

Table 6 shows the results obtained when only BCUM and UCUM are taken
into account by the hybrid approaches. The first thing that can be observed
from these results is that, with this configuration of techniques, there is always
an RL algorithm that obtains better results than the individual algorithms.
The second remark is that, in this second experiment, the differences between
the PHC policy and the other two hybrid algorithms have been considerably
reduced. Furthermore, now the TERSQ algorithm obtains lowest average error
in as many functions as PHC does. WoLF policy continues to obtain worse
results than the other two RL policies. However, the gap among them is smaller
now.

Table 6: Average error on the six proposed functions when only BCUM and
UCUM techniques are considered.

Ackley Griewank Rastrigin Rosenbrock Schwefel Sphere
MOS Const 3.15e+00 9.55e+00 3.87e+02 3.95e+06 3.66e+01 1.01e+03
MOS Dyn 3.14e+00 9.47e+00 2.42e+02 3.75e+06 3.50e+01 1.01e+03
PHC 3.01e+00 9.10e+00 2.07e+02 2.38e+06 3.12e+01 9.43e+02
WoLF 2.95e+00 8.47e+00 2.63e+02 2.42e+06 3.44e+01 8.85e+02
TERSQ
Tentative 2.93e+00 8.37e+00 2.82e+02 2.35e+06 3.43e+01 8.76e+02
Adjustment 2.94e+00 8.55e+00 2.73e+02 2.40e+06 3.43e+01 8.76e+02
Optimal 2.93e+00 8.48e+00 2.39e+02 2.38e+06 3.41e+01 8.79e+02

In Table 7 the results of both the average error ranking and the statistical
ranking analysis are presented. This analysis confirms the impression derived
from the results collected in Table 6. With this configuration it is the TERSQ
policy and not the PHC policy which obtains the best ranking, considering
both the average error and the statistical tests. Moreover, the four dynamic

18

Table 7: Ranking and statistical test results for both the single and the hybrid
algorithms for the second experimental configuration.

Average Ranking Wins
TERSQ 1.92 6
PHC 2.42 5
WoLF 2.83 3
MOS Dyn 4.58 1
UCUM 5.17 1
BCUM 5.50 -1
MOS Const 5.75 -2
UCGM 7.83 -5
BCGM 9.00 -8

hybrid algorithms (the three RL policies and the hybrid algorithm with dynamic
adjustment of participation) obtain better rankings than any of the individual
techniques. Only the hybrid algorithm with constant participation ratios obtains
worse results than UCUM and BCUM single techniques.

Fig. 3 depicts the evolution of the participation of each of the techniques
using the four dynamic approaches. In this case, the lowest average error was
obtained by the TERSQ policy, followed by the WoLF policy. These two RL
algorithms have in common that their adjustment of the participation of the two
available techniques is not very significant, practically static from the generation
3, 000 − 4, 000. If we compare the results of these two policies on this function
with that of the hybrid approach witha a constant participation ratio we can
see that, even though the participation is mostly static from generation 3, 000−
4, 000 on, the results obtained by these two algorithms are up to a 15% better.
This means that the hybrid strategy learnt for these generations, where the
UCUM initially receives a slightly higher participation ratio, is responsible for
improving the final results compared to a completely constant participation
assignment.

In Fig. 4 the evolution of the participation is presented for the Rastrigin
function. In this problem, the behavior of every algorithm is completely different
to that exhibited in the previous function. In this problem, all the algorithms, to
a greater or lesser extent, make a much more abrupt participation adjustment.
Again, the algorithms with a more conservative behavior obtain worse results.

Comparing the participation plots of the Sphere function (Figs. 1 and 3)
it can be observed that, apart from the absence of the BCGM and UCGM
techniques in the second plot, the behavior of the four hybrid algorithms is quite
similar with four and two techniques. This does not happen in the case of the
Rastrigin function (Figs. 2 and 4). In this function, the configurations with four
techniques boosted the participation of the techniques UCUM and UCGM. For
the second experiment, the UCGM technique was not used (we only considered
the two techniques with best average individual performance). Despite this,
the results obtained by the hybrid approaches with only two techniques are
statistically better (p−value < 0.05) than those obtained with four techniques,
which suggest again the idea that the real contribution of the other techniques to

19

that leading the search process takes place at the very beginning of the execution
or, eventually, with brief phases where these techniques take over for a small
period of time to create individuals that increase the diversity of the population.
For this purpose, either UCGM or BCUM seem to add enough diversity to the
population to let the leading technique converge to better final solutions.

7 Conclusions

In this paper, a new hybrid algorithm with dynamic adjustment of participation
by means of Reinforcement Learning techniques has been presented. The exper-
imental results show statistical evidence that the regulation of the participation
with RL techniques can boost the performance of the new RL hybrid algo-
rithm compared to both traditional hybrid algorithms and individual genetic
algorithms.

The three proposed policies have been able to learn, to different degrees, the
most efficient strategy for the combination of the available reproductive tech-
niques. However, some differences are exhibited by these three policies. PHC
seems to be more drastic in its decisions, while WoLF and TERSQ show a more
conservative behavior in this sense. If we observe how the probability of select-
ing an action within the PHC policy is updated (step 6 of Algorithm 3), we can
see that after a few executions the probability values for the best action and
the rest of the actions quickly converge to one and zero, respectively. This can
explain the drastic behavior of the PHC policy and thus a further research into
the selection of the learning ratios should be considered. Taking these consider-
ations into account, PHC seems to be more appropriate in contexts where more
techniques are available and a quick detection of the best technique(s) is crucial
for the performance of the algorithm. On the other hand, the other two policies
seem to be more suitable when the performance of the available techniques is
similar and small differences should be taken into account.

As future work, it would be interesting to extend this research to a larger
number of functions of different dimensionality, as well as carrying out tests
with larger and more diverse sets of techniques (including other evolutionary
approaches such as Estimation of Distribution Algorithms, Differential Evolu-
tion, etc.).

Finally, even though MOSRL performance has been improved by using RL
policies, it could be argued that a performance comparison between traditional
EAs and MOSRL is not fair, as the latter takes advantage of the results obtained
in previous executions in order to learn the best strategy to obtain the final
result. However, the interest of this research is not only to state whether a
hybrid evolutionary algorithm guided by RL techniques can obtain better results
than classic algorithms but also if they are able to learn the best hybrid strategy
for a given problem. This could be of useful application to real-world problems
that have to be solved hundreds of times with slightly different input data, such
as planning or scheduling problems.

20

8 Acknowledgments

The authors thankfully acknowledge the computer resources, technical expertise
and assistance provided by the Centro de Supercomputación y Visualización de
Madrid (CeSViMa) and the Spanish Supercomputing Network.

This work was supported in part by the Ministry of Education and Science
under grants no. AP-2004-0949 and TIN2007-67148.

References

[1] S. Abdallah and V. Lesser. A Multiagent Reinforcement Learning Algo-
rithm with Non-linear Dynamics. Journal of Artificial Intelligence Re-
search, 33:521–549, 2008.

[2] M. Bowling. Convergence and no-regret in multiagent learning. In Advances
in Neural Information Processing Systems, volume 17, pages 209–216. MIT
Press, 2005.

[3] M. Bowling and M. Veloso. Convergence of gradient dynamics with a vari-
able learning rate. In Proceedings of the 18th International Conference on
Machine Learning (ICML), pages 27–34. Morgan Kaufmann, 2001.

[4] M. Bowling and M. Veloso. Rational and convergent learning in stochas-
tic games. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI), pages 1021–1026, August 2001.

[5] M. Bowling and M. Veloso. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136:215–250, 2002.

[6] V. Conitzer and T. Sandholm. Bl-wolf: A framework for loss-bounded
learnability in zero-sum games. In Proceedings of the 20th International
Conference on Machine Learning (ICML), pages 91–98, 2003.

[7] S. Droste, T. Jansen, and I. Wegener. Optimization with randomized search
heuristics - the (a)nfl theorem, realistic scenarios, and difficult functions.
Theoretical Computer Science, 287(1):131–144, 2002.

[8] A. Eiben, M. Horvath, W. Kowalczyk, and M. Schut. Reinforcement learn-
ing for online control of evolutionary algorithms. In Proceedings of the 4th
International Workshop on Engineering Self-Organising Systems, ESOA
2006, volume 4335 of Lecture Notes in Computer Science, pages 151–160.
Springer-Verlag GmbH, 2007.

[9] E. Even-Dar and Y. Mansour. Learning rates for q-learning. Journal of
Machine Learning Research, 5:1–25, 2004.

[10] C. Grosan and A. Abraham. Hybrid evolutionary algorithms: Method-
ologies, architectures, and reviews. In C. Grosan, A. Abraham, and

21

H. Ishibuchi, editors, Hybrid Evolutionary Algorithms, volume 75 of Studies
in Computational Intelligence, pages 1–17. Springer-Verlag GmbH, 2007.

[11] F. Herrera and M. Lozano. Adaptation of genetic algorithm parameters
based on fuzzy logic controllers. In F. Herrera and J. Verdegay, editors, Ge-
netic Algorithms and Soft Computing, pages 95–125. Physica-Verlag, 1996.

[12] T. Hong, H. Wang, and W. Chen. Simultaneously applying multiple muta-
tion operators in genetic algorithms. Journal of Heuristics, 6(4):439–455,
September 2000. Kluwer Academic Publishers, Hingham, MA, USA.

[13] T. Hong, H. Wang, W. Lin, and W. Lee. Evolution of appropriate crossover
and mutation operators in a genetic process. Applied Intelligence, 16(1):7–
17, January 2002. Springer Netherlands.

[14] T. Jaakkola, M. Jordan, and S. Singh. On the convergence of stochastic it-
erative dynamic programming algorithms. Neural Computation, 6(6):1185–
1201, 1994.

[15] T. Jones and S. Forrest. Fitness distance correlation as a measure of prob-
lem difficulty for genetic algorithms. In L. Eshelman, editor, Proceedings of
the Sixth International Conference on Genetic Algorithms, pages 184–192,
San Francisco, CA, 1995. Morgan Kaufmann.

[16] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

[17] S. Koh, S. Leow, and K. Loke. An adaptive genetic algorithm for permuta-
tion based optimization problems. In Proceedings of the AIAI2005- Second
IFIP Conference on Artificial Intelligence Applications and Innovations,
Beijing, September 2005.

[18] A. LaTorre, J. Peña, S. González, V. Robles, and F. Famili. Breast cancer
biomarker selection using multiple offspring sampling. In Proceedings of the
ECML/PKDD 2007 Workshop on Data Mining in Functional Genomics
and Proteomics: Current Trends and Future Directions, Warsaw, Poland,
September 2007. Springer Verlag.

[19] A. LaTorre, J. Peña, S. Muelas, and M. Zaforas. Hybrid evolutionary
algorithms for large scale continuous problems. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation, GECCO
2009, 2009.

[20] A. LaTorre, J. Peña, V. Robles, and P. de Miguel. Supercomputer schedul-
ing with innovative evolutionary techniques. In F. Xhafa and A. Abraham,
editors, Meta-heuristics for Scheduling: Distributed Computing Environ-
ments, volume 146 of Studies in Computational Intelligence. Springer Ver-
lag, Germany, 2008.

22

[21] A. LaTorre, J. Peña, V. Robles, and S. Muelas. Using multiple offspring
sampling to guide genetic algorithms to solve permutation problems. In
M. Keijzer, editor, Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO 2008, pages 1119–1120, New
York, NY, USA, July 2008. ACM Press.

[22] A. Nareyek. Choosing search heuristics by non-stationary reinforcement
learning. In Metaheuristics: Computer Decision-Making, pages 523–544.
Kluwer Academic Publishers, 2004.

[23] M. Oltean. Searching for a practical evidence of the no free lunch theorems.
In First International Workshop on Biologically Inspired Approaches to
Advanced Information Technology, BioADIT 2004, volume 3141 of Lecture
Notes in Computer Science, pages 472–483. Springer-Verlag GmbH, 2004.

[24] L. Peña, A. LaTorre, J. Peña, and S. Ossowski. Tentative exploration on
reinforcement learning algorithms for stochastic rewards. In Proceedings of
the 4th International Conference on Hybrid Artificial Intelligent Systems,
Lecture Notes in Computer Science. Springer-Verlag GmbH, June 2009.

[25] V. Robles, J. Peña, P. Larrañaga, M. Pérez, and V. Herves. Ga-eda:
A new hybrid cooperative search evolutionary algorithm. In J. Lozano,
P. Larrañaga, I. Inza, and E. Bengotxea, editors, Towards a New Evolution-
ary Computation. Advances in the Estimation of Distribution Algorithms.
Series: Studies in Fuzziness and Soft Computing, volume 192 of Lecture
Notes in Computer Science, pages 187–219. Springer-Verlag GmbH, 2004.

[26] T. Schnier and X. Yao. Using multiple representations in evolutionary algo-
rithms. In Proceedings of the 2000 Congress on Evolutionary Computation,
volume 1, pages 479–486, La Jolla, CA, USA, July 2000. IEEE Press.

[27] X. Shi, Y. Liang, H. Lee, C. Lu, and L. Wang. An improved ga and a novel
pso-ga-based hybrid algorithm. Information Processing Letters, 93(5):255–
261, March 2005.

[28] S. Singh, M. Kearns, and Y. Mansour. Nash convergence of gradient dy-
namics in general-sum games. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, pages 541–548. Morgan, 2000.

[29] A. Sinha and D. Goldberg. A survey of hybrid genetic and evolutionary
algorithms. Technical Report 2003004, Illinois Genetic Algorithms Labo-
ratory (IlliGAL), January 2003.

[30] E. Takashima, Y. Murata, N. Shibata, and M. Ito. Self adaptive island ga.
In Proceedings of the 2003 Congress on Evolutionary Computation, CEC
’03, volume 2, pages 1072–1079. Springer-Verlag GmbH, December 2003.

[31] K. Tang, X. Yao, P. Suganthan, C. MacNish, Y. Chen, C. Chen, and
Z. Yang. Benchmark functions for the cec 2008 special session and compe-
tition on large scale global optimization. Technical report, Nature Inspired
Computation and Applications Laboratory, USTC, China, 2007.

23

[32] G. Tesauro. Extending q-learning to general adaptive multi-agent systems.
In Advances in Neural Information Processing Systems, volume 16, pages
871–878. MIT Press, 2004.

[33] L. Tseng and S. Liang. A hybrid metaheuristic for the quadratic assignment
problem. Computational Optimization and Applications, 34(1):85–113, May
2006.

[34] L. Vanneschi, M. Tomassini, P. Collard, and S. Vérel. Negative slope coef-
ficient : A measure to characterize genetic programming fitness landscapes.
In P. C. et al., editor, Proceedings of the 9th European conference on Genetic
Programming, EuroGP 2006, volume 3905 of Lectures Notes in Computer
Science, pages 179–189. Springer-Verlag GmbH, April 2006.

[35] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, Cambridge, UK, 1989.

[36] D. Wolpert and W. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[37] M. Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th International Conference on
Machine Learning, pages 928–936, 2003.

24

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(a) PHC after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(b) PHC after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(c) WoLF after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(d) WoLF after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(e) TERSQ after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(f) TERSQ after 111 executions

 0

 0.25

 0.5

 0.75

 1

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(g) MOS Dynamic after 111 executions

Fig. 1: Participation Progress of hybrid algorithms in the Sphere function

25

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(a) PHC after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(b) PHC after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(c) WoLF after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(d) WoLF after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(e) TERSQ after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(f) TERSQ after 111 executions

 0

 0.25

 0.5

 0.75

 1

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM
UCGM
BCGM

(g) MOS Dynamic after 111 executions

Fig. 2: Participation Progress of hybrid algorithms in the Rastrigin function

26

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(a) PHC after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(b) PHC after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(c) WoLF after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(d) WoLF after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(e) TERSQ after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(f) TERSQ after 111 executions

 0

 0.25

 0.5

 0.75

 1

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(g) MOS Dynamic after 111 executions

Fig. 3: Participation Progress of hybrid algorithms in the Sphere function

27

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(a) PHC after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(b) PHC after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(c) WoLF after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(d) WoLF after 111 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(e) TERSQ after 61 executions

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250 300 350 400 450 500

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(f) TERSQ after 111 executions

 0

 0.25

 0.5

 0.75

 1

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ar

tic
ip

at
io

n

Generation

Participation Adjustment

BCUM
UCUM

(g) MOS Dynamic after 111 executions

Fig. 4: Participation Progress of hybrid algorithms in the Rastrigin function

28

