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Abstract—The design of the control mechanisms for the
agents in modern video games is one of the main tasks involved
in the game design process. Designing controllers grows in
complexity as either the number of different game agents or the
number of possible actions increase. An alternative mechanism
to hard-coding agent controllers is the use of learning tech-
niques. This paper introduces two new variants of a hybrid al-
gorithm, named WEREWoLF and WERESARSA, that combine
evolutionary techniques with reinforcement learning. Both new
algorithms allow a group of different reinforcement learning
controllers to be recombined in an iterative process that uses
both evolution and learning. These new algorithms have been
tested against different instances of predefined controllers on a
one-on-one combat simulator, with underlying game mechanics
similar to classic arcade games of this kind. The results have
been compared with other reinforcement learning controllers,
showing that WEREWoLF outperforms the other algorithms
for a series of different learning conditions.

I. INTRODUCTION

Although the graphical quality of a video game is one of
its major selling points, the success of a game also depends
heavily on other aspects such as the story script or the playing
experience. A key factor of the playing experience is the
behavior of the agents in the game.

Traditionally, agent controllers were programmed using ad
hoc implementations, mainly based on finite state machines
(FSM). More recently approaches such as Behavior Trees
[1] are increasingly used because they are better equipped
to deal with more complex behaviors, and are relatively
easy for human designers to use. Nonetheless, this hard-
coded development, when the number of agents and number
of actions per agent are large, makes the design of these
controllers time-consuming and error-prone. An alternative
mechanism to avoid the hard-coding of agent controllers
is the use of learning mechanisms to develop these con-
trollers. These learning mechanisms can be applied during
a development phase of the game, making agents learn
the best sequence of actions under different circumstances.
Reinforcement learning (RL) is one of the most interesting
paradigms in this domain [2]. So far these learning methods
have not been very widely used within video games, but
this is at least partly due to the unpredictable speed and
quality of the learning process. We believe that when learning
can be done reliably and quickly it will naturally find wide
application within video games.

In addition to being potentially useful for developing game
agent controllers, the research described in this paper is
also interesting from a machine learning perspective. In this

view, we simply use the game environment as a test-bed to
see which approach can best learn to beat opponents in a
challenging fighting game.

This paper presents an alternative method to combine
evolutionary algorithms and Q-Learning (a well-known RL
algorithm) for stochastic games. The results, using a video
game scenario, show that the combination of learning and
evolving Q-learner matrices improves the learning rate, in-
dependently of the number of learning episodes.

The organization of the rest of the paper is as follows:
Section II briefly reviews the related work on the rein-
forcement learning techniques. Section III presents the main
contribution of this article, the combination of evolutionary
algorithms and RL methods, applying two different evolu-
tionary approaches. Section IV describes the experimental
environment and the game rules used as framework. The
results of these experiments are reported in section V. Finally,
section VI summarizes the conclusions derived from this
work.

II. RELATED WORK

A. Reinforced Learning Techniques

Reinforcement Learning (RL) is a machine learning tech-
nique applied to model the behavior of an agent that has
sensor mechanisms to perceive the state of an environment
and obtains rewards from the actions it performs within this
environment. RL is widely applied to solve a broad range
of problems [3]. One of the typical problems that are solved
by RL algorithms are Markov Decision Processes (MDPs).
MDPs model environments where actions performed by the
agent make the state of the environment transition to some
other state with a certain probability, making the transitions
non-deterministic. A similar case is Stochastic Games (SGs)
in which multiple agents select actions and the next state and
rewards depend on the joint action of all the agents. SGs are
a natural model for many video games, including the fighting
game studied in this paper.

1) SARSA and Q-Learner: The use of RL in fighting
video games was introduced by [4], as a possible approach
for the automatic creation of fighting strategies. This study
showed that learning agents found interesting policies cap-
turing the behaviour of the opponents, evaluating the strat-
egy according to specific reward functions. This work also
demonstrated that the application of well known algorithms
(SARSA and Q-Learner) can be used as learning mechanisms
suitable for this kind of scenarios. The SARSA algorithm



is an on-policy temporal difference learning algorithm for
MDPs [5]. It is based on the estimation of the expected
reward of a given state s for a given action a, denoted by
Q(s, a) (also know as Q-value). This estimation is continu-
ously updated according to the following equation:

Q(s, a) ⇐ (1− α)Q(s, a) + α [r + γQ(s′, a′)] (1)

where 0 ≤ α ≤ 1 is a learning rate parameter (determining
how fast the state-action pair is updated) and 0 ≤ γ < 1 is the
discount factor for future rewards (indicating the influence of
the reward from new state-action pair into the reward of the
original state-action pair). The update equation states that
for a given state-action pair (s, a) ∈ S × A the new state-
action value is obtained by adding a small (depending on α)
correction to the old value. The correction is the difference
between the immediate reward r increased by the discounted
future state-action value γQ(s′, a′) and the old state-action
value Q(s, a).

SARSA (s, a, r, s′, a′) is an on-policy learning algorithm
in the sense that it estimates the value of the same policy
that it is using for control. Q-Learning [6] constitutes an off-
policy alternative to SARSA and replaces the term γQ(s′a′)
by γ argmaxa′∈A(s′) Q(s′, a′) in the above equation 1. This
provides a separation of the policy being evaluated from the
policy used for control. It leaves the update equation like
this:

Q(s, a) ⇐ (1− α)Q(s, a) + α

[
r + γargmax

a′∈A(s′)

Q(s′, a′)

]
(2)

Although SARSA and Q-Learning are suitable approaches
to deal with MDPs, video games do not fully match MDP
characteristics, as mentioned previously It is important, in
many cases, to represent the complete set of transitions that
may occur derived from the presence of two or more agents
over the same environment. Stochastic games (SGs) are a
natural multi-agent extension of MDPs, and have also been
studied within RL [7], [8].

2) WoLF: Despite RL algorithms (such as Q-Learning)
being appropriate to deal with MDPs, they are less appro-
priate, in theory, for SGs, due to the multi-agent aspects
[9]. Thus, some variants of these algorithms have been
successfully applied in these SG scenarios. “Policy Hill
Climbing” (PHC) and “Win or Learn Fast” (WoLF) [10] are
extensions to the Q-Learning algorithm particularly designed
to deal with stochastic scenarios with multiple agents i.e.
with SGs.

Both PHC and WoLF maintain a learning rate in the form
of a selection probability for each state-action pair. The main
difference is that, in PHC, this learning rate is constant while
WoLF changes this learning rate depending on whether it
is winning or losing. Intuitively, the algorithm tries to learn
quickly when it is losing and more slowly when it is winning.
To determine whether the algorithm is winning or losing, the
current policy’s payoff is compared with that of the average
policy over time.

Algorithm 1: WoLF Algorithm
begin1

Let α, δl > δw be learning rates, Initialize2
Q(s, a)← 0, π(s, a)← 1

|A| , C(s)← 0

while Finalization state not reached do3
From state s select action a with probability π(s, a)4
Q-values are updated observing reward r and next state s′,5
Q(s, a)← Q(s, a) + α(r + γ max

a′
Q(s′, a′)−Q(s, a))

Update estimate of average policy, π̄,6
C(s)← C(s) + 1 ∀ a′ ∈ A, π̄(s, a′)←
π̄(s, a′) + 1

C(s)
(π(s, a′)− π̄(s, a′))

Update π(s, a) and constrain it to a legal probability7
distribution

π(s, a) +


δ ifa =

argmax
a′

(Q(s, a′))

−δ
|A|−1

otherwise

where,

δ =


δw if

∑
a π(s, a)Q(s, a)

>
∑

a π̄(s, a)Q(s, a)

δl otherwise

end8
end9

In addition to Q-values, the algorithm also maintains
the current mixed policy (π(s, a)). This policy controls the
probability of selecting a given action during the learning
phase. It is updated by increasing the probability of selecting
the best performing action according to a learning rate δl, that
is applied when the algorithm is losing, and δw, that is used
when the algorithm is winning, with δl > δw. Algorithm 1
provides a detailed description of this policy.

B. Evolutionary Techniques

Evolutionary techniques have already been considered as a
complementary mechanism for training learning algorithms.
A representative approach was the NeuroEvolution of Aug-
menting Topologies (NEAT) [11], that have attracted great
interest in the video game community. A practical example
was the video game called Neuro-Evolving Robotic Opera-
tives (NERO) that extends NEAT to work in real-time.

Indeed, the combination of evolutionary strategies and
reinforcement learning has mainly been addressed towards
the use of optimization algorithms to adjust connection
weights in neural networks. There are only few references on
the use of evolutionary techniques to complement reinforce-
ment learning algorithms based on Q-Learning or similar
approaches (usually named policy-space approaches). A first
reference appeared in Moriarty et al.’s work [12]. In this
work, a preliminary evolutionary algorithm for reinforcement
learning (named EARL) is put forward. EARL evolves a
chromosome with same size of the number of states, and the
value of each of the genes would be the action to perform
at this state. EARL focuses on deterministic policies.

In [13], evolved neural networks (using NEAT), were
combined with Q-Learning algorithms to search function
approximations. Using neural networks in this way is rather



different to the approach we adopt in this paper, though
it would be interesting future work to compare the two
approaches.

More recently, in [14], the authors introduce a reinforce-
ment learning algorithm with a hierarchical evolutionary
mechanism to evolve adaptive action value tables. The algo-
rithm evolves several Q-Learning parameters, such as state
discretization data, learning rate α, discount factor γ and
searching rate (non deterministic action selection).

1) Estimation of Distribution Algorithms: Estimation of
Distribution Algorithms (EDAs) were introduced in the 90s
[15]. In general terms, EDAs are similar to Genetic Algo-
rithms, but their main characteristic is the use of probabilistic
models to extract information from the current population
(instead of using crossover or mutation operators) in order
to create a new and presumably better population.

As in the case of other evolutionary algorithms, EDAs
create multiple solutions or individuals in a population.
This population evolves from one generation to the next by
estimating the probability distribution of a set of individuals
(usually the best individual from the past generation), then
sampling the induced model (without using crossover or
mutation operators). Based on the probabilistic model consid-
ered, three main groups of EDAs can be distinguished: uni-
variate models, which assume that variables are marginally
independent; bivariate models, which accept dependencies
between pairs of variables; and multivariate models, in which
there is no limitation on the number of dependencies. The
complexity of the different EDA approaches is usually related
to the probabilistic model used, and the ability of that model
to identify and represent the (in)dependencies among the
variables. Detailed information about the main characteristics
of EDAs, as well as the different algorithms that belong to
this family, can be found in [16].

In this study, we focus on the Univariate Marginal Distri-
bution Algorithm for Gaussian Models (UMDAg) [17]. This
algorithm considers no dependencies between the variables
involved in the problem. It is assumed that the joint density
function follows an n-dimensional normal distribution, which
is factorized by a product of one-dimensional and indepen-
dent normal densities.

2) Differential Evolution Algorithms: Differential Evolu-
tion (DEs) algorithms were proposed by Rainer Storn and
Kenneth Price in 1995 [18]. DEs are also a specific type of
evolutionary algorithms that use an alternative recombination
operator. Given a population in the generation i, each individ-
ual in this population xi;j is selected for recombination. The
selected vector receives the name of objective vector. Three
other vectors, xr1 , xr2 , and xr3 are then randomly selected.
They are all different to the objective vector and different to
each other. These four vectors are then combined to obtain
a new vector candidate to replace the objective vector:

vi+1;j = xr1 + F (xr2 − xr3) (3)

First, vectors xr2 and xr3 are subtracted and scaled according
to a F factor. Finally, the result vector from the previous

step and vector xr1 are added. The final result vector of the
mutation phases is known as the donor vector.

Once the donor vector is obtained, it is combined with
the original vector xi;j by means of a crossover operation.
A usual crossover method is the binomial crossover, which
randomly selects, component by component, either from the
original vector or from the donor vector, producing the new
individual ui+1;j . Finally, xi;j is replaced by ui+1;j if and
only if the new individual has a better fitness value.

A more detailed survey of DE can be found at [19].

III. WEREWOLF ALGORITHM

WEREWoLF was first introduced in [20] as an evolution-
ary mechanism to combine multiple reinforcement learners
(originally WoLF learners) using genetic algorithms. In this
paper we extend it, applying two different evolutionary
techniques. The current paper also includes an improved
experimental process, comparing the learned controllers with
various fixed controllers. Additionally, we also compare both
WoLF and SARSA as the core learner models.

In WEREWoLF, the chromosome representing each in-
dividual is the encoding of the Q-values (and probabilities
matrices, in the case of WoLF). A population of several
learners is maintained at the same time. Each learner is
trained for a fixed number of episodes at each generation.
After a complete generation is finished, the different learners
are combined. Each learner has a fitness value equal to the
average of the aggregated reward obtained in each of the
episodes (the sum of all the rewards of the actions selected
in that episode). The combination of learners is performed
by combining their matrices, which are then inserted into
the target learner (after the necessary normalization of the
probabilities, in the case of WoLF controllers). A brief
explanations of the WEREWoLF is given by Algorithm 2.

For the present work, two evolutionary algorithms are con-
sidered as the combination mechanism of learners: Differen-
tial Evolution Algorithm (DE) and Estimation of Distribution
Algorithms (EDA), in particular UMDA.

IV. SIMULATION FRAMEWORK

The framework used for the evaluation is based on a more
complex environment called VBATTLE [21], which is a
video game framework developed in Java. In VBATTLE the
engine is designed as an independent light-weight event-
driven simulator with a decoupled visualization tool. The
simplified version used for this experiment is restricted to
the one-on-one melee combat engagement.

The main elements of this simulator are the combatants.
Each of the two combatants (intended as the bodies) are
managed by a different controller (intended as minds), which
must decide the action to make at each step. The combatants
are engaged in a hand to hand combat which finishes after
the death of one of the combatants or it is declared as draw
if a certain amount of time passed without a result.

An example combatant is included in the Appendix, but
these are the main components of a combatant:



Algorithm 2: WEREWoLF Algorithm
Initialization: begin1

Let P0 be an initial population of WoLF instances of fixed size2
S (initialized as in the case of standard WoLF)
∀iwi ∈ P0 initialize res(wi)← 0 and cnt(wi)← 03
Let g ← 0 be the generation counter4
Let c← 0 be the execution counter5

end6
//The evaluation step is repeated every time this algorithm is selected7
for evaluation
Evaluation Step (using the contrast controller wc) begin8

c← c+ 1, execution counter9
Select wi from the population Pg10
Execute a contest of wi against the contrast controller wc having11
rew as the final reward for wi

Update the result value for wi, res(wi)← res(wi) + rew and12
cnt(wi)← cnt(wi) + 1
Update wi during the learning process of the contest in the13
population Pg

if c mod CGEN = 0, the execution counter is multiple of the14
executions per generation then
∀iwi ∈ Pg compute individual fitness fit(wi)← res(wi)

cnt(wi)15
Apply genetic operators over Pg and produce the new16
offspring population of Pg+1 and g ← g + 1
∀iwi ∈ Pg initialize res(wi)← 0 and cnt(wi)← 017

end18
end19

• A combatant has two different counters which represent
his health (called HP) and his energy (called EP), the
different actions that are carried out by each combatant
can produce changes at the counters of both combatants.

• Each of the combatants has a set of actions that he can
execute. The actions are classified as REST, ATTACK
and DEFENCE actions. Each combatant has a different
detailed interpretation of each named action in order to
produce interesting asymmetric control strategies, which
depend on the combatant being controlled and on the
opponent combatant.

• Each action has two basic counters: Action Points
(AP) which represent the amount of time that takes
from the declaration of the action and the execution
or finalization of the action, and the Exhaustion Points
(EP) which is the amount of energy consumed (restored
in the case of the REST action) to the action, applied
when the action concludes.

• The ATTACK actions have the probability of hit, and the
description of the basic damage that deals in the case of
hitting. The damages are computed with three counters:
Health Damage (HD), Exhaustion Damage (ED) and
Stun Damage (SD). The HD and ED are subtracted from
the counters of the target when the attack succeeds. The
SD is transformed in certain amount of time which the
target is inactive, loosing his declared action.

• The DEFENCE actions also have a probability of block-
ing. The defences are active since they are declared and
protect the actor as long as they do not finish. If during
their duration an attack is blocked the amount of HD
and ED damage is reduced by a factor called Reduction
(Red). There are some defences that can also block the
SD damage that are marked as UnStun.

Algorithm 3: Simple Battle Manager Engine
begin1

Let B,R ∈ C̄ two combatants with2
AB = {AB1 , . . . , ABn}, AR = {AR1 , . . . , ARm} ∈ A the
sets of actions for B and R.
while Finalization state not reached do3

Let segi = {Aj , . . .} next segment of Actions and ini ∈ N4
the next instant counter
RecoverEnergy(B,R, ini)5
RecoverStun(B,R, ini)6
for Aj do7

if Aj is Attack then8
Resolve(Aj , S, T ) → Dj ∈ D̄9

end10
EnergyModification(Aj , S)11

end12
ApplyDamages(D̄)13
if B or R has no action declared then14

DeclareAction(c ∈ C̄)15
end16

end17
end18
Where19
RecoverEnergy(B,R, ini) adds an amount of energy to the20
combatant counter depending of the ini difference between segments
RecoverStun(B,R, ini) updates the counter of time remaining to21
finish the stun time for each combatant, if applicable
Resolve(Aj , S, T ) → Dj22
begin23

if Aj hits then24
HitGrade(Aj)→ Goff25
if T has a defence declared then26

DefenceGrade(ATi
)→ Gdef27

end28
DamageCalculus(Goff −Gdef , ATi

)→ Dj29
end30
else31

0→ Dj32
end33
return Dj34

end35

The general description of the game engine is explained at
the Algorithm 3. The main features of this game are: (1) the
actions are declared, in many cases, simultaneously by the
two combatants, (2) the probability of success in the actions,
and (3) the order of execution of the actions can be altered,
because there are certain attacks (those which can inflict stun
damage) that can delay the execution of the target’s actions.
These features make it an interesting game to study that
captures many of the most important underlying features of
fighting games.

V. EXPERIMENTAL RESULTS

The experimental set up is based on the contest between
two combatants, one with a fixed strategy and another
using learning to adapt his own strategy over time. For this
experiment the combatant characteristics are the same for
both of the combatants to be fair and to make the result
only dependent on the strategy and not on the combatant
capabilities; the profile used is the one included at the
Appendix.

Twelve (12) different controllers were built for the static
strategies, with different rules or mechanisms. The con-
trollers built are the following:



• A random controller, which randomly selects actions
from the nine possible ones (E_RAND).

• A rule based engine, with mixed strategies which tries to
exploit the time between the declaration and execution
to select fast actions (E_SMART).

• Ten controllers based on Behaviour Trees [1], [22],
shown in Figures 1, 2 and 3.

Figure 1. Behaviour Trees. Top: E BT OFF Down: E BT DEF

Figure 2. Behaviour Trees Top to Down, Left to Right: E BT ALL,
E BT COMBO, E BT HARD and E BT COWARD

For the learning controllers, six different alternatives were
proposed:

Figure 3. Behaviour Trees Top to Down, Left to Right: E BT ENERGY,
E BT STUN, E BT FINAL and E BT TIMER

• A SARSA controller with parameters ϵ = 0.1, γ = 1.0.
• A WoLF controller with parameters ϵ = 0.1, α =

0.4, γ = 0.4, σl = 0.6 and σw = 0.2.
• A WEREWoLF controller with DE evolutionary strat-

egy and the same parameters of the aforementioned
WoLF.

• A WEREWoLF controller with EDA evolutionary strat-
egy and the same parameters of the aforementioned
WoLF.

• A WERESARSA controller with DE evolutionary strat-
egy and the same parameters of the aforementioned
SARSA.

• A WERESARSA controller with EDA evolutionary
strategy and the same parameters of the aforementioned
SARSA.

All the “WERE controllers” (WEREWoLF and WERE-
SARSA) use a fixed size population of 10 individuals which
are combined to produce the new populations using the two
different schema (DE and EDA). Fitness evaluation is the
average reward along 20 episodes. DE-specific parameters
are: DE/rand/1/bin model, CR=0.5, F=0.5. EDA-specific
parameters are: UMDAg model with elitism.

For all of the controllers the environment is represented
by the following state variables:

• The enemy action declared (a value in the interval
[0, 8]).

• The segment of action when the enemy action will be
executed. These values are discretised into a set of bins
depending on the APs required by the different actions
the learning controller can do. Thus, each of the bins
represents one or more possible actions a controller can
perform before the opponent’s action is completed. The
values of this variable depend on the combatant profile,
using the one depicted at the Appendix the range is
[0, 6] = {[0−6APs], [7−10APs], [11−12APs], [13−
15APs], 16APs, [17− 20APs], 21 +APs}



• The percentage of remaining HPs of the learning com-
batant discretised into four quartiles. The values are in
[0, 3]

• The relative difference of HPs between the two com-
batants. If the static combatant has less HPs than the
learning combatant the variable is set to 0, otherwise it
is 1.

The possible states result from the cross product of these
variables (504 possible states) plus four additional states:

• One final state where the combatant controlled by the
learner is dead.

• One final state where the combatant controlled by the
static strategy is dead.

• One state for the case where learning combatant is so
exhausted that he can not make any other action.

• One state for the case where combatant with the static
strategy is so exhausted that can not make any other
action.

The complete representation of the environment produce a
set of 508 different states. This state space representation is
used by all of the controllers. And the action space is fixed
by the combatant profile having 9 different actions.

Each step of the simulation obtains a reward derived by the
current environment state. The reward function is the same
for all of the experiments:

r = α∆∆HP%+ (1− α)∆∆EP%+W (̇1− τ) (4)

Where,

∆∆HP% = ∆MyHP%−∆EnemyHP%,

∆MyHP% = MyHP%t −MyHP%t−1, Same for EP%

τ =
APst

APsmax

α is set to 0.95 and W is 200 if EnemyHP < 0, or −200
if MyHP < 0, or 0 otherwise.

Each experiment is repeated 25 times (for each com-
bination of one static and one learning controller). Each
evaluation is performed as follows: first, a learning phase
(out of 10000, 25000 and 50000 episodes), and finally, a
evaluation phase (of 1000 episodes). Each episode is carried
out until one of the combatants has lost (reaching 0 HPs)
or a fixed time of 10000 APs is reached (resulting as a
draw combat). The final comparison among all the learning
controllers are based on the percentage of victories in the
evaluation phase against each of the static controllers.

A. Comparative results

In order to provide a proper statistical validation of the
results, the distribution of all of the results was first compared
with the Friedman test to detect significant differences among
the algorithms. For the case of the 10000 episodes scenario,
a value of 28.95 was obtained for the chi-squared statistic,
which corresponds with a p− value of 2.37E − 05, a value
of 33.57 (p − value of 2.90E − 06) and a value of 34.14
(p − value of 2.23E − 06), for 25000 and 50000 episodes
respectively. In the three scenarios, these results confirm the

existence of significant differences between the algorithms.
According to this test, the algorithms were ranked as shown
in Table I, where, WEREWoLF-DE algorithm obtained the
best results for the three scenarios. In addition, the table also
shows the average win ratio for each of the algorithms. Then
two post-hoc methods (Holm and Hochberg) were used to
obtain the adjusted p-values for each comparison between
the control algorithm (WEREWoLF-DE) and the remaining
algorithms. The Wilcoxon signed rank test was also used
for comparing the results, adjusting the obtained p− values
to take into account the Family-Wise Error Rate (FWER)
when conducting multiple comparisons. The results of these
tests are reported in Table III and show, for all of them, that
there is statistical evidence to state that WEREWoLF-DE is
significantly better than the remaining algorithms (for all the
cases according to Wilcox test and in a vast majority of the
cases according to Holm and Hochberg procedures).

Table I
AVERAGE RANKING AND AVERAGE WIN RATIO AGAINST ALL

CONTROLLERS (10000, 25000, 50000 EPISODES)

Ranking Avg Win Ratio
10k 25k 50k 10k 25k 50k

WEREWoLF-DE 1.42 1.33 1.58 0.35 0.41 0.44
WERESARSA-DE 2.75 2.66 2.50 0.26 0.26 0.27
SARSA 3.42 3.08 2.75 0.23 0.24 0.24
WEREWoLF-EDA 3.83 4.17 4.33 0.15 0.16 0.12
WERESARSA-EDA 4.58 4.92 4.83 0.19 0.17 0.16
WoLF 5.00 4.83 5.00 0.19 0.22 0.21

To summarize the general performance of the controllers
we can look at the Figure 4, which represents the average
win ratio against each of the controllers (in the particular
case of 50000 episodes).

In a detailed study of the performance of the algorithms,
a particular case behaves differently from the rest of the
experiments: The most defensive controller (E BT DEF)
prefers a draw against a lose, tending to consume the time,
in this particular case the SARSA-based controllers reach
more victories, but with an average reward lower than the
reward obtained by the WoLF-based controllers (see Table
II). These results show that the WoLF algorithm, in those
problems where the reward function punishes the wrong
steps, tends to perform a more cautious exploration of the
environment, becoming a more conservative controller than
SARSA algorithm. This particular behavior is positive in this
case, according to the selected evaluation criteria.

Table II
AVERAGE REWARD WITH 50000 EPISODES AGAINST E_BT_DEF

Avg Rw StdDev Rw Win Ratio
WoLF -2.8 22.99 5E-05
WEREWoLF-DE -4.6 29.27 3E-04
SARSA -162.6 58.9 0.02
WEREWoLF-EDA -87.3 100.19 0.02
WERESARSA-EDA -59.76 153.89 0.26
WERESARSA-DE -12.19 151.46 0.34

Another interesting study is the evolution of the fitness
value. Individuals obtain this fitness value as the average



Figure 4. Average Win Ratio with 50000 episodes

of their performance on each of the episodes they consume
during a given generation. This performance is the sum of
all the rewards granted by all the actions in that episode. Al-
though the evolution is not continuously incremental due to
the randomness of the problem (actions have only a random
chance of success), WEREWoLF-DE shows an incremental
trend along the different generations (for instance, the results
shown by the Figure 5).

Finally, it is clear also that DE search exploits much
better the mechanism for combining multiple learners in
this evolutionary framework. The results are consistent for
both WoLF and SARSA controller cores and along mul-
tiple length of the experiments (10000 episodes to 50000
episodes). The poor performance of EDA variants can be
explained by the reduced population (compared with the size
of the chromosome), this was also a reason why other state-
of-the-art optimization techniques, such as CMAES, were
not considered. DE proves to be a powerful optimization
alternative in high-dimensionality problems.

VI. CONCLUSIONS

We implemented and tested two hybrid learning algorithms
that combine evolutionary algorithms with reinforcement
learning. We compared the controllers learned using these
algorithms with several other controllers, and analysed the

Figure 5. WEREWoLF-DE Fitness evolution vs E BT ALL and
E SMART (50000 episodes)

results using standard statistical tests. The results show the
improved performance of reinforcement learning algorithms
when combined with evolutionary techniques. This experi-
mentation has been carried out in environments with large
state spaces and with a set of complex actions in which
Were-Hybrid algorithms outperforms the exploration of the
standard reinforcement learning mechanisms.

Despite the improvement of the learning algorithm, this
work has highlighted certain interesting facts. The represen-
tation of the state space and the construction of the reward
function is, like in any RL problem, complex and critical
to the success of the experiment. The results show that
the application RL to this kind of video game scenario is
highly dependent on the environment variables used for the
description of the state and the reward function, that must
provide enough information to guide the learning process.
In future work, we want to apply Function Approximators
to try to represent with more fidelity the environment and
extract all the possible knowledge from it in order to steer
the learning more effectively.
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Table III
STATISTICAL VALIDATION 10000, 25000 AND 50000 EPISODES

(WEREWOLF-DE IS THE CONTROL ALGORITHM)

p-values of the different tests
WEREWoLF-DE vs. Holm Hochberg Wilcox

10000 episodes
WERESARSA-DE 8.09E − 02 8.09E − 02 1.71E − 02

√

WERESARSA-EDA 1.35E − 04
√

1.35E − 04
√

6.10E − 03
√

SARSA 1.77E − 02
√

1.77E − 02
√

4.88E − 04
√

WEREWoLF-EDA 4.67E − 03
√

4.67E − 03
√

4.88E − 04
√

WoLF 1.35E − 05
√

1.35E − 05
√

7.32E − 04
√

Wilcox p-value with FWER: WEREWoLF-DE vs. All 2.48E − 02
√

25000 episodes
WERESARSA-DE 8.09E − 02 8.09E − 02 1.05E − 02

√

WERESARSA-EDA 1.35E − 05
√

1.35E − 05
√

2.44E − 03
√

SARSA 4.39E − 02
√

4.39E − 02
√

4.88E − 04
√

WEREWoLF-EDA 6.23E − 04
√

6.23E − 04
√

4.88E − 04
√

WoLF 1.84E − 05
√

1.84E − 05
√

2.44E − 04
√

Wilcox p-value with FWER: WEREWoLF-DE vs. All 1.41E − 02
√

50000 episodes
WERESARSA-DE 2.53E − 01 2.30E − 01 1.34E − 02

√

SARSA 2.53E − 01 2.30E − 01 1.22E − 03
√

WoLF 3.85E − 05
√

3.85E − 05
√

1.71E − 03
√

WERESARSA-EDA 8.35E − 05
√

8.35E − 05
√

3.42E − 03
√

WEREWoLF-EDA 9.52E − 04
√

9.52E − 04
√

4.88E − 04
√

Wilcox p-value with FWER: WEREWoLF-DE vs. All 2.02E − 02
√

√
means that there are statistical differences with significance level α =

0.05

(Grant CONSOLIDER CSD2007-0022, INGENIO 2010) and
OVAMAH (Grant TIN2009-13839-C03-02).
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APPENDIX

Table IV
COMBATANT DESCRIPTION EXAMPLE

Brutus HPs 250 EP 150
Rest AP EP

Rest10 10 -25
Attack AP EP HD ED SD % Hit
Quick 6 13 11 5 0 0.65
Stun 12 19 11 10 20 0.55
Hard 16 25 33 15 10 0.40

Accurate 12 16 10 5 0 0.85
Dummy 20 25 5 5 5 0.45

Defense AP EP Red UnStun % Block
Reduction 10 5 0.25 false 0.30
UnStun 15 8 0.65 true 0.60
Sure 20 4 0.75 false 0.85


