
Noname manuscript No.
(will be inserted by the editor)

A New Initialization Procedure for the Distributed
Estimation of Distribution Algorithms

Santiago Muelas · José-Maŕıa Peña · Antonio LaTorre · Vı́ctor Robles

the date of receipt and acceptance should be inserted later

Abstract Estimation of Distribution Algorithms
(EDAs) are one of the most promising paradigms in to-
day’s evolutionary computation. In this field there has
been an incipient activity in the so called parallel Es-
timation of Distribution Algorithms (pEDAs). One of
these approaches is the distributed Estimation of Dis-
tribution Algorithms (dEDAs). This paper introduces
a new initialization mechanism for each of the popu-
lations of the islands based on Voronoi cells. In order
to analyze the results, a series of different experiments
using the benchmark suite for the special session on
Real-parameter Optimization of the IEEE CEC 2005
conference has been carried out. The results obtained
suggest that the Voronoi initialization method consid-
erably improves the performance obtained from a tra-
ditional uniform initialization.

Keywords Estimation of Distribution Algorithms ·
Distributed Evolutionary Algorithms · Initialization ·
Continuous Optimization

1 Introduction

There is currently a wide range of optimization tools
to deal with many complex problems in very different
fields, such as engineering, bioinformatics or schedul-
ing. Evolutionary techniques are receiving more and
more attention in these complex optimization scenar-
ios. Their exploratory characteristics play a significant
role in problems with difficult fitness landscapes. On

S. Muelas, J.M. Peña, A. LaTorre and V. Robles
Department of Computer Systems Architecture and Technology

Facultad de Informática

Universidad Politécnica de Madrid, Spain
E-mail: [smuelas,jmpena,atorre,vrobles]@fi.upm.es

the other hand, the use of population-based Evolution-
ary Algorithms (EAs) has the drawback of the number
of evaluations required to guide the search.

Since Evolutionary Algorithms are inherently par-
allel, the so-called Parallel Evolutionary Algorithms
(pEAs) have been studied as an alternative to tackle one
of the aspects of this drawback [1]. A successful example
of Parallel Evolutionary Algorithms is the model called
distributed Evolutionary Algorithms (dEAs) or island
model. In this model, independent nodes execute a lo-
cal EA, exchanging information under given conditions.
The information exchanged provides the mechanism to
enhance the local population with the improvements al-
ready achieved in other nodes (populations). This kind
of EAs seems to improve the numerical and runtime
behavior of the basic algorithm in many cases [2,3].

Estimation of Distribution Algorithms (EDAs) [4,
5], which have become a fruitful new paradigm for popu-
lation-based Evolutionary Computation, have not been
an exception. Parallel Estimation of Distribution Algo-
rithms (pEDAs) have been proposed with a broad range
of possible parallel approaches [6–8].

A relevant aspect in EAs is the initialization of the
starting population. This issue is important to provide
a good supply of initial individuals to start up the
stochastic search. When there is more than one pop-
ulation, the influence of the initial individuals on each
of the subpopulations should also be considered.

This paper proposes a new initialization procedure
based on a topological tool (Voronoi diagrams) to re-
strict the initial search space of the different nodes of
the island model. Within each island, the initialization
method applies the D2 Method [9], an heuristic used
for the maximum diversity problem, for generating a
diverse set of individuals which tries to maximize the
coverage of the solutions space. For analyzing the ef-

2

fects of the proposed mechanism, an experiment with
108 distributed EDA configurations has been conducted
over the benchmark suite of the special session on Real-
Parameter Optimization of the IEEE CEC 2005 con-
ference [10]. The results have been validated using a
statistical non-parametric test.

The rest of the paper is organized as follows: Sec-
tion 2 presents an overview of the parallel evolutionary
and initialization techniques. Section 3 details the pro-
posed technique and the rationale behind it. In Section
4 the experimental scenario is described in detail. Sec-
tion 5 presents and comments on the results obtained
and lists the most relevant facts extracted from this
analysis. Finally, Section 6 contains the concluding re-
marks obtained from this study.

2 Related Work

2.1 Estimation of Distribution Algorithms: EDAs

EDAs are non-deterministic, stochastic heuristic search
strategies that are part of the Evolutionary Compu-
tation paradigm [4,5]. In EDAs, multiple solutions or
individuals are created every generation, evolving suc-
cessively until a satisfactory solution is achieved. In
brief, the characteristic that most differentiates EDAs
from other evolutionary search strategies such as Ge-
netic Algorithms (GAs) is that the evolution from one
generation to the next one is achieved by estimating the
joint probability distribution of a set of individuals fol-
lowed by sampling the induced model. This avoids the
use of crossing and mutation operators, thus reducing
the number of parameters that are required by EDAs.
The general schema of the algorithm is described in
Algorithm 1.

Algorithm 1 EDA schema
Create initial population (popSize individuals) D0

i = 0
repeat

Evaluate population Di

Ds
i = Select N ≤ popSize individuals from Di

Estimate a new model M from Ds
i

D′ = Sample popSize individuals from M

Evaluate D′

Di+1 = Select popSize individuals from Di ∪D′
i = i+ 1

until stop criterion

Graphical models have been commonly used for es-
timating the joint probability distribution. Some au-
thors have proposed Bayesian networks to represent the
probability distribution for discrete domains, whereas

Gaussian networks are usually employed for continuous
domains. Based on the probabilistic model considered,
three main groups of EDAs can be distinguished: uni-
variate models, which assume that variables are margi-
nally independent; bivariate models, which accept de-
pendences between pairs of variables; and multivariate
models, in which there is no limitation on the number of
dependences. In this study, we are going to focus on the
Univariate Marginal Distribution Algorithm for Gaus-
sian Models (UMDAg) [5] because it has usually been
considered as baseline for comparison. Also, as a result
of its simplicity, it is easier to identify and analyze the
benefits coming from the proposal. UMDAg uses the
normal distribution to model the density of each vari-
able. Therefore, the induction of the model is reduced
to the estimation of µ and σ2 of each variable.

2.2 Distributed Estimation of Distribution
Algorithms: dEDAs

In the distributed Evolutionary Algorithm1, the overall
population is distributed over multiple subpopulations
and occasionally allows the migration or exchange of
some individuals among the different islands. There-
fore, each node executes an independent algorithm on
an independent population. An important aspect of the
performance of dEAs is the migration strategy. This is
configured through different parameters [11]: (i) Migra-
tion frequency: How often (in generations) is informa-
tion sent?, (ii) Migration rate: How many individuals
migrate each time?, (iii) Information selection: What
information is selected to migrate?, (iv) Acceptance
policy: How are the incoming information and the local
algorithm state combined? and (v) Migration topology:
Which island sends information to which other?

Close scrutiny of migration parameters [12] has ver-
ified that, even though EAs with small populations risk
being trapped in a local optimum, an appropriate mi-
gration strategy can avoid a suboptimal solution from
dominating all the populations. This appropriate strat-
egy must be adjusted between the limits of a low in-
teraction (which would practically imply the execution
of N independent algorithms) and an excessive interac-
tion (that would lead to the predominance of only one
solution). A correct configuration can help to obtain
better results with fewer evaluations, but configuring
these optimal parameters is not a simple issue [13–15].

1 also known as coarse-grained, multiple-deme or island models

3

2.3 Initialization

The initialization of population-based Evolutionary Al-
gorithms is hardly addressed in the literature [16]. Nev-
ertheless, every expert in the field agrees that a bad ini-
tialization can make evolution to converge prematurely
at suboptimal solutions.

In many cases, the initialization process depends
on the application field if an approximate solution to
the problem is known. In [17], Ramsey concluded that,
initializing the population with members of previously
seen states, accelerated the learning in a changing envi-
ronment. Otherwise, if the individuals of the population
can be built through certain heuristic techniques, these
could be a good starting point to reach the optimum
[18]. However, this strategy has general drawbacks: (i) it
completely depends on the field of application and (ii) it
may involve biasing the search process towards certain
kinds of solutions (possibly others than the optimal
ones). Another approach is to use other metaheuristic
algorithms (with different fitness functions) for initial-
izing the population [19]. In [20] it was proposed to
develop the initial population with a good randomized
heuristic. In [21], this recommendation was followed by
using the construction phase of a GRASP algorithm as
the initial population of a Genetic Algorithm.

Island models are especially sensitive to initializa-
tion, not only for the aforementioned reasons, but also
because of the possible mutual dependence between the
different populations of the islands. There is very little
literature on this topic and, therefore, this is one of the
aspects to be studied in depth.

3 Contribution

In this paper, a new initialization mechanism for dEDAs
is presented. The main idea of this procedure is to use a
Voronoi tessellation [22] to define a partition set of the
solution space in which each island or node will start
its own exploration. The proposal applies several steps
as presented in Figure 1.

In order to create the tesselation, a set of reference
points (ri) need to be created and assigned to each of
the n islands. The initial population of island i will
be a set of diverse points in the solution space which
are closer to the i-th reference point than to any other
reference point.

In order to avoid the generation of small partitions,
we have applied two methods for selecting a good set of
diverse reference points. The first method uses a con-
trolled randomization and frequency memory procedure
for generating a set S = {s1, s2, . . . , sN}, N > n of ini-
tial diverse individuals. This method is influenced by

the work in [23] for a Scatter Search algorithm. The
procedure starts with the division of the range of each
dimension into sr subranges of equal size. Then, for
each generated individual, a subrange for each dimen-
sion is selected based on the inverse probability value
of the frequency count associated with the sub-range.
Finally, a value is uniformly generated within the se-
lected interval and the frequency count associated to
the subrange is incremented.

The second method takes the set ofN points and ex-
tracts the N−n individuals with the minimum distance
between any pair of points. This procedure is based on
the D2 Method presented in [9] for the maximum di-
versity problem. This method was chosen because it
provides a good balance between the diversity of the
individuals and the speed of computation. The general
schema of the algorithm is described in Algorithm 2.

Algorithm 2 D2 Method
Sel = S

while |Sel| > n do
s∗i = argminsi∈Sel{d(si, Sel)}
Sel = Sel− {s∗i }

end while

The distance between an individual si and a setX =
{sj : j ∈ I} is defined as follows:

d(si, X) = min{d(si, sj)/sj ∈ X}

For our experiments with continuous problems, the
Euclidean distance has been considered between every
pair of individuals.

Once the reference points are created, the next ac-
tion to execute is the generation of the population of
each island. For this task, two steps are applied one af-
ter another. First, k ∗ popSize individuals are created
and distributed uniformly among the islands, i.e, each
island is assigned k ∗ popSize/n individuals. Each new
individual is assigned to the island which distance to
its reference point is minimum. This procedure is de-
scribed by the pseudocode of Algorithm 3. Then the
D2 Method is applied to each set of individuals so that
the final island set contains the most diverse popSize/n
solutions.

For the purpose of clarifying the effects of the proce-
dure, a simple example is provided. Figure 2 details the
results of initializing a 2 dimensional function with the
new method and with the traditional uniform approach.
The cell lines in the new method diagram delimit the
individuals that would be assigned to each island.

4

Fig. 1: Initialization Procedure

Appy the D2 Method to
select the n most diverse

individuals

Create N individuals
based on the Controlled
randomization and freq.

memory procedure

Set each individual as an
island reference point

Using Algorithm 3
generate k * popSize / n

individuals per island

Apply the D2 Method to
select the popSize / n

most diverse individuals
per island

Fig. 2: Initialization Comparison

(a) Voronoi Initialization (b) Random Uniform Initialization

Table 1: Parameters chosen for the experiments

Population Size: 64, 100 and 200 individuals per island
(i.e 512, 800 and 1600 of global population). For the proposed method,
k has been fixed to 10.

Offspring size: Equal to the population size

Selected individuals for learning: 100% of the population size

Learning Model: UMDAg

N# islands: 8

Migration ratio: 1, 4 and 8 individuals
Migration period: Migrate every 10, 20 or 40 generations
Acceptance Criterion: Select the best individuals between the immigrants and the resident population

Topology: Ring and Hypercube

Selected emigrants: best and random policies
Full Elitism: Best individuals from the parent and the offspring populations

Algorithm 3 Population initialization
for i = 0 to n do

Populationi = ∅
end for
while |

Si=n
i=0 Populationi| < k ∗ PopSize do

newindividual = GenerateARandomIndividual
Let i∗ / d(newindividual, si∗) = d(newindividual, S)

if |Populationi∗ | < k ∗ PopSize/n then

Populationi∗ = Populationi∗ ∪ newindividual
end if

end while

Rationale: Our approach carries out a systematic
initialization procedure following two criteria: (i) ho-
mogeneous coverage of the whole solution space, (ii) no
overlap of the solution space explored by each island.

4 Experimental Scenario

In order to carry out the experimental validation, we
have selected the benchmark suite of the special ses-
sion on Real-Parameter Optimization of the IEEE CEC

5

Table 2: #N of configurations in 10D with significant differences

f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

Voronoi � Uniform 4 11 3 2 0 9 0 0 0 1

Uniform � Voronoi 0 0 0 6 2 1 30 0 6 3

f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 Sum

Voronoi � Uniform 1 1 63 59 57 59 18 62 83 31 464
Uniform � Voronoi 15 12 0 0 0 1 0 0 0 0 76

Note: A�B represent that the results of A were statistically better than those of B.

Table 3: #N of configurations in 30D with significant differences

f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

Voronoi � Uniform 2 14 1 2 0 0 0 2 1 0
Uniform � Voronoi 1 0 1 4 2 0 0 0 0 11

f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 Sum

Voronoi � Uniform 1 0 13 21 20 0 5 1 0 29 112

Uniform � Voronoi 3 3 0 0 0 0 0 3 0 0 28

Note: A�B represent that the results of A were statistically better than those of B.

2005 conference. This is a standard test that has been
extensively used in recent years for analyzing algorithms
on a continuous domain. The benchmark contains 25
generic test problems. Most of these functions are vari-
ations of well-known test functions through rotation,
shifting and hybridization. Since all the participants of
the special session solved the first 5 functions, functions
f1-f5 have not been considered for the experiments. Fur-
thermore, the 50 dimensional functions have not been
considered since several algorithms of the session did
not execute them and were also not considered for the
comparison analysis of the original session. For each
function, 25 independent executions were carried out
for both 10 and 30 dimensions having a fixed number
of fitness evaluations of 105 and 3 ·105 respectively. The
performance criterion is the distance (error) between
the best individual found and the global optimum in
terms of fitness value.

With the purpose of analyzing the influence of the
proposed strategy, 108 dEDA configurations from the
values displayed on Table 1 were executed with both
Voronoi and uniform initializations. A set of sequential
EDA UMDAg algorithms with the same global and is-
land populations (64, 100, 200, 512,800 and 1600) were
also executed.

The number of islands was fixed to 8. The proposed
procedure obtains better results with a high number of
islands but, because of the maximum number of evalu-
ations of the benchmark, a higher number would imply
a reduced number of individuals per island (not appro-
priate for EDAs) or a considerably reduced number of
iterations. Therefore, the selected number offers a good

trade-off between the number of islands and the number
of iterations.

5 Analyzing the Results

As mentioned in the previous section, 108 uniformly
initialized configurations were compared against their
equivalent Voronoi configurations. For each problem,
each pair of uniform and Voronoi configurations were
compared with a non-parametric Wilcoxon rank-sum
test with a significance level of α = 0.01. Tables 2 and
3 present the number of comparisons per function in
which the results were statistically significant as well as
the aggregated number for all the functions. It can be
seen that Voronoi configurations clearly obtain a higher
number of significant results than their uniform coun-
terparts, this number being higher with the 10 dimen-
sional functions and with the hardest 8 functions of the
benchmark (18-25). Since the number of partitions is
the same for both the 10 and the 30 dimensional func-
tions, each island is less affected by the local optima
in the 10 dimensional scenario and therefore obtains
better results.

A global comparison of the best configurations of
both types of initializations per population size and
the sequential EDAs was also carried out. The crite-
rion used for selecting the best configurations was: for
each population size, select the configuration with the
minimum sum of average errors over all the functions
in both 10 and 30 dimensions. Similarly to the analy-
sis used in the CEC’05 special session, each algorithm
was ranked at each function according to its average

6

error. Although the objective of this study was not
to tune an EDA algorithm to obtain the best results
in the benchmark, the best algorithm from the spe-
cial session, G-CMA-ES, has also been included in the
analyses. Table 4 presents the average ranking of all
the algorithms. Here, Voronoi configurations also obtain
better results than their equivalent uniform ones being
the Voronoi configuration of 512 individuals the best
EDA algorithm. For the purpose of determining the
significance of these results, a non-parametric paired
Wilcoxon rank-sum test was applied. Table 5 shows the
p − values of the comparisons of the best EDA con-
figuration (Voronoi with 512 individuals) against the
rest of the algorithms. It can be observed that the best
Voronoi configuration is α = 0.01 significantly better in
each comparison to the rest of the EDAs algorithms in
both 10 and 30 dimensions except against the uniform
initialized configuration of 512 individuals in 30 dimen-
sions and the Voronoi configuration of 800 individuals.

Table 4: Average ranking of the best algorithms

algorithm 10D algorithm 30D

G-CMA-ES 1.75 vorodeda512 3.075

vorodeda512 2.8 unifdeda512 3.15

unifdeda512 4.72 G-CMA-ES 3.85
vorodeda800 5.3 vorodeda800 4.57

unifdeda800 6.72 unifdeda800 5.82

vorodeda1600 7.1 vorodeda1600 7.22
eda64 7.1 unifdeda1600 7.52

eda512 7.57 eda128 7.87

eda128 7.8 eda800 7.87
unifdeda1600 8.32 eda512 8.02

eda800 8.42 eda1600 9.3
eda1600 10.3 eda64 9.7

Table 5: p− values of the comparisons of the best con-
figurations

vorodeda512 VS 10D 30D

unifdeda512 1.3065E-04
√

2.1046E-01 ×
vorodeda800 2.6585E-02 × 4.1275E-02 ×
unifdeda800 1.8120E-05

√
5.0831E-04

√

vorodeda1600 2.4300E-03
√

3.1243E-04
√

unifdeda1600 9.5367E-07
√

1.4628E-04
√

eda64 6.0396E-03
√

1.9073E-06
√

eda128 6.6757E-05
√

9.5367E-06
√

eda512 4.7684E-06
√

1.3351E-05
√

eda800 9.5367E-07
√

1.3351E-05
√

eda1600 9.5367E-07
√

2.8610E-06
√

G-CMA-ES 9.9953E-01 × 5.7959E-01 ×

√
represents that the p-value is α = 0.01 significant

× represents that the p-value is not significant

It can also be seen that this configuration is clearly
superior to any of the sequential EDAs executed. Also,
it can be observed that the dEDA configurations with
the fewer number of individuals tend to obtain better
results. This is partially due to the constraint in the
maximum number of fitness evaluations imposed by the
benchmark, which allows them to execute for more iter-
ations. Finally, when analyzing the comparison against
a specially tuned algorithm for the session, the G-CMA-
ES algorithm, it can be seen that although the G-CMA-
ES is significantly better than the best dEDA configu-
ration in 10 dimensions (p−value = 0.005), with the 30
dimensional functions, the G-CMA-ES has worse rank
and its results are not significantly better.

Figure 3 shows the evolution of the average score
for the 10 dimensional f20 function2. The evolution of
the score of the algorithms on the next generations is
almost the same for both methods but the influence of
the first generations clearly increases the performance
of the Voronoi configurations.

Finally, an analysis of the influence of the initializa-
tion in the migration schemes was also carried out. For
this task, the total number of individuals that are ex-
changed throughout the evolution for each distributed
configuration was measured, i.e.:

#iterations
Migrationperiod

×Migrationrate × Topologydegree (1)

Table 6 presents the average of this number for the
ten distributed configurations with the minimum aver-
age error for all the functions. This number represents
the total number of individuals that are exchanged along
the execution. For obtaining the number of individuals
that were actually accepted on each island, the accep-
tance criterion needs to be taken into account and av-
eraged through all the executions. In general, Voronoi
configurations need to exchange fewer individuals than
the uniform configurations. This effect is much clearer
for the 10 dimensional functions and with bigger pop-
ulation sizes (which, because of the benchmark con-
straints, have also a smaller number of iterations). It
seems that, in order to obtain the best results, the
Voronoi initialized islands need less interaction with
their neighboring islands so they can intensify the ex-
ploration on their isolated region (in particular, in their
earlier iterations).

6 Conclusions

This paper presents a new initialization method for
the Distributed Estimation of Distribution Algorithms.

2 The evolution of the average scores in most of the other func-

tions follows a similar pattern

7

Fig. 3: Evolution of the average score for the f20 function

voro512
voro800voro1600

unif1600

seq1600

unif800

seq800

unif512

seq512 seq256
seq64

seq128

Table 6: Number of individuals exchanged between the best configurations

10D 30D

Popsize Voronoi Uniform Voronoi Uniform

512 331.05 480.47 244.14 295.44
800 288.75 405 180 213.75

1600 60.94 168.75 64.49 63.48

The proposed initialization is based on Voronoi cells
which isolate the initial search space of each island and
uses a heuristic method for uniformly covering each
region of the search space. Several parameter values
have been tested on the standard CEC’05 continuous
benchmark suite. In order to analyze the results, non-
parametrical tests were applied. The obtained results
show that the best overall performance is obtained with
Voronoi configurations and that, in general, the Voronoi
configurations tend to improve the results of the tradi-
tional initialization method. The partition of the search
space reduces the modality of the constrained regions
and offers the possibility, at least in the earliest gener-
ations, to emphasize the search in the starting regions.
Thus, the search for the optimal solutions is more effec-
tive. The analysis also discovered that the best Voronoi
configurations need less interaction between the islands

than the best uniform configuration. With a greater
exchange of individuals, the beneficial properties of the
proposed initialization get diluted. The Voronoi config-
urations also outperformed their equivalent population-
sized (both global and island population sizes) sequen-
tial EDAs. This approach has been proposed for EDAs
since they are more influentiated by the initial pop-
ulation than other evolutionary algorithms with more
explorative mechanisms. However, this procedure could
also improve the performance of other evolutionary al-
gorithms by reaching a higher score or helping them to
improve their convergence speed.

7 Acknowledgments

This work was supported by the Madrid Regional Ed-
ucation Ministry and the European Social Fund and

8

financed by the Spanish Ministry of Science TIN2007-
67148. The authors thankfully acknowledge the com-
puter resources, technical expertise and assistance pro-
vided by the Centro de Supercomputación y Visual-
ización de Madrid (CeSViMa) and the Spanish Super-
computing Network. We would also like to thank the
reviewers for their suggestions.

References

1. E. Alba, Parallel evolutionary algorithms can achieve super-

linear performance, Information Processing Letters 82 (1)
(2002) 7–13.

2. E. Alba, J. M. Troya, Improving flexibility and efficiency by

adding parallelism to genetic algorithms, Statistics and Com-

puting 12 (2) (2002) 91–114.
3. J. L. Risco-Mart́ın, D. Atienza, J. Hidalgo, J. Lanchares,

A parallel evolutionary algorithm to optimize dynamic data

types in embedded systems, Soft Computing - A Fusion of

Foundations, Methodologies and Applications 12 (12) (2008)
1157–1167.

4. H. Mühlenbein, G. Paass, From recombination of genes to the

estimation of distributions i. binary parameters, in: PPSN

IV: Proceedings of the 4th International Conference on Par-
allel Problem Solving from Nature, 1996, pp. 178–187.

5. P. Larrañaga, J. Lozano, Estimation of Distribution Algo-

rithms. A New Tool for Evolutionary Computation, Kluwer

Academic Publisher, 2002.
6. J. Ocenasek, Parallel estimation of distribution algorithms,

Ph.D. thesis, Brno University of Technology (2001).
7. E. Bengoetxea, Inexact graph matching using estimation

of distribution algorithms, Ph.D. thesis, École Nationale

Supérieure des Télécommunications, Paris, France (2002).
8. L. delaOssa, J. Gamez, J. Puerta, Migration of probability

models instead of individuals: An alternative when apply-
ing the island model to EDAs, Lecture Notes in Computer

Science 3242 (2004) 242–252.
9. F. Glover, C. C. Kuo, K. S. Dhir, Heuristic algorithm for

the maximum diversity problem, Journal of Information and
Optimization Sciences 1 (19) (1998) 109–132.

10. P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen,
A. Auger, S. Tiwari, Problem definitions and evaluation cri-

teria for the special session on real parameter optimization,
Tech. rep., Nanyang Technological University (2005).

11. E. Cantú-Paz, Efficient and accurate parallel genetic algo-
rithms, Kluwer Academic Publishers, 2001.

12. C. Petty, M. Leuze, A theoretical investigation of a parallel

genetic algorithm, in: Proceedings of the 3rd Int. Conf. on

Genetic algorithms, 1989, pp. 398–405.
13. D. Whitley, S. Rana, R. Heckendorn, The island model ge-

netic algorithm: On separability, population size and conver-
gence, Journal of Computing and Information Technology 7

(1999) 33–47.
14. E. Alba, J. M. Troya, Influence of the migration policy in

parallel distributed GAs with structured and panmictic pop-

ulations, Applied Intelligence 12 (3) (2000) 163–181.
15. S. Muelas, J. M. Peña, V. Robles, A. LaTorre, P. de Miguel,

Machine learning to analyze migration parameters in paral-
lel genetic algorithms, in: Innovations in Hybrid Intelligent
Systems, Vol. 44 of Advances in Soft Computing, 2007, pp.

199–206.
16. L. Kallel, M. Schoenauer, Alternative random initialization

in genetic algorithms, in: Proceedings of the 7th International

Conference on Genetic Algorithms, 1997, pp. 268–275.

17. C. Ramsey, J. Grefenstette, Case-based initialization of ge-
netic algorithms, in: Proceedings of the 5th International

Conference on Genetic Algorithms, 1993, pp. 84–91.

18. J. Schwarz, J. Očenášek, A problem knowledge-based evo-
lutionary algorithm KBOA for hypergraph bisectioning, in:

Proceedings of the 4th Joint Conference on Knowledge-Based

Software Engineering, IOS Press, 2000, pp. 51–58.
19. H. de Garis, Genetic programming: Artificial nervous sys-

tems, artificial embryos and embryological electronics, in:

PPSN I: Proceedings of the 1st Workshop on Parallel Prob-
lem Solving from Nature, 1991, pp. 117–123.

20. R. K. Ahuja, J. B. Orlin, Developing fitter genetic algo-
rithms, INFORMS Journal on Computing 9 (3) (1997) 251–

253.

21. R. K. Ahuja, J. B. Orlin, A. Tiwari, A greedy genetic algo-
rithm for the quadratic assignment problem, Computers and

Operations Research 27 (10) (2000) 917–934.

22. F. Aurenhammer, Voronoi diagrams, a survey of a geometric
data structure, ACM Comput. Surv. 23 (1991) 345–405.

23. A. Duarte, R. Mart́ı, F. Glover, Adaptive memory program-

ming for global optimization, in: VI Congreso Español so-
bre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados

(MAEB’09), 2009, pp. 473–481.

