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does the exchanged information influence the
One of the most promising areas in which probabilistic graphical models have shown an
incipient activity is the field of heuristic optimization and, in particular, in Estimation of
Distribution Algorithms. Due to their inherent parallelism, different research lines have
been studied trying to improve Estimation of Distribution Algorithms from the point of
view of execution time and/or accuracy. Among these proposals, we focus on the so-called
distributed or island-based models. This approach defines several islands (algorithms
instances) running independently and exchanging information with a given frequency.
The information sent by the islands can be either a set of individuals or a probabilistic
model. This paper presents a comparative study for a distributed univariate Estimation
of Distribution Algorithm and a multivariate version, paying special attention to the com-
parison of two alternative methods for exchanging information, over a wide set of param-
eters and problems – the standard benchmark developed for the IEEE Workshop on
Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of
the ISDA 2009 Conference. Several analyses from different points of view have been con-
ducted to analyze both the influence of the parameters and the relationships between them
including a characterization of the configurations according to their behavior on the pro-
posed benchmark.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Estimation of Distribution Algorithms (EDAs) are a set of techniques that belong to the field of Evolutionary Computation.
Since they were introduced in the 90s [32,43], the research community has put a lot of effort in their development, providing
powerful algorithms which have been successfully applied to both artificial and real-world problems. In general terms, EDAs
are similar to Genetic Algorithms (GAs), but their main characteristic is the use of probabilistic models to extract information
from the most promising individuals of the current population (instead of using crossover or mutation operators) in order to
create a new and presumably better population. The complexity of the different EDAs approaches is usually related to the
probabilistic model used, and the ability of that model to identify and represent the (in) dependencies among the variables.
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Detailed information about the main characteristics of EDAs, as well as the different algorithms that belong to this family can
be found in [25,27,35,36].

The main drawback of the most complex EDAs – those that try to consider all the possible (in) dependencies among the
variables – is their high computational cost. Due to this, and thanks to the modularity of EDAs, several parallel approaches
have been proposed. These proposals can be divided into two groups:

� Direct parallelization or parallel EDAs (pEDAs): Those whose behavior is exactly the same of the corresponding sequential
version. Their main goal is the reduction of the execution time by the parallelization of the computation of the fitness
function or the construction of the graphical models [27,29,38].
� Island-based approach or distributed EDAs (dEDAs): Those that create different subpopulations and exchange informa-

tion among them, trying to improve the quality of the solutions of the sequential algorithm.

In this work, we pay attention to the second approach. In this scheme, an EDA instance is executed in each island, and
some information is exchanged among the islands during the execution. This information can be made up of individuals
(as done in other EAs), or probabilistic models (following the rationale that EDAs use them to extract and gather information
about the population). Migration of individuals is a classic approach and has proven to obtain successful results in these and
other Evolutionary Algorithms [2,4,9,28]. In addition, migration of models was explicitly developed for the distributed Esti-
mation of Distribution Algorithms [1,11,12,19,20].

Until now, most of the previous work in dEDAs has been conducted in the discrete domain, and little research has been
done in comparing both migration methods (individuals versus models). In particular, in continuous optimization, as far as
the authors are aware, only two studies have been carried out [10,11]. Although these papers concluded that the migration of
models obtains significantly better results than the migration of individuals, the experimental scenario was restricted to (a) a
limited number of problems with small dimensions and (b) a small number of parameters. In this paper, a thorough study
has been conducted to analyze the behavior of the distributed approaches in the context of EDAs. This study has demon-
strated that the statement of the previous studies is not correct, at least not in the field of continuous optimization, using,
for this task, a standard benchmark, formal methods for conducting the analysis of the influence of the parameters, and val-
idating the results with formal statistical procedures. Briefly, the precise objectives pursued in this work are the following:

� Conduct an extensive study of different distributed EDAs configurations over several functions and dimensions.
� Identify the parameters that have a greater influence on the final behavior and the relationships between them.
� Analyze the relationship of the parameter values of both the best and the worst configurations.
� Compare the performance of the distributed configurations against their equivalent sequential configurations.
� Compare the performance of both methods for exchanging information: individuals vs models.
� Characterize the distributed configurations according to their behavior on the proposed benchmark.

The rest of the paper is organized as follows: Section 2 presents an overview of the previous studies on EDAs and dEDAs.
Section 3 describes the proposed experimental scenario. Section 4 presents and comments the results obtained and lists the
most relevant facts extracted from this analysis. Finally, Section 5 contains the concluding remarks derived from this study.
2. Preliminaries

In this section the main characteristics of EDAs and dEDAs are briefly reviewed.
2.1. Estimation of Distribution Algorithms: EDAs

EDAs are stochastic heuristic search strategies that are part of the Evolutionary Computation paradigm. In EDAs, multiple
solutions or individuals are created at every generation, evolving successively until a satisfactory solution is achieved. In
brief, the characteristic that clearly differentiates EDAs from other evolutionary search strategies, such as GAs, is that the
evolution from one generation to the next is achieved by estimating the probability distribution of a set of individuals, sam-
pling later the induced model. This avoids the use of crossing or mutation operators, and the number of parameters required
by EDAs is considerably reduced. Based on the probabilistic model considered, three main groups of EDAs can be distin-
guished: univariate models, which assume that variables are marginally independent; bivariate models, which accept
dependencies between pairs of variables; and multivariate models, in which there is no assumption about independences.

The univariate model is the simplest model, in which independence among variables is assumed. Therefore, the joint
probability distribution is defined as the product of the marginal probability of each variable. The main advantage of this
model is its low computational cost, although the assumption of independence among all the variables could lead to a very
simplistic approach for some problems. Some representative algorithms of this model are: the Population-Based Incremental
Learning algorithm (PBIL) [5], the compact Genetic Algorithm (cGA) [18] and the most extended heuristic within this model,
the Univariate Marginal Distribution Algorithm UMDA [26,31] and its continuous version, the Univariate Marginal Distribu-
tion Algorithm for Gaussian Models (UMDAg) [21,23].
Please cite this article in press as: S. Muelas et al., Distributed Estimation of Distribution Algorithms for continuous optimization: How
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A slightly more sophisticated approach than the previous model is to consider the dependencies existing between two
variables (pairwise or bivariate dependencies). This implies a good trade-off in terms of complexity and efficiency as, at most,
one variable may depend on another one. To construct such graphical models, greedy approaches which add arcs to an ini-
tially disconnected graph are normally used. Some of the most frequently used heuristics within this model are MIMIC [7],
COMIT [6] and BMDA [34]. All these approaches are available in both discrete and continuous versions.

The multivariate models are more flexible models since they do not constrain the number of dependencies among the
variables. Their main disadvantage is that the computational cost of learning and sampling such models can be considerably
high. An additional drawback is that, in order to construct an accurate model, the required population size should be bigger
than for simpler models. Some examples of heuristics in the discrete case are EBNA [22] and BOA [33]. In the continuous
case, most representative heuristics are EMNAglobal and EGNA [25].

For this work we have focused on two of the EDAs that have been more extensively used on continuous optimization: the
univariate UMDAg and the more complex multivariate EMNAglobal. No bivariate model has been included in this study since
these two models have been the preferred choice in previous studies, the selected multivariate model can represent the same
type of interactions than the bivariate approach and also with the aim of investing more effort in conducting a more exten-
sive study in these two learning models instead of reducing the parameter values to include a third model.

2.2. UMDAg

UMDAg assumes that the joint density function follows a n-dimensional normal distribution, which is factorized by a
product of one-dimensional and independent normal densities. In every generation and for every variable, the UMDAg carries
out some statistical tests in order to find the density function that best fits the sampling of that variable. UMDAg is a structure
identification algorithm because the density components of the model to be learnt are identified via hypothesis tests. This
estimation of parameters is carried out, after the densities are identified, by their maximum likelihood estimates. If all the
univariate distributions are normal, then the two parameters to be estimated at each generation and for each variable are the
mean, ll

i, and the standard deviation, rl
i. It is well known that their respective maximum likelihood estimates are:
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2.3. EMNAglobal

The Estimation of Multivariate Normal Algorithm (EMNA) is an approach based on the estimation of a multivariate nor-
mal density function. At each generation, the vector of means l = (l1, . . . ,ln) and the variance–covariance matrix R whose

elements are denoted by r2
i;j with i, j = 1, . . . ,n, are estimated. Therefore, it requires the estimation of 2nþ n� 1

2

� �
param-

eters at each generation: n means, n variances and n� 1
2

� �
covariances. This can be done efficiently in a single pass through

the population.
By its definition, the covariance matrix is always positive semi-definite but, because of the numerical errors caused by the

finite precision of computers, sometimes the covariance matrix contains negative values. The problem with an ill-posed
covariance matrix is that the sampling of new individuals becomes impossible. There are several solutions to repair the
covariance matrix [13]. In this work, the most efficient method, the ECMR0 technique, has been selected for repairing the
covariance matrix.

2.4. Distributed Estimation of Distribution Algorithms: dEDAs

In the distributed Evolutionary Algorithms (dEAs),1 the whole population is distributed over multiple subpopulations and
occasionally allows the migration or exchange of some individuals among the different islands. Therefore, each node executes
an independent algorithm on an independent population. An important aspect of the performance of dEAs is the migration
strategy. This is configured through different parameters [8]:

� Migration frequency: How often (number of generations) is information sent?
� Migration rate: How many individuals migrate each time?
� Information selection: What kind of information is exchanged?
known as coarse-grained, multiple-deme or island models.
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� Acceptance policy: How are the incoming and the local information combined?
� Migration topology: Which island sends information to which other?

Close scrutiny of migration parameters [37] has proved that, even though EAs with small populations risk being trapped
in a local optimum, an appropriate migration strategy can avoid a suboptimal solution from dominating all the populations.
A correct configuration can help to obtain better results with fewer evaluations, but configuring these optimal parameters is
not a simple issue [3,30,42]. This appropriate strategy must be adjusted between the limits of a low interaction (which would
practically imply the execution of N independent algorithms) and an excessive interaction (that would lead to the predom-
inance of only one solution).

Regarding the information exchanged among islands, two possible alternatives are available: (i) the straightforward ap-
proach of selecting a pull of individuals that will be later sent to the consignees and (ii) the alternative of using the main
characteristic of EDAs: the probabilistic models. These probabilistic models will be (or should be) able to represent the
(in) dependencies among the variables, and, therefore, comprise more information than a group of individuals. This second
approach opens a new challenge: how should the different probabilistic models be combined? In general, the combination of
the resident model with the immigrant one can be formalized by the following rule [19]:
Please
does t
M0
R ¼ bMR � ð1� bÞMI ð3Þ
where � represents the combination operator of two probabilistic models and b represents the influence of the immigrant
model MI on the resident model MR and varies in the range [0,1]. An extended version of this formula for n immigrant models
would be:
M0
R ¼ bI0MR � bI1MI1 � bI2MI2 � � � � � bInMInX
i

bIi ¼ 1 ð4Þ
A general approach for carrying out this combination is to apply a mixture model M ¼
P

ibiMi as a linear combination of
simple distributions, where the bi’s satisfy that

P
ibi ¼ 1 [11]. In this case, the population from the mixture model is created

by sampling the individuals from each of the involved models. The bi value defines the probability for selecting each model
for the sampling of each new individual. This way, the models with higher b values, would have a higher probability of pro-
ducing more individuals of the new population and would have more influence on the next inferred model.

The previous approach has the advantage of not depending on the inner details of the model and, therefore, can be applied
to probabilistic models of different nature. A different strategy is to use a specific operator that takes into account the structure
of the models to combine them appropriately. This method has the disadvantage that, with complex models, the combination
is not trivial and, in some cases, can be very inefficient [20]. In the simple UMDAg models, a straightforward and efficient ap-
proach that can be carried out, named UMDAg combination method, is to combine the means and variances vector, i.e.:
l0R ¼
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For this work we have introduced a new combination model called uniform combination for UMDAg. In this method, in-
stead of combining the models, each model component (mean and variance) is selected from a single model of the whole
set of models. Each model has a probability bi of being selected for each of the components of the new model. Therefore,
the best models would contribute to more components than the worst ones. This approach is similar to the mixture model
in the sense that each model is selected according to the b value. However, for this approach, the selected model is applied to
a subset of dimensions for all the new individuals, whereas in the mixture case, the selected model was applied to all the
dimensions of a single individual.

In order to compute the value of b, the strategy that has been followed in previous studies [10,20] is the so-called adap-
tative learning strategy. This method computes the b values based on the quality of the population associated to each model.

For n immigrants, the b value is defined as:
bR ¼
FR

FR þ
Pn

j FIj

; bIi
¼ FIi

FR þ
Pn

j FIj

ð6Þ
where FR represents the mean fitness value of the resident subpopulation and FIi
represents the mean fitness value of the i-th

immigrant subpopulation. A conservative policy is also followed and only those models with a population of better quality
than the resident model are considered for the computation. Therefore, if all the immigrants models have worse quality than
the resident model, no combination is carried out.

3. Experimentation

For the experimentation, the benchmark from the workshop on Evolutionary Algorithms and other Metaheuristics for
Continuous Optimization Problems – A Scalability Test held at the ISDA 2009 Conference has been considered. This benchmark
cite this article in press as: S. Muelas et al., Distributed Estimation of Distribution Algorithms for continuous optimization: How
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Table 2
Parameters values.

Common parameter values
Problem size 50, 100 and 200
Population size 512, 1024 and 2048
Learning model UMDAg and EMNAglobal

Selected Inds. for learning Best 50% of the population
# Islands 8 and 16
Topology ring2 and all-to-all (a2a)
Migration period Migrate every 10, 20 and 40 generations
Acceptance policy Best individuals from resident and immigrants populations

Particular parameter values
Inds. migration rate 10% and 20%
Inds. emigrants selection Best or random individuals
Models combination Mixture, UMDA combination and UMDA uniform

Table 1
Benchmark functions.

Id Name

f1 Shifted sphere function
f2 Shifted Schwefel’s problem 2.21
f3 Shifted Rosenbrock’s function
f4 Shifted Rastrigin’s function
f5 Shifted Griewank’s function
f6 Shifted Ackley’s function
f7 Schwefel’s problem 2.22
f8 Schwefel’s problem 1.2
f9 Extended f10

f10 Bohachevsky
f11 Schaffer
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defines 11 continuous optimization functions. The first 6 functions were originally proposed for the ‘‘Special Session and Com-
petition on Large Scale Global Optimization’’ held at the CEC 2008 Congress [41]. The other 5 functions have been specially
proposed for the Workshop of the ISDA 2009 Conference. These functions, presented in Table 1, have different degrees of
difficulty and can scale to any dimension. Detailed information about the selected benchmark can be found at the web page
of the organizers of the workshop.2

In order to analyze the effects of the migration strategies, several island configurations instances were compared against
each other. The selection of the parameter values, such as the learning model, was based on the values used in previous stud-
ies with dEDAs [12,20] and was extended with additional values to obtain a wider view. Table 2 shows the different param-
eter values used throughout the experiments.

For the experimentation a full factorial design was chosen in order to conduct a complete study on the effect of each
parameter on the response variable, as well as the effects of interactions between the parameters. Therefore, all possible
combinations of the values across all the parameters were considered. This design has the disadvantage that it requires a
higher number of runs but, in contrast, it can identify all the possible interactions between the parameters.

In order to make the results comparable with other algorithms, we have strictly followed the conditions imposed by the
benchmark. Therefore, for each combination, 25 independent executions were carried out. The stopping criterion, as defined
in the benchmark, was a fixed number of fitness evaluations (5000 times the dimension of the problem). The performance
criterion (i.e. the response variable) is the distance (error) between the best individual found and the global optimum in
terms of fitness value. Sequential versions of both the UMDAg and EMNAglobal algorithms were also executed with different
population sizes (64, 128, 256, 512, 1024 and 2048) in order to have a baseline comparison.

4. Analysis of the results

For accomplishing the objectives proposed at Section 1, several analyses have been conducted from different perspectives.

4.1. Overall analysis

In order to conduct this study, a standard global measure was obtained for each configuration. First, the configurations
were ranked on each function according to the procedure defined in the Friedman test. This way, the results on each function
are defined in the same scale and can be averaged for obtaining the global rank measure.
2 http://sci2s.ugr.es/programacion/workshop/Scalability.html.
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The first approach that was considered was to use the Analysis of Variance (ANOVA) technique for analyzing the inter-
actions between the parameters. ANOVA was developed by R.A. Fisher and has been applied to a vast array of different do-
mains for data analysis. However, despite its widespread use, some key assumptions must be checked before applying
ANOVA to the experimentation data: (i) the distributions of the residuals must follow a normal distribution and (ii) the var-
iance of data in groups should be the same (equality of variances or homoscedasticity). For checking the first assumption, the
Anderson–Darling, Shapiro–Wilk and Kolmogorov–Smirnov tests were carried out for each dimension of the global results
obtaining for all tests a p-value < 0.05 and therefore rejecting the null hypothesis that the distributions of the residuals come
from a normal distribution. The homocedasticity property was checked with both the Bartlett’s and the Levene’s tests obtain-
ing a p-value less than 1e�4 and therefore rejecting the assumption of homocedasticity on the results.

Due to these results, the Taguchi method [40] was selected as an alternative procedure for conducting the overall analysis.
In this method, the concept of signal to noise ratio (SN ratio) is introduced for measuring the sensitivity of the quality char-
acteristic being investigated in a controlled manner to those external influencing factors (noise factors) not under control.
The aim of the experiment is to determine the highest possible SN ratio for the results since a high value of SN ratio implies
that the signal is much higher than the random effects of the noise factors. From the quality point of view, there are three
possible categories of quality characteristics: (i) smaller is better, (ii) nominal is best and (iii) bigger is better. The obtained
results fall in the ‘‘smaller is better category’’ since the objective is to reduce the error between the best solution found and
the global optimum. For this category, the SN ratio estimate is defined in Eq. 7 where n denotes the total number of instances
and y1,y2, . . . ,yn the target values (the error to the best solution in this case).
Please
does t
SN ¼ �10 log
1
n

Xn
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 !
ð7Þ
Figs. 1–3 display the main effects plot for the SN ratio results obtained for 50, 100 and 200 dimensions respectively. A main
effect plot is a plot of the mean response values (the SN ratio for these graphs) at each level of a design parameter. This plot
can be used to compare the strength of the effects of the values of the parameter. From these results it can be observed that
the most important parameter for characterizing the performance is the type of algorithm, having obtained the UMDAg mod-
el better SN values than the EMNAglobal approach. There are two main reasons that could explain this behavior: most of the
functions (7 out of 11), although not linearly separable, can be easily optimized dimension by dimension, being the UMDAg

algorithm more suitable for this kind of functions since it does not manage any kind of interaction in its model. Second, the
EMNAglobal algorithm needs to have a considerable amount of individuals to be able to capture all the dependencies among
the variables [13]. However, in this benchmark the maximum number of evaluations is fixed and larger population sizes
mean less number of iterations which heavily penalizes the final results. It must be taken into account that this constraint
was imposed in the original benchmark as an example of the limitations that metaheuristics must deal with when solving
real-world problems (the balance between execution time and solution quality).

The remaining parameters are not as decisive as the type of algorithm although some important patterns must be men-
tioned. Regarding the population size, 2048 individuals has obtained the worst values. In general, the EDAs tend to improve
Fig. 1. Main effects plot for SN ratios on 50 dimensions.
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Fig. 2. Main effects plot for SN ratios on 100 dimensions.

Fig. 3. Main effects plot for SN ratios on 200 dimensions.
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their results with larger population sizes (more information to build the model). However, due again to the number of eval-
uations constraint, a bigger population size implies a smaller number of iterations which, at the end, can severely affect the
final values. In general, 1024 individuals has offered a good trade-off between the number of solutions for building a quality
model and the maximum number of allowed iterations, although with the 50 dimensional functions, 512 individuals has
obtained the best value. A similar trend has been observed with the number of islands. The smallest value, i.e., the one with
the highest population size per island, has obtained the best signal to noise ratio values.

The next parameter that should be taken into account is the method for exchanging information. Regarding the two ap-
proaches for sending information, individuals or models, it can be mentioned that sending individuals has obtained better
overall results being this difference bigger for the higher dimensional functions.

From the two remaining common parameters, it seems that there is no significant difference among the two topology
values explored and that a more frequent exchange of information has been more beneficial for obtaining the best values.
Concerning the particular parameter values for sending individuals, the best selection of emigrants has obtained a small
Please cite this article in press as: S. Muelas et al., Distributed Estimation of Distribution Algorithms for continuous optimization: How
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improvement over the random selection and, apparently, both selection rate values have obtained similar results. For the
analysis of the different methods for combining models, only the results from the UMDAg algorithms have been considered
since for the EMNAglobal configurations only one method for combining models was proposed. From these results it is clear
that the mixture model obtains the best results followed by the new proposed UMDA uniform model and having obtained
the UMDA combination model the worst results among the three dimensions.

An analysis of the interactions between the parameters, measured with the SN ratio, was also conducted. Figs. 4–6 display
the interactions plots between the parameters of the configurations based on sending individuals in 50, 100 and 200 dimen-
sions, respectively. In the same way, Figs. 7–9 represent the interactions of the configurations based on sending models. An
interaction plot is a powerful graphical tool which displays the mean response of two parameters (the SN ratio in this case) at
all the possible combination of their values. For improving the clarity of the diagrams, only the parameters that have pre-
sented any interaction with any other parameter have been displayed in these graphs.
Fig. 4. Sending individuals interactions plot for SN ratios on 50 dimensions.

Fig. 5. Sending individuals interactions plot for SN ratios on 100 dimensions.
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Several interactions have been identified in the configurations based on sending individuals. One of the most remarkable
interactions is the relationship between the topology and the criterion for selecting the immigrants, where the worst results
are obtained with the all-to-all topology and the selection of the best individuals. This seems logical since, in this combina-
tion, the diversity of the algorithm is quickly reduced in the first generations. A similar scenario arises between the popu-
lation size and the topology parameters, where the performance of the all-to-all topology is heavily penalized when
connected with the smallest population size, especially with the highest dimensional functions. Another interesting relation-
ship is the one between the population size and the number of islands in the highest dimensional functions. With 512 indi-
viduals, the increment of the number of islands from 8 to 16 leaves a population of 32 individuals per island, which is clearly
not enough for inducing a good model of the problem.

Several interactions have also arisen with the configurations that exchange models. As for the sending individuals con-
figurations, the increment from 8 to 16 islands considerably reduces the performance of the configurations that use the
smallest population size. Regarding the methods for combining the models, it seems that the UMDA combination method,
Fig. 6. Sending individuals interaction plot for SN ratios on 200 dimensions.

Fig. 7. Sending models interactions plot for SN ratios on 50 dimensions.
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Fig. 8. Sending models interactions plot for SN ratios on 100 dimensions.

Fig. 9. Sending models interaction plot for SN ratios on 200 dimensions.
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in contrast to the other alternatives, obtains better results with the highest population sizes, lower migration frequencies
and the lowest topology degree approach, i.e., characteristics that tend to increment the global diversity of the algorithm.

The previous studies have provided a broad view of the overall behavior of all the configurations. With the purpose of
offering an alternative view of the relationships between the parameters and the algorithm performance, the best and worst
configurations have been analyzed independently from the remaining configurations. Moreover, the sequential algorithms
have been included in this study in order to compare the performance of the distributed configurations. Tables 3–5, display
a ranking of the configurations on 50, 100 and 200 dimensions, respectively, according to the global average rank. In these
tables only the best and worst 5% of the configurations, as well as the sequential configurations, are displayed.3

From these tables it is clear that the best results have been obtained with distributed configurations, being the sequential
algorithms placed around positions near the middle of the table. To better analyze the influence of the parameters,
Figs. 10–12 display the parallel coordinates graph of the distribution of the values of the parameters of the best configura-
tions on 50, 100 and 200 dimensions respectively and Figs. 13–15 the equivalent graphs for the worst configurations. Parallel
3 The complete 444 results can be accessed in the following URL http://cajalbbp.cesvima.upm.es/storage.
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Table 3
Average rankings 50 dimensions.

Alg. Size # Islands Period Topology Rate Emm. selec. Model Avg. ranking

Best 5%
UMDA 512 8 10 Ring 0.2 Best – 41.09
UMDA 512 8 10 Ring 0.1 Best – 42.32
UMDA 512 16 10 Ring 0.2 Best – 44.14
UMDA 512 16 10 Ring 0.1 Best – 46.91
UMDA 512 8 20 Ring 0.2 Best – 47.14
UMDA 512 8 20 Ring 0.1 Best – 49.64
UMDA 512 16 10 Ring 0.2 Random – 50.64
UMDA 512 16 20 Ring 0.1 Best – 51.59
UMDA 512 16 20 Ring 0.2 Best – 52.00
UMDA 512 8 10 Ring 0.2 Random – 53.09
UMDA 512 16 10 Ring 0.1 Random – 54.64
UMDA 512 8 20 Ring 0.2 Random – 57.18
UMDA 512 8 10 Ring 0.1 Random – 61.18
UMDA 512 16 20 Ring 0.2 Random – 61.23
UMDA 512 8 20 Ring 0.1 Random – 61.36
UMDA 512 8 40 Ring 0.1 Random – 61.55
UMDA 512 16 20 Ring 0.1 Random – 62.68
UMDA 512 8 40 Ring 0.2 Best – 67.68
UMDA 512 8 40 Ring 0.2 Random – 68.41

Sequential configurations
UMDA 512 110.50
UMDA 256 126.23
UMDA 1024 142.23
UMDA 128 148.05
UMDA 2048 208.82
UMDA 64 212.64
EMNA 2048 236.91
EMNA 1024 258.09
EMNA 512 316.91
EMNA 256 360.82
EMNA 64 364.64
EMNA 128 371.73

Worst 5%
EMNA 512 8 40 Ring 0.1 Random – 377.82
EMNA 1024 16 10 Ring 0.1 Random – 380.45
EMNA 1024 16 20 Ring 0.2 Random – 381.00
EMNA 512 8 40 a2a – – Mixture 383.45
EMNA 512 8 20 a2a – – Mixture 385.36
EMNA 512 8 40 Ring – – Mixture 387.00
EMNA 1024 16 20 Ring 0.1 Random – 388.36
EMNA 1024 16 40 Ring 0.2 Random – 388.82
EMNA 512 16 10 Ring – – Mixture 389.09
EMNA 512 8 20 Ring – – Mixture 389.55
EMNA 1024 16 40 Ring 0.1 Random – 392.27
EMNA 512 8 10 a2a – – Mixture 392.91
EMNA 1024 16 10 a2a – – Mixture 394.82
EMNA 1024 16 20 a2a – – Mixture 394.91
EMNA 1024 16 40 a2a – – Mixture 396.91
EMNA 1024 16 20 Ring – – Mixture 397.18
EMNA 1024 16 10 Ring – – Mixture 398.55
EMNA 512 8 10 Ring – – Mixture 398.91
EMNA 1024 16 40 Ring – – Mixture 399.00
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coordinates is a useful technique which has been successfully used to represent high dimensional data as polylines in two
dimensions. More recently, it has been used to capture the underlying interactions between the parameters of a Particle
Swarm Optimization algorithm [15]. In this paper, the first eight axes represent the parameters of the configurations,
whereas the ninth one represents the Friedman average ranking mentioned before. Only the best and worst 20% of the solu-
tions are displayed on these graphs. The best/worst 5% of the solutions have been highlighted with a variety of different col-
ors while the remaining 15% has been marked in light gray. The global best and worst configurations have been depicted
with a dashed line. A small deviation, similar to a jitter effect, has been applied to each configuration parameter value to
distinguish better the configurations.

As happened in the first analysis, the UMDAg learning model has been the most decisive parameter: all the best results
have been achieved with this learning model, whereas the EMNAglobal model has been the common value among the worst
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Table 4
Average rankings 100 dimensions.

Alg. Size # Islands Period Topology Rate Emm. selec. Model Avg. ranking

Best 5%
UMDA 512 8 20 Ring 0.1 Best - 53.18
UMDA 512 8 20 Ring 0.2 Best – 53.32
UMDA 512 8 10 Ring 0.2 Best – 53.95
UMDA 512 8 10 Ring 0.1 Best – 55.73
UMDA 512 8 10 Ring 0.2 Random – 58.23
UMDA 1024 16 10 Ring 0.2 Best – 60.77
UMDA 1024 16 10 Ring 0.1 Best – 61.09
UMDA 512 8 40 Ring 0.1 Best – 63.95
UMDA 512 8 40 Ring 0.1 Random – 65.59
UMDA 1024 8 20 Ring 0.2 Best – 66.23
UMDA 1024 16 20 Ring 0.2 Best – 66.73
UMDA 512 16 10 Ring 0.1 Best – 66.95
UMDA 1024 8 10 Ring 0.1 Best – 66.95
UMDA 512 16 10 Ring 0.2 Best – 67.32
UMDA 1024 16 20 Ring 0.1 Best – 67.50
UMDA 512 8 40 Ring 0.2 Best – 67.77
UMDA 1024 8 10 Ring 0.2 Best – 68.82
UMDA 512 8 10 Ring 0.1 Random – 71.00
UMDA 512 16 20 Ring 0.1 Best – 71.00

Sequential configurations
UMDA 512 113.68
UMDA 1024 129.77
UMDA 256 147.50
UMDA 128 166.50
UMDA 2048 171.05
UMDA 64 226.91
EMNA 2048 289.27
EMNA 1024 312.64
EMNA 256 330.64
EMNA 512 339.27
EMNA 64 363.45
EMNA 128 391.27

Worst 5%
EMNA 1024 8 40 Ring 0.1 Random – 411.36
EMNA 1024 8 20 Ring – – Mixture 413.45
EMNA 1024 8 40 Ring – – Mixture 415.09
EMNA 2048 16 40 Ring 0.1 Best – 415.55
EMNA 1024 8 10 a2a – – Mixture 416.27
EMNA 1024 8 20 a2a – – Mixture 417.09
EMNA 1024 8 40 a2a – – Mixture 417.36
EMNA 2048 16 10 Ring 0.1 Random – 418.27
EMNA 2048 16 20 Ring 0.2 Random – 418.36
EMNA 1024 8 10 Ring – – Mixture 418.82
EMNA 2048 16 40 Ring 0.2 Random – 423.36
EMNA 2048 16 20 Ring 0.1 Random – 424.55
EMNA 2048 16 10 a2a – – Mixture 425.00
EMNA 2048 16 20 a2a – – Mixture 426.18
EMNA 2048 16 40 Ring – – Mixture 426.18
EMNA 2048 16 40 Ring 0.1 Random – 427.91
EMNA 2048 16 10 Ring – – Mixture 428.36
EMNA 2048 16 40 a2a – – Mixture 428.45
EMNA 2048 16 20 Ring – – Mixture 429.55
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algorithms. Regarding the information exchange methods, it can be observed that sending individuals obtains the best over-
all results and that this characteristic is present in almost all the best 5% of the configurations. However, the opposite is not
true, since several configurations that send individuals are among the worst 5%. This fact explains why the difference be-
tween these two approaches has not been very significant in the first study. Sending individuals has demonstrated to be
the best choice for this benchmark but needs to be properly configured since, without the proper selection of the remaining
parameters, this value would not determine the performance of the configuration. A similar situation happens with the
topology parameter, where the ring topology has been selected by almost the whole set of the best configurations. For
100 and 200 dimensions the situation is quite similar, confirming the fact that the previous conclusions are stable and
can be generalized to a higher number of dimensions.
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Table 5
Average rankings 200 dimensions.

Alg. Size # Islands Period Topology Rate Emm. selec. Model Avg. ranking

Best 5%
UMDA 1024 8 20 Ring 0.1 Best – 55.45
UMDA 1024 8 20 Ring 0.2 Best – 56.05
UMDA 1024 8 10 Ring 0.2 Best – 57.77
UMDA 1024 16 10 Ring 0.2 Best – 58.23
UMDA 1024 16 10 Ring 0.1 Best – 58.68
UMDA 512 8 20 Ring 0.1 Best – 58.77
UMDA 1024 8 10 Ring 0.1 Best – 59.91
UMDA 1024 16 10 Ring 0.2 Random – 60.45
UMDA 1024 16 20 Ring 0.2 Best – 61.59
UMDA 1024 16 20 Ring 0.1 Best – 62.82
UMDA 512 8 10 Ring 0.2 Random – 63.09
UMDA 512 8 10 Ring 0.2 Best – 63.91
UMDA 512 8 20 Ring 0.2 Best – 65.23
UMDA 512 8 40 Ring 0.1 Best – 66.18
UMDA 1024 8 10 Ring 0.2 Random – 66.27
UMDA 512 8 10 Ring 0.1 Best – 66.77
UMDA 1024 8 40 Ring 0.2 Best – 66.77
UMDA 512 8 10 Ring 0.1 Random – 66.91
UMDA 512 8 20 Ring 0.2 Random – 67.00

Sequential configurations
UMDA 1024 121.18
UMDA 512 129.55
UMDA 256 154.50
UMDA 2048 163.32
UMDA 128 196.55
UMDA 64 234.00
EMNA 2048 304.82
EMNA 1024 317.09
EMNA 512 320.55
EMNA 64 364.14
EMNA 128 390.86
EMNA 256 422.14

Worst 5%
EMNA 1024 8 40 a2a – – Mixture 413.59
EMNA 2048 16 20 Ring 0.1 Random – 413.77
EMNA 1024 8 40 Ring – – Mixture 414.14
EMNA 1024 8 20 Ring – – Mixture 414.95
EMNA 1024 8 10 a2a – – Mixture 415.68
EMNA 2048 8 40 r– – Mixture 420.77
EMNA 2048 16 10 a2a – – Mixture 422.68
EMNA 2048 16 40 a2a – – Mixture 423.50
EMNA 2048 16 20 a2a – – Mixture 424.05
EMNA 2048 16 40 Ring – – Mixture 424.59
EMNA 2048 16 20 Ring – – Mixture 424.59
EMNA 2048 16 10 Ring – – Mixture 425.23
EMNA 2048 8 40 Ring 0.2 Random – 430.23
EMNA 2048 8 10 a2a – – Mixture 434.23
EMNA 2048 8 40 a2a – – Mixture 434.41
EMNA 2048 8 20 a2a – – Mixture 434.50
EMNA 2048 8 20 Ring – – Mixture 434.86
EMNA 2048 8 10 Ring – – Mixture 434.95
EMNA 2048 8 40 Ring – – Mixture 435.14
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4.2. Comparing the performance on each function

For this study, it was planned to include the characteristics of the problems in the data set to see the impact of these char-
acteristics in the solution quality. These characteristics were extracted from the literature and are represented in Table 6.

However, after conducting an analysis of the main effects and interaction graphs for each function, it was observed that
the behavior of similar functions, according to this table, was completely different according to the graphs. For example, for
functions f2 and f8, which both are unimodal, shifted and not separable, the corresponding main effects plots have little in
common as it can be shown in Figs. 16 and 17 for 100 dimensions. Moreover, some functions that have opposite character-
istics in Table 6, such as f1 and f5, have demonstrated to behave almost identically according to the main effects graphs as
represented in Figs. 18 and 19. Therefore, this type of analysis could not be carried out.
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Fig. 10. Parameter values of the best configurations on 50 dimensions.

Fig. 11. Parameter values of the best configurations on 100 dimensions.

Fig. 12. Parameter values of the best configurations on 200 dimensions.
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By contrast, the analysis of the main effects graphs has identified two groups of functions with similar behaviors: one
made up of functions f1 and f5 and a second one made up of functions f7, f9, f10 and f11. The remaining functions have pre-
sented a particular behavior, significantly different to be included in any other group.
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Fig. 13. Parameter values of the worst configurations on 50 dimensions.

Fig. 14. Parameter values of the worst configurations on 100 dimensions.

Fig. 15. Parameter values of the worst configurations on 200 dimensions.
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Finally, it is worth mentioning that only in functions f4 and f8 the exchange of models obtained a better SN ratio than the
exchange of individuals. In order to provide more insight about this behavior, a study for comparing both information ex-
change methods was carried out.
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Table 6
Properties of the functions of the benchmark.

Function Unimodal/multimodal Shifted Separable Easily optimized
dimension by dimension

f1 U Y Y Y
f2 U Y N N
f3 M Y N N
f4 M Y Y Y
f5 M Y N N
f6 M Y Y Y
f7 U Y Y Y
f8 U Y N N
f9 U Y N N
f10 U Y N Y
f11 U Y N N

Fig. 16. Main effects plot for SN ratios on 100 dimensions for the f2 function.

Fig. 17. Main effects plot for SN ratios on 100 dimensions for the f8 function.
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This study consisted in analyzing the performance on each function of the configurations based on sending individuals
against the equivalent ones based on sending models. For this task, all the configurations were grouped according to their
information exchange model: 4 groups for sending individuals and 3 for sending models with 61 configurations per group.
Then, the average rank was obtained for each group (61 values per group). Tables 7–9 present the results in 50, 100 and 200
dimensions. For each function, the best average rank is highlighted on both tables.
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Fig. 18. Main effects plot for SN ratios on 100 dimensions for the f1 function.

Fig. 19. Main effects plot for SN ratios on 100 dimensions for the f5 function.
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From these results, it can be seen that, in 9 out of 11 functions, the groups based on sending individuals obtained a supe-
rior average rank than the ones based on sending models. Only on two functions, f4 and f8, the sending models configura-
tions based on the UMDAg combination method obtained a better average rank than the sending individuals configurations.
In order to explain this behavior, it is convenient to understand that the exchange and combination of models has the objec-
tive of improving the accuracy and reducing the noise of the current model by its combination with the models sent from the
other islands. However, when exchanging models instead of individuals, the best solutions that the other islands have found
are not available to the current island. As other studies have proven [24], the use of elitism is normally beneficial for the
behavior of EDAs. For this reason, the combination of models offers a poorer performance on most of the functions.

Therefore, for the purpose of clarifying the behavior of the exchange of models in functions f4 and f8, the best sequential
EDA was executed with and without elitism on the 50 dimensional functions.4 Table 10 displays the average error of the 25
executions and highlights if the differences between both versions (with and without elitism) are significant according to the
Wilcoxon signed-rank test. In this table it is shown that the absence of elitism obtains significantly better results in functions f4,
f6 and f8. Furthermore, the results obtained in functions f4 and f8 by the sequential EDA are better than the obtained by the best
distributed algorithm as it will be shown in the following study. It seems that, for these functions, it is better to improve the
general diversity of the population (and therefore, the exploratory ability of the algorithm) in order to reach better regions
of the search space. In f6, where both versions have almost converged to the final optimum, it seems that the greater diversity
of the distributed model (against the sequential version) is enough for dealing with this characteristic and the non-elitist
sequential EDA does not improve the results of the distributed versions.
4 Only in this dimension since the behavior is similar on the other dimensions.
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Table 7
Average ranking per function on 50 dimensions functions.

Function 0.1-Best 0.1-Random 0.2-Best 0.2-Random Mixture UMDA_comb UMDA_unif

UMDA
f1 84.28 89.53 93.32 97.04 135.03 220.03 166.44
f2 128.44 127.17 135.00 133.81 178.89 306.22 255.25
f3 76.69 68.92 94.17 93.53 148.92 224.50 181.67
f4 138.81 158.61 132.31 153.64 141.14 97.86 138.36
f5 82.04 92.74 91.06 103.40 133.08 226.72 162.49
f6 88.71 91.67 93.93 96.68 141.40 204.74 168.46
f7 107.94 120.94 106.25 117.17 147.51 136.00 149.68
f8 236.92 246.39 238.97 241.67 242.39 109.11 234.97
f9 117.28 120.79 110.04 119.10 150.11 133.50 134.68
f10 109.81 115.40 108.64 112.68 138.24 153.50 147.82
f11 115.19 119.86 109.69 117.61 153.86 132.97 136.31

EMNA
f1 333.22 339.36 339.72 344.17 355.86
f2 249.89 259.69 251.33 254.36 317.94
f3 332.61 336.94 336.53 340.94 362.58
f4 312.58 336.72 308.75 328.78 350.44
f5 329.39 337.39 339.81 343.08 356.81
f6 323.28 341.06 329.33 340.42 378.33
f7 335.86 340.42 337.19 339.11 359.92
f8 195.56 208.92 195.94 205.08 242.08
f9 334.39 343.11 335.81 340.28 358.92
f10 332.67 341.53 335.64 341.11 360.97
f11 334.14 341.97 337.17 340.28 358.94

Table 8
Average ranking per function on 100 dimensions functions.

Function 0.1-Best 0.1-Random 0.2-Best 0.2-Random Mixture UMDA_comb UMDA_unif

UMDA
f1 85.46 90.33 81.07 88.53 142.44 225.60 175.54
f2 123.33 111.33 124.31 120.39 163.06 317.31 247.83
f3 74.19 69.61 93.64 93.92 146.25 232.69 183.36
f4 129.56 146.44 125.03 143.00 134.58 100.53 131.33
f5 84.22 94.65 90.57 95.58 133.67 250.50 165.22
f6 84.22 83.32 98.46 92.96 141.46 219.81 165.78
f7 103.56 109.17 102.28 107.03 134.51 182.44 146.54
f8 169.81 209.58 176.06 197.00 214.58 59.78 213.28
f9 105.53 110.86 108.33 110.76 160.33 160.94 128.76
f10 100.64 96.86 107.51 107.15 151.56 176.64 145.42
f11 106.57 109.83 107.89 109.49 160.61 162.67 128.47

EMNA
f1 325.17 342.33 324.03 333.50 384.00
f2 253.75 271.67 250.00 259.56 355.47
f3 324.25 340.61 321.31 332.47 385.69
f4 313.11 347.06 310.08 330.75 386.53
f5 319.08 336.56 315.75 327.25 384.94
f6 320.28 344.75 319.83 335.00 392.14
f7 324.81 343.64 323.64 333.67 386.72
f8 242.44 277.22 237.06 258.11 343.08
f9 323.50 345.58 322.25 335.89 385.25
f10 323.72 345.28 321.53 334.78 386.92
f11 324.31 346.22 322.03 334.92 385.00

18 S. Muelas et al. / Information Sciences xxx (2011) xxx–xxx
Within the individuals configurations, sending the best 10% individuals achieves the best overall performance in most of
the functions for both UMDAg and EMNAglobal models. On the other hand, sending a 20% of randomly chosen individuals ob-
tained the worst results. Regarding the different methods for combining the models, it must be taken into account that with-
in the UMDAg configurations, the mixture model obtains the best results in most of the functions followed by the proposed
uniform approach, being both models better than the combination method.

4.3. Comparing the best configurations

A comparison of the best configurations for both type of algorithms and the different methods for exchanging information
was conducted. The best sequential configuration for each algorithm was also included in this study along with the
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Table 9
Average ranking per function on 200 dimensions functions.

Function 0.1-bBest 0.1-Random 0.2-Best 0.2-Random Mixture UMDA_comb UMDA_unif

UMDA
f1 90.08 85.00 96.08 87.92 129.08 244.75 170.11
f2 113.61 109.08 119.75 117.97 142.47 270.72 209.50
f3 72.44 69.11 98.78 94.53 136.36 248.11 189.08
f4 129.17 129.28 126.47 122.39 132.89 115.47 133.92
f5 88.83 83.50 96.92 94.07 125.22 283.03 175.12
f6 82.79 69.44 97.54 94.57 142.44 228.56 173.40
f7 93.76 99.60 96.35 97.39 153.67 184.68 160.06
f8 124.36 186.61 132.72 154.47 242.08 27.08 235.28
f9 104.97 108.97 111.22 111.25 166.64 189.78 131.25
f10 92.31 96.92 103.14 106.25 152.53 189.94 144.42
f11 101.14 104.58 104.17 108.69 159.86 180.97 126.08

EMNA
f1 317.94 337.78 314.17 324.78 400.31
f2 281.39 290.03 277.39 279.56 386.53
f3 316.92 334.25 311.67 322.61 404.14
f4 313.14 347.14 309.47 330.75 407.92
f5 307.64 328.78 303.86 315.92 395.11
f6 319.06 343.25 314.81 329.72 402.42
f7 317.58 351.17 319.14 337.61 387.00
f8 262.44 300.81 252.31 275.97 403.86
f9 307.33 323.42 312.56 321.94 408.67
f10 316.92 344.58 313.56 330.25 407.19
f11 314.86 347.33 314.08 331.86 404.36

Table 10
Average error of the best sequential EDA configurations with and without elitism on the 50 dimensional functions.

Function Elitism NoElitism Elitism vs NoElitism NoElitism vs Elitism
p-values p-values

f1 0.00e+00
p

1.87e�02 1.87e�02 9.90e�01
f2 4.14e+01

p
5.29e+01 7.79e�15 1.00e+00

f3 7.79e+03
p

3.67e+05 3–56e�11 1.00e+00
f4 3.42e+02 2.52e+01

p
1.00e+00 6.93e�10

f5 0.00e+00
p

2.69e�02 2.06e�02 9.81e�01
f6 7.79e�07 3.35e�07

p
1.00e+00 6.95e�10

f7 0.00e+00 0.00e+00 equal results
f8 1.01e+03 3.82e+02

p
1.58e�14 1.00e+00

f9 1.34e�05
p

4.52e�05 7.91e�15 1.00e+00
f10 0.00e+00 0.00e+00 equal results
f11 1.20e�05

p
4.08e�05 7.07e�10 1.00e+00

p
: Means that there are statistical differences, according to the Wilcoxon test, with significance level a = 0.05.
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IPOP-CMA-ES algorithm, a metaheuristic that follows a strategy similar to that of the EMNAglobal since it learns a covariance
matrix and uses it (along with more information) to sample the individuals of the new population. This algorithm was the
winner of the Special Session on Real-Parameter Optimization of the IEEE CEC 2005 conference [39] and was proposed by the
organizers of the benchmark as a reference algorithm for comparing the results.

Table 11 displays the average error of the 25 executions on each function. As shown in the table, the best results on most
of the functions are obtained by the distributed configuration that uses the UMDAg algorithm and exchanges individuals.
Similar to what happened in the previous analysis, the performance of the EMNAglobal configurations is significantly worse
than the UMDAg ones. However, with the f8 function, both the sequential and the distributed exchanging models configura-
tion obtain better results than the UMDAg ones. As shown on its function definition (Eq. 8), the first components of the solu-
tion have more influence in the fitness function than the remaining components. With an appropriate population size, the
EMNAglobal algorithm is able to detect this dependency between the variables and focus the search on the first dimensions of
the solutions.
Please
does t
f 8ðxÞ ¼
XD

i¼1

Xi

j¼1

zj

 !2

; z ¼ x� oo represents the global optimum ð8Þ
An interesting pattern that can be seen in this table is that, for the configurations that exchange models, the population
size is larger for those based on sending individuals and the selected topology in both cases is the all-2-all method. It seems
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Table 11
Average error of the best configurations.

Function UMDA_inds UMDA_models EMNA_inds EMNA_models UMDA_seq EMNA_seq IPOP-CMA-ES

Params 512 inds 1024 inds 512 inds 2048 inds 512 inds 2048 inds
8 Islands 16 Islands 16 Islands 8 Islands 512 inds 2048 inds
Period: 20 Period: 20 Period: 20 Period: 10
Top: ring Top: a2a Top: ring Top: a2a
Rate: 0.1 Comb.: mixture Rate:0.2 Comb.: mixture
Selec.: best Selec.: best

50 Dimensions
1 4.4313e�12 1.0634e�11 4.9951e+03 7.1143e+04 2.0824e�11 6.8696e+04 0.0000e+00
2 3.1938e+01 3.4822e+01 3.0421e+01 4.7805e+01 4.2742e+01 4.1830e+01 2.7500e�11
3 1.3504e+02 1.1059e+02 6.8602e+07 5.7479e+09 4.3232e+04 4.0348e+09 7.9700e�01
4 7.7246e+01 3.2294e+02 3.4539e+02 4.3426e+02 3.4151e+02 3.9933e+02 1.0500e+02
5 5.4197e�12 1.2826e�11 9.5357e+00 5.6903e+02 2.5879e�11 5.4317e+02 2.9600e�04
6 3.7939e�07 5.4462e�07 1.2461e+01 1.5550e+01 7.5503e�07 1.4613e+01 2.0900e+01
7 0.0000e+00 5.1742e�08 2.8285e+01 9.7157e�01 0.0000e+00 1.0063e�03 1.0400e�10
8 7.0627e+02 2.2470e+03 4.4102e+03 1.8413e+00 1.0612e+03 2.1343e�07 0.0000e+00
9 5.8894e�06 2.4904e�01 2.0750e+02 2.3655e+01 1.6201e�05 3.7887e+00 9.6600e+00
10 0.0000e+00 0.0000e+00 1.9100e+02 1.6309e+00 0.0000e+00 1.2013e�06 6.3500e+00
11 5.4996e�06 2.4245e�01 1.9938e+02 2.1993e+01 1.1746e�05 3.7286e+00 2.5700e+01

100 dimensions
1 2.7014e�11 3.3498e�11 1.2774e+04 1.9579e+05 8.2882e�11 1.8760e+05 0.0000e+00
2 4.5335e+01 4.7167e+01 4.5463e+01 6.4141e+01 5.4462e+01 5.7281e+01 1.5100e�10
3 3.7374e+02 3.5143e+02 2.9343e+08 2.0560e+10 2.4425e+05 1.4742e+10 3.8800e+00
4 1.6540e+02 1.6845e+02 8.7609e+02 1.0834e+03 8.0014e+02 9.9166e+02 2.5000e+02
5 1.5235e�11 2.1413e�11 2.3963e+01 1.5224e+03 4.9912e�11 1.4321e+03 1.5800e�03
6 5.8275e�07 6.5915e�07 1.3217e+01 1.8225e+01 9.8306e�07 1.7581e+01 2.1200e+01
7 0.0000e+00 1.7800e�10 7.0014e+01 6.8451e+00 0.0000e+00 6.3445e�01 2.4300e�05
8 4.4043e+03 1.7445e+04 1.1765e+04 4.9132e+01 2.3255e+04 5.0400e�01 0.0000e+00
9 2.4198e�08 1.6342e�01 4.1550e+02 9.5136e+01 8.8410e�09 2.9663e+01 5.4000e+01
10 0.0000e+00 0.0000e+00 4.9928e+02 2.8885e+01 0.0000e+00 6.6738e�01 1.7300e+01
11 1.2051e�07 1.4185e�01 4.1484e+02 9.5033e+01 7.3676e�09 2.5700e+01 1.7200e+02

200 dimensions
1 1.0243e�10 1.2379e�10 4.4513e+04 1.7268e+05 1.7257e�03 4.8020e+05 0.0000e+00
2 5.7000e+01 6.1222e+01 6.6971e+01 8.9225e+01 6.5054e+01 6.9707e+01 1.1600e�09
3 5.5483e+02 7.3906e+02 2.7326e+09 3.2678e+10 1.6448e+06 7.8684e+10 8.9100e+01
4 3.6909e+02 2.8513e+02 2.1671e+03 3.4675e+03 1.7958e+03 2.5607e+03 6.4800e+02
5 3.4918e�11 4.5310e�11 8.8792e+01 3.8037e+02 8.4807e�11 3.6309e+03 0.0000e+00
6 8.0757e�07 8.6880e�07 1.5303e+01 1.9868e+01 1.2352e�06 1.9535e+01 2.1400e+01
7 0.0000e+00 2.4687e�13 1.8994e+02 1.0000e+11 0.0000e+00 1.5461e+01 6.3200e�02
8 1.5540e+04 1.0114e+05 5.2883e+04 2.5319e+05 1.4260e+05 1.1979e+02 0.0000e+00
9 2.1486e�01 4.1210e�01 9.2002e+02 1.4805e+03 1.2772e�13 2.1215e+02 2.4900e+02
10 0.0000e+00 0.0000e+00 1.5617e+03 1.5511e+04 0.0000e+00 6.1790e+01 4.3100e+01
11 2.5025e�01 3.2275e�01 9.1155e+02 1.4782e+03 1.2612e�13 2.1663e+02 8.0100e+02

Table 12
Statistical validation (UMDA_inds is the control algorithm).

UMDA_inds vs z-Value p-Value Holm p-value Hochberg p-value

UMDA_model 1.99e+00 4.61e�02 4.61e�02
p

4.61e�02
p

EMNA_inds 6.55e+00 5.65e�11 2.82e�10
p

2.82e�10
p

EMNA_model 8.15e+00 4.44e�16 2.66e�15
p

2.66e�15
p

UMDA_seq 2.45e+00 1.43e�02 3.10e�02
p

2.86e�02
p

EMNA_seq 5.81e+00 6.17e�09 2.47e�08
p

2.47e�08
p

IPOP-CMA-ES 2.56e+00 1.03e�02 3.10e�02
p

2.86e�02
p

p
: Means that there are statistical differences with significance level a = 0.05.
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that, for most of the functions, it is better to have a larger population size for improving the quality of the induced model and
share it with the rest of the islands to accelerate the diffusion of good patterns.

The performance of the sequential configurations is, in general terms, worse than their equivalent distributed configura-
tions. However, in some functions (f9 and f11 for UMDAg and f8 for the EMNAglobal) the concentration of the individuals helps
to improve the results.

In order to provide a proper statistical validation of the results, the procedure described in [17,16] was followed, where
the distribution of the results was first compared with the Friedman test in order to detect significant differences. A value of
103.59 was obtained for the chi-squared statistic, which corresponds with a p-value of 4.45e�20, confirming the existence of
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significant differences between the results. Then, two post hoc methods (Holm and Hochberg) were used to obtain the ad-
justed p-values for each comparison between the control algorithm (the distributed UMDAg based on sending individuals).

The results of these tests are reported in Table 12, and show, for all of them, that there is statistical evidence to state that
the dEDA algorithm based on sending individuals is significantly better than any of the EDA algorithms considered in the
comparison. Furthermore, this configuration obtains significant results against the IPOP-CMA-ES algorithm on two of the
three statistical procedures.

4.4. Characterization of the configurations

Finally, an unsupervised learning algorithm was applied to all the configurations to extract the groups of configurations
that have a similar performance. For each configuration, a vector of all the ranks among all the functions on all the dimen-
sions was collected and used as a representative value for the configurations. Therefore, two configurations with similar
ranks among all the functions would be considered similar configurations. Then, a density-based clustering algorithm that
has obtained successful results in the literature, the DBScan algorithm [14], was applied to the ranks vector of each config-
uration. In order to obtain an explanation of the results, the C4.5 machine learning algorithm was applied to the configura-
tions to describe the assigned clusters, generating the induction tree depicted in Fig. 20, which represents the relevant
characteristics that belong to each cluster. For determining the quality of each cluster, the average rank of the configurations
belonging to the same cluster was computed, obtaining the values: 124.21, 201.97, 329.96, 329.15, 349.52 for clusters 1–5,
respectively.

These results have confirmed the conclusions from the previous studies, being the type of algorithm the parameter that
most differentiates the configurations. As previously shown, the performance of the EMNAglobal configurations is considerably
lower than the equivalent UMDAg configurations having all the UMDAg clusters (1 and 2) a superior cluster average rank that
the EMNAglobal clusters (3–5). For the UMDAg configurations, the second most important attribute is the information exchange
Fig. 20. C4.5 Induction tree from the DBScan cluster. Each leaf node contains the cluster name and, in parentheses, the number of instances classified by the
branch. The average ranks of the configurations included in each cluster are: cluster1: 124.21, cluster2: 201.97, cluster3: 329.96, cluster4: 329.15 and
cluster5: 349.52.
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method, being all the configurations based on sending individuals grouped in the same cluster plus some of the configura-
tions based on sending models (the ones with the best results). For the EMNAglobal configurations, it seems that the popula-
tion size per island determines better the performance of the configuration than the information exchange method.
5. Conclusions

This paper presents an extensive comparison of several configurations of dEDAs and sequential EDAs over a standard
benchmark of continuous functions in both 50, 100 and 200 dimensions. Several analyses from different points of view have
been carried out and non-parametric tests have been applied for contrasting the achieved results. From these studies, it has
been observed than the learning model of the algorithms has been the most decisive factor. It seems that, for the proposed
benchmark, the UMDAg has obtained the best results. However, it must be taken into account that the EMNAglobal algorithm
needs a considerable amount of individuals to induce the dependencies among the variables and, with the benchmark con-
straint on the number of evaluations, this has implied a considerable reduction on the number of iterations which has heav-
ily penalized the final results. Therefore, a future work would be to extend this analysis with a higher number of evaluations
and also with the more complex EGNA models which also require larger population sizes.

A special attention has been paid to determine which method for exchanging information between dEDAs, the migration
of individuals or the migration of probabilistic models, is the best approach for a researcher who would like to apply the
UMDAg or EMNAglobal dEDAs in a continuous domain. From this perspective, the results from this study clearly express that,
for most of the functions, the exchange of individuals obtains significantly better results than the alternative approach of
sending models, although the remaining parameters must be properly tuned to obtain the best results. However, it was also
discovered that, for the functions where the absence of elitism improves the results, the exchange of individuals (which im-
plies a degree of elitism) obtains worse results.

From the remaining parameters of the distributed configurations some interesting relationships have arisen such as the
interaction between the topology and the criterion for selecting the immigrants, the relationship between the topology and
the population size, and between the population size, migration period and topology with the selected method for conduct-
ing the combination of the models.

The question of whether the dEDAs configurations obtain better results than their equivalent sequential versions has been
also addressed: the study shows that the best dEDAs configurations outperform the best results of the sequential
counterparts.

Finally, taking advantage of all the configurations analyzed through this experiment, a characterization of the behavior of
the configurations has also been presented. The clustering analysis of all these configurations shows that the type of algo-
rithm (UMDAg and EMNAglobal), the information exchange method for the UMDAg configurations and the population size per
island for the EMNAglobal configurations are the most determinant characteristics for characterizing the behavior of the
configurations.
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