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Abstract In this contribution we present a study on the
combination of Differential Evolution and the IPOP-CMA-
ES algorithms. The hybrid algorithm has been constructed
by using the Multiple Offspring Sampling framework, which
allows the seamless combination of multiple metaheuristics
in a dynamic algorithm capable of adjusting the participa-
tion of each of the composing algorithms according to their
current performance. In this study we analyze the existing
synergies, if any, emerging from the combination of the two
algorithms. For this purpose, the COCO suite used in BBOB
2009 and 2010 Workshops has been used. The experimental
results on the noiseless testbed show a robust behavior of
the algorithm and a good scalability as the dimensionality
increases. In the noisy testbed, the algorithm shows a good
performance on functions with moderate to severe noise.
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1 Introduction

Continuous optimization is a field of research which is getting
more and more attention in the last years. Many real-world
problems from very different domains (biology, engineering,
data mining, etc.) can be formulated as the optimization of a
continuous function. These problems have been tackled using
Evolutionary Algorithms (EA) [17] or similar metaheuristics
[30].

Selecting an appropriate algorithm to solve a continuous
optimization problem is not a trivial task. Although a par-
ticular algorithm can be configured to perform properly in a
given scale of problems (considering the number of variables
as their dimensionality), the behavior of the algorithm can
degrade as this dimensionality increases, even if the nature
of the problem remains the same.

In this contribution, the Multiple Offspring Sampling
(MOS) [15] framework has been used to combine an Increas-
ing Population Covariance Matrix Adaptation Evolution
Strategy (IPOP-CMA-ES) and a Differential Evolution (DE)
algorithm. This framework allows the combination of dif-
ferent metaheuristics following an HRH (High-level Relay
Hybrid) approach (this nomenclature will be reviewed in
Sect. 2) in which the number of evaluations that each algo-
rithm can carry out is dynamically adjusted.

The purpose of this study is two-fold. On the first hand,
we want to study if a successful hybridization of Differen-
tial Evolution and the IPOP-CMA-ES algorithms is possible.
Our hypothesis is that it should be possible to combine both
algorithms to exploit the strength of each algorithm in sev-
eral groups of functions. In this sense, several functions from
the benchmark will be studied in detail to see if some syn-
ergies emerge from this combination (Sect. 5.1) that help
one algorithm to overcome its limitations on certain groups
of functions and vice-versa. On the second hand, we will
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present the results on the benchmark proposed in the COCO
suite [11,13] used at the BBOB 2009 and 2010 Workshops
to offer a general view of the performance of the hybrid algo-
rithm proposed in this contribution. In particular, a detailed
description of the experimentation conducted for this work
(including a thorough parameter tuning phase) is provided,
as well as the full results obtained on both the noiseless and
the noisy testbeds and an analysis presenting the main con-
clusions extracted from this study.

The rest of the paper is organized as follows: in Sect. 2,
relevant related work is briefly reviewed. Section 3 details
the proposed algorithm. In Sect. 4 the experimental scenario
and the parameter tuning carried out are described. Section 5
presents and comments on the results obtained and lists the
most relevant facts from this analysis. Finally, Sect. 6 con-
tains the concluding remarks obtained from this work.

2 Related work

The HRH terminology was introduced in [28], one of the
first attempts to define a complete taxonomy of hybrid meta-
heuristics. This taxonomy is a combination of a hierarchical
and a flat classification structured into two levels. The first
level defines a hierarchical classification in order to reduce
the total number of classes, whereas the second level pro-
poses a flat classification, in which the classes that define
an algorithm may be chosen in an arbitrary order. From this
taxonomy, the following four basic hybridization strategies
can be derived, according to how the combination of the
different algorithms is implemented: (a) LRH (Low-level
relay hybrid): one metaheuristic is embedded into a single-
solution metaheuristic. (b) HRH (High-level relay hybrid):
two metaheuristics are executed in sequence. (c) LTH (Low-
level teamwork hybrid): one metaheuristic is embedded into a
population-based metaheuristic. (d) HTH (High-level team-
work hybrid): two metaheuristics are executed in parallel.
For this work, we review some relevant work on the HRH
group, the one the algorithm proposed in this paper belongs
to. In the last years there has been an intense research in HRH
algorithms, combining different types of metaheuristics. In
the following subsections we will review some relevant
approaches combining DE with other techniques, CMA-ES
with other techniques and, finally, some similar approaches
to the MOS framework described in this paper, stressing the
main differences between these algorithms and our contribu-
tion.

2.1 HRH algorithms combining DE with other techniques

The DE algorithm is one of the Evolutionary Algorithms
that has been recently hybridized using this kind of strategy.

In the following paragraphs some of the most recent and
representative approaches will be reviewed.

Gao and Wang [7] proposed CSDE1, a memetic DE algo-
rithm, to optimize thirteen 30-dimensional continuous prob-
lems. CSDE1 uses simplex (Nelder–Mead method) to carry
out the Local Search (LS) using also chaotic systems to create
the initial population. CSDE1 applies the local search only
to the best individual in the population at each generation.

Tirronen et al. [29] designed a hybrid DE algorithm that
combined the Hooke–Jeeves Algorithm (HJA) and the Sto-
chastic Local Search (SLS), coordinated by an adaptive rule
that estimates fitness diversity using the ratio between the
standard deviation and the average fitness of the population.
This algorithm was compared against a regular DE and an
Evolution Strategy (ES) on the problem of weighting coeffi-
cients to detect defects in paper production.

The FAMA (Fast Adaptive Memetic Algorithm) proposed
in [2], is a memetic algorithm with a dynamic parameter set-
ting and two local searchers adaptively launched, either one
by one or simultaneously, according to the needs of the evo-
lution. The employed local search methods are: the Hooke–
Jeeves and the Nelder–Mead methods. The Hooke–Jeeves
method is executed only on the elite individual, whereas the
Nelder–Mead simplex is carried out on 11 randomly selected
individuals. FAMA includes a self-adaptive criterion based
on a fitness diversity measure and the iteration number. Muta-
tion probability and other search parameters depend also on
the diversity measure. The FAMA algorithm was compared
against Tirronen’s algorithm and SFMDE obtaining better
results for the problem of permanent magnet synchronous
motors [3].

2.2 HRH algorithms combining CMA-ES with other
techniques

Contrary to DE, there has not been the same effort in com-
bining CMA-ES with other algorithms, probably due to the
difficulty of sharing and adjusting the inner information of
this algorithm.

In [9], the authors proposed a VNS algorithm in which the
intensification component of the algorithm was a CMA-ES
algorithm. A similar approach was followed by Molina et al.
[19], who proposed a memetic algorithm with local search
chains in which the IPOP-CMA-ES algorithm is used as an
intensification algorithm.

In [21] a slightly different approach is followed. In this
paper, the authors propose a hybrid of Particle Swarm Opti-
mization (PSO) and CMA-ES, in which several instances
of the CMA-ES algorithm run in parallel as particles of the
swarm. The rationale behind this combination is to exploit the
global exploration capabilities of PSO and the local explo-
ration power of CMA-ES.
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Kämpf and Robinson [14] combine Differential Evolution
and CMA-ES in an HRH scheme, in which one algorithm is
applied after the other for a prefixed number of generations.
Experimental results show emergent synergies between both
algorithms: the hybrid algorithm has similar convergence
speed to that of CMA-ES and similar robustness to that of
Differential Evolution.

Furthermore, both algorithms have obtained remarkable
results in previous sessions and competitions on continu-
ous optimization [1,23,24]. For this reason, and to explore
new approaches for combining the IPOP-CMA-ES algorithm
with other metaheuristics, we have proposed a hybrid algo-
rithm combining both of them, which is benchmarked on the
BBOB 2010 testbed.

2.3 Similar approaches to the MOS framework

In this section we review two relevant similar approaches
to the MOS framework, comparing their characteristics and
highlighting the main differences among them.

In [18], an Evolutionary Algorithm with competing
heuristics is presented. In this algorithm, several heuristics
are considered to create new candidate solutions. The proba-
bility to select one of the available heuristics is proportional
to a measure of how successful one of the heuristics has been
in creating new better solutions. These probabilities can be
reset through the evolutionary process if they reach some
prefixed critical values. Compared to MOS, there are some
important differences. First, before creating a new solution,
this algorithm must select the heuristic to be used according
to its probability, which may not be suitable to combine any
type of heuristic that may require a budget of evaluations to
be useful. Second, the success measure is cumulative, until
a reset is carried out, which means that the adjustment of
the probability of selecting one heuristic can be very slow
in some situations in which different heuristics result to be
more effective at different stages of the search process.

In [22], a Population-based Algorithm Portfolios is pre-
sented and evaluated in numerical optimization problems.
This algorithm is based on the theory of investment portfo-
lios developed in the field of economics and tries to mini-
mize the “risk” (probability of not reaching the optimum) by
combining several population-based algorithms. Compared
to the algorithm proposed in this paper, there are several dif-
ferences. On the first hand, MOS works with a shared overall
population, whereas the algorithm proposed by Peng et al.
assigns an independent population to each algorithm. On the
other hand, MOS does not impose a distributed architecture:
it can be used within an island model, but this is not embed-
ded in its design. From this point of view, MOS could be seen
as a more general algorithm, as it allows both centralized and
distributed implementations of hybrid algorithms.

3 Algorithm presentation

Multiple Offspring Sampling (MOS) is a framework for the
development of Dynamic Hybrid Evolutionary Algorithms
[15]. MOS provides the functional formalization necessary
to design this type of algorithms, as well as the tools to iden-
tify and select the best performing configuration for the prob-
lem under study. In this context, the hybridization of several
algorithms can lead to the following two situations:

– A collaborative synergy emerges among the different
algorithms that improves the performance of the best one
when it is used individually.

– A competitive selection of the best one takes place, in
which the final performance is equivalent to the best com-
peting algorithms, with a minimum overhead.

If we were given to choose, the first scenario would be
obviously selected. Ideally, we would like the hybrid algo-
rithm to be able to combine several complementary heuristics
and obtain better results than each algorithm separately. How-
ever, this is not always possible and, in those cases, hybridiza-
tion might still be useful if it alleviates the task of selecting
the best algorithm for a particular problem. As we will show
in Sect. 5.1, the hybrid algorithm proposed in this contribu-
tion belongs to this second category and allows the automatic
selection of the best performing algorithm (between DE and
IPOP-CMA-ES) for each function of the considered bench-
mark.

In the following sections we will review the Multiple Off-
spring Sampling framework (Sect. 3.1) and the hybrid algo-
rithm proposed for this work based on the MOS framework
(Sect. 3.2).

3.1 Multiple Offspring Sampling

In MOS, a key term is the concept of technique, which is a
mechanism, decoupled from the main algorithm, to generate
new candidate solutions. This means that, within a MOS-
based algorithm, several techniques can be used simultane-
ously, and it is the main algorithm which selects among the
available optimization techniques the most appropriate ones
for the particular problem and search phase. A more concrete
definition for these reproductive mechanisms follows:

Definition 1 A MOS reproductive technique is a mechanism
to create new individuals in which: (a) a particular evolution-
ary algorithm model, (b) an appropriate solution encoding,
(c) specific operators (if required), and (d) necessary para-
meters have been defined.

Furthermore, the use of multiple reproductive mecha-
nisms simultaneously has to be controlled in some way. First,
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we should define periodical checkpoints in which the partic-
ipation of each technique in the overall process is adjusted
according to its current performance. The periods between
these checkpoints are the steps of our algorithm. Then, we
should define the number of individuals that each technique j
can generate at each step i (�( j)

i ), which is called its participa-
tion ratio. This ratio is uniformly distributed at the beginning
of the search process, and it is periodically updated accord-
ing to a given policy. In the canonical version of MOS, this
adjustment is carried out by what is known as a Participation
Function. These functions can carry out simple static assign-
ments or, more interestingly, dynamic adjustments according
to a Quality Measure that evaluates how good the offspring
of each technique j is during the step i from the point of view
of that measure (Q( j)

i ).
At this point, different measures can be proposed, depend-

ing on the concept of quality that we consider. One option
would be to consider the Fitness Average of the subset of the
best individuals of the offspring generated by each technique
as our measure for quality. Other alternatives could be used
(Negative Slope Coefficient by Vanneschi [31], age, diversity,
etc.). If the Fitness Average measure is selected, the quality
value computed from the offspring population produced by
a technique j during the step i (O( j)

i ) is obtained as defined
in Eq. 1.

Q( j)
i =

∑

o∈O( j)
i

f i t (o)

|O( j)
i |

(1)

At the end of each step, the quality of each of the available
techniques is recomputed, according to the Quality Function
(QF) under consideration. These quality values are then used
by a Dynamic Participation Function (PF) to adjust the num-
ber of Fitness Evaluations allocated for each technique at
each step (Eq. 2). This PF computes, at each step, a trade-off
factor for each technique, �( j)

i , that represents the decrease in
participation for the j-th technique at the i-th step, for every
technique except the best performing ones. These techniques
will increase their participation by the sum of all those �

( j)
i

divided by the number of techniques with the best quality
values.

�
( j)
i =

{
�

( j)
i−1 + η if j ∈ �,

�
( j)
i−1 − �

( j)
i otherwise

(2)

η =
∑

k /∈� �
(k)
i

|�|
� =

{
l/Q(l)

i ≥ Q(m)
i ∀l, m ∈ [1, n]

}

Qmax
i = max

{
Q( j)

i ∀ j ∈ [1, n]
}

The above-mentioned �
( j)
i values are computed as shown

in Eq. 3. These �
( j)
i factors are computed from the relative

difference between the quality of the best and the j-th tech-
niques, n being the number of available techniques. In this
equation, ξ represents a reduction factor, i.e., the ratio that
is transferred from one technique to the other(s). Finally, a
minimum participation ratio can be established to guarantee
that all the techniques are represented through all the search.
This is done to avoid, if possible, premature convergence to
undesired solutions caused by a technique that obtains all the
participation in the early steps of the search and quickly con-
verges to poor regions of the solution space, preventing the
other techniques to collaborate at later stages of the process,
in which they could be more beneficial.

�
( j)
i = ξ · Qmax

i − Q( j)
i

Qmax
i

· �
( j)
i−1 ∀ j ∈ [1, n]/j /∈ � (3)

Finally, the Multiple Offspring Sampling framework
allows the development of both HTH (High-level Teamwork
Hybrid) and HRH (High-level Relay Hybrid) algorithms
(according to Talbi’s nomenclature [28]). In the case of the
HTH algorithms, two metaheuristics are executed in parallel,
working at the same time on the resolution of the problem. On
the other hand, in the case of the HRH algorithms, two meta-
heuristics are executed in sequence, one after the other, and
changes of the executing algorithm are carried out according
to a given policy. As the proposed algorithm is of the HRH
type, more attention will be paid to this type of algorithms.

Algorithm 1 HRH MOS Algorithm
1: Create initial overall population of candidate solutions P0
2: Initialize step length: F Es0 = |P0| · φ

3: Uniformly distribute participation among the n used techniques (Tj ):

∀ j �
( j)
0 = |P0|

n
Each technique produces a subset of individuals according to its
participation:
F Es( j)

0 = �
( j)
0 · F Es0

4: Evaluate initial population P0
5: while number of evaluations not exceeded do
6: Start new step i
7: Update Quality of Tj computed as the average quality of all the

individuals
created by technique Tj in step i − 1

8: Update participation ratios from Quality values computed in Step
7:

∀ j �
( j)
i = P F(Q( j)

i )

9: Update F Es allocated for each technique at current step:
∀ j F Es( j)

i = �
( j)
i · F Esi

10: for every available technique Tj do

11: while F Es( j)
i not exceeded do

12: Evolve
13: end while
14: end for
15: if restart needed then
16: Increase population size: |Pi+1| = 2 · |Pi |
17: Restart techniques information and population
18: end if
19: Adjust step length to its new value: F Esi+1 = |Pi+1| · φ

20: end while
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In terms of the MOS framework, the available techniques
in a MOS-based HRH hybrid algorithm are used in sequence,
one after the other, each of them reusing the output popu-
lation of the previous technique. This approach fits better
when there are non-population-based techniques, such as
local searches, or algorithms with very different offspring
sampling mechanisms as techniques are not constrained to
produce a % of the common population. If different popula-
tion sizes are used by different techniques, it is the respon-
sibility of the technique to make grow/shrink the population
in order to adjust it to its needs and to return a population of
an appropriate size to the next technique. For example, if a
population-based algorithm is combined with a local search,
the latter could select one or more individuals from the output
population of the population-based algorithm, modify them
as needed and then include them in the original population
by means of a predefined elitism procedure.

In this type of algorithms, the search process can be
divided into a fixed number of steps, which is established at
the beginning of the execution (as it was shown in [16]), or a
dynamic number of steps, which depends on the adjustment
of the population size conducted after restarting the algo-
rithm (Sect. 3.2 describes this restarting in detail). In the first
case, each step is assigned a fixed amount of Fitness Eval-
uations (F Esi in Algorithm 1) that will not change through
the execution of the algorithm. In the second case, which
is the alternative used in this study, the step length depends
on the population size at each phase of the search process.
Its length is computed by multiplying the current population
size by a step factor (φ in Algorithm 1). This way we can
make the steps more homogeneous in time or, on the other
hand, adapt their length to adjust how quick the participation
adjustment should be done. In both cases, the evaluations
assigned to each step, regardless they have been assigned
statically or dynamically, are distributed by the Participation
Function (PF).

Each technique can manage its number of allocated FEs
at each step of the algorithm (F Es( j)

i ) in its own particu-
lar way. For example, a population-based technique, such
as Differential Evolution, could execute several iterations of
the algorithm, whereas a Local Search could decide to spend
all its assigned evaluations in improving just one individual.
The quality of the new individuals of each technique will be
averaged at the end of the whole set of evaluations, as the
division of the search into generations depends on each of
the techniques.

The pseudocode given in Algorithm 1 summarizes the way
an HRH MOS algorithm works. The reader is referred to [15]
for more information on the MOS framework.

3.2 Proposed algorithm

In this contribution, an HRH Dynamic algorithm is pro-
posed. This algorithm combines the explorative/exploitative
strength of two heuristic search methods, that separately have
proven to obtain very competitive results in either low or
high dimensional problems. These algorithms are: the IPOP-
CMA-ES algorithm [1], the best algorithm of the “Special
Session on Real-Parameter Optimization” held at the CEC
2005 Congress, and the DE algorithm [27] which has demon-
strated to obtain competitive results when executed indepen-
dently and when combined with other algorithms [7,20].

For the adjustment of the participation of each technique
in the overall search process, the Participation Function
described in Eqs. 2 and 3 has been used. To measure the
quality of the different techniques, the Quality Function in
Eq. 4 has been proposed. This QF takes into account two
desirable characteristics in a search algorithm: the Average
Fitness Increment of the newly created individuals after a set
of allocated Fitness Evaluations and the number of times that
these improvements take place (Eq. 4). To compute the Aver-
age Fitness Increment we first need to obtain the differences
between the fitness of each new individual and the average
fitness of its parents per technique and step. In the case of
Differential Evolution, those parents are the three differen-
tial vectors and the donor vector, whereas in the IPOP-CMA-
ES algorithm the parents are the whole previous population.
Then, the Average Fitness Increment of each technique is
computed as the mean of all these differences.

This Quality Function uses the Average Fitness Increment
as the effective QF only if there is consensus among both
measures. If this is not the case, the raw number of fitness
improvements is used. The logic behind this function is that,
in some functions, the use of the Average Fitness Increment
QF could impose too much selection pressure reducing also
population diversity. As a result of this, the MOS combina-
tion strategy could be biased towards suboptimal solutions.
In some particular situations, a technique which is not carry-
ing out an effective search could introduce, for some reason,
a large increment in the average fitness value of the new indi-
viduals. This could be due, for example, to a recombination
of poor solutions. In such a case, it is easy for a technique
to improve previous solutions. However, it could be more
adequate to carry out small changes to good individuals in
order to find the right “path” to the global optimum rather
than carrying out substantial modifications to poor solutions.
For this reason, a consensus of both measures is required in
order to apply the more elitist Average Fitness Increment QF.
If this is not the case, the number of fitness improvements is
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used to guarantee a softer adjustment of participation.

Q( j)
i =

⎧
⎪⎨

⎪⎩

�
( j)
i−1 i f Σ

( j)
i−1 > Σ

(k)
i−1∧

Γ
( j)

i−1 > Γ
(k)

i−1

�
( j)
i−1 otherwise

∀ j, k ∈ [1, n] (4)

Q( j)
i ≡ Quality of technique Tj in step i

Σ
( j)
i ≡ Average Fitness Increment of Tj in step i

Γ
( j)

i ≡ Number of Fitness improvements of Tj in step i

To summarize, the presented algorithm works as follows.
All the available techniques are allocated the same number
of FEs at the beginning of the execution. At the end of each
step, the quality of the new solutions created by each tech-
nique is evaluated and, based on this quality, its participation
ratio is adjusted accordingly. This participation ratio is used
to compute the number of FEs that each technique will be
allowed to use in the next step of the search. If a minimum
participation ratio has been established, then the number of
FEs can not go below this threshold.

If a restart is needed by any of the techniques, then the
population and the step length are readjusted to their new
values. In this case, a restart mechanism, similar to the one
used by the IPOP-CMA-ES algorithm, was also used within
the proposed algorithm. With this strategy, the algorithm is
halted whenever a restart stopping criteria is met, reinitializ-
ing the population and increasing its size by a factor of two
until a maximum population size is reached. As this restart
mechanism depends on some specific conditions of the IPOP-
CMA-ES technique, the restart can only take place when this
technique is being executed. However, the effect of the restart
affects to all the available techniques, as it is the overall pop-
ulation which is restarted. Moreover, the framework easily
allows the use of additional restart mechanisms associated
to the remaining techniques or overall restart mechanisms
independent of these techniques.

4 Parameter tuning

The results reported for this work have been obtained from
50 independent executions of each of the functions in both
the noiseless and the noisy testbeds described in [11,12] exe-
cuted on the computer configuration displayed in Table 1.

Table 1 Computer configuration

PC Intel Xeon 8 cores 1.86 Ghz CPU

Operating system Ubuntu Linux 8.04

Prog. Language C++

Compiler GNU C++ 4.3.2

In this work, we have conducted a thorough parameter
tuning study to analyze the influence of the selection of dif-
ferent values for some of the parameters of the algorithm
on the performance of the hybrid algorithm. In particular,
we have focused our attention on the key parameters of the
hybrid algorithm: initial population size, maximum popula-
tions size (after restarts) and the step factor used to determine
the length of one step of the algorithm.

Table 2 contains the parameters that have been kept fixed
throughout the study. In particular, we have used recom-
mended parameter values for both composing algorithms
(Differential Evolution and IPOP-CMA-ES) as suggested in
[1,10,17]. Regarding the minimum participation ratio and
the reduction factor ξ , it has been fixed as recommended in
previous studies [15].

On the other hand, Tables 4 and 5 contain the detailed
information about the parameter tuning conducted for this
study. They show the parameters of the hybrid algorithm that
have been subject to adjustment. These parameters have been
considered because they could play a key role in the conver-
gence capability of the algorithm. As it can be seen, for the
(initial) population size six different values have been tested.
In the case of the maximum population size (after restarts),
three different values have been considered. Finally, the same
number of different values have been tested for the step fac-
tor parameter. All the possible combinations for these values
of those three parameters have been tested, which becomes
a total number of 54 configurations. The same set of values
have been considered for both testbeds, although they have
been adjusted independently, in order to be able to compare
how differently the algorithm has to be set up to work prop-
erly on different sets of functions. In both cases, to avoid
overfitting to any of the testbeds, the parameter tuning has
been conducted on a subset of functions, randomly select-
ing one or two representatives, depending on the size, from
each group of functions (i.e., separable functions, functions

Table 2 Common parameters

Parameter Value

DE CR 0.5

DE F 0.5

DE crossover operator Exponential

DE selection operator Tournament 2

DE model Classic

CMA-ES λ Same as hybrid population size

CMA-ES μ λ
2

Minimum participation ratio 5 %

Reduction factor ξ 0.05

Max. FEs. 105 D
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Table 3 Functions randomly
selected for the parameter tuning Noiseless testbed f1, f4, f7, f8, f11, f14, f18, f19, f21, f22

Noisy testbed f102, f106, f108, f110, f113, f117, f121, f123, f127, f128

Table 4 Parameters of the algorithm for the noiseless testbed

Parameter Value

Initial population size 25 50 75 100 150 200

Maximum pop. size (after restarts) 6,400 15,000 25,000

Step factor 5 10 20

Table 5 Parameters of the algorithm for the noisy testbed

Parameter Value

Initial population size 25 50 75 100 150 200

Maximum pop. size (after restarts) 6,400 15,000 25,000

Step factor 5 10 20

with low or moderate conditioning, etc.). See Table 3 for the
detailed list of functions finally selected.

The values that have been finally selected appear in bold
in Tables 4 and 5 for both the noiseless and the noisy testbeds,
respectively. These were the best configurations according to
the statistical tests described later on in this section. It can
be advanced that, for the noiseless testbed, the values for the
initial population size and the step factor are intermediate
values of those tested in the parameter tuning study. On the
other hand, we can observe how, in the case of the noisy
testbed, the selected values have moved to the limits of the
considered values in the case of both the initial population
size and the step factor. This gives an initial idea of how
differently an algorithm can perform as the testbed is changed
and the importance of a proper parameter tuning study.

Once the best configuration has been chosen for each test-
bed all the parameters of the algorithm remain the same for
all the functions and, thus, the Crafting Effort (CrE) value is
zero [13].

Table 6 presents a summary of the results of the statistical
tests carried out to decide which configuration of parameters
should be used for the noiseless testbed. This table shows the
values for the parameters for both the best and the worst con-
figurations on this subset of functions, the average ranking of
each algorithm according to the Friedman test and the nWins
value according to the nWins Procedure [15]. In that table
we can observe how the best configurations have in common
that they are using step factors of 10, whereas the worst con-
figurations use all a step factor of 5. To validate statistically
these results, the Wilcoxon signed-rank test, the Holm Pro-
cedure and the nWins Procedure were used. Both Wilcoxon

and Holm agree that using a step factor of 10 is better than
using a step factor of 20, whereas they gave statistical sup-
port to state that using a step factor of 10 is better than using
a step factor of 5. The nWins value showed in Table 6 gives a
quantitative view of how better are some configurations com-
pared to others, from a statistical point of view. The nWins
procedure basically counts in how many pairwise Wilcoxon
tests one configuration is statistically better than another. In
this case we can see that the best configuration is statistically
better than 41 out of 54 other configurations.

Once the best configuration has been selected, the same
procedure is repeated but now with the whole set of functions.
The results obtained are very similar to those presented in
Table 6, with the same best and worst configurations. How-
ever, now the best configuration is statistically better than 48
out of 54 other configurations.

Analogously, Table 7 presents a summary of the results of
the statistical tests for the noisy testbed. In that table we can
observe how the best configurations have in common that
they are using step factors of 20 and large initial populations
(150 individuals or more), whereas the worst configurations
use all a step factor of 5 and the smallest considered pop-
ulation (25 individuals). The same statistical validation has
been conducted on these data. In this case, both Wilcoxon
and Holm tests gave statistical support to state that using a
step factor of 20 is better than using a step factor of 5 and that
using the smallest population of 25 (and also 50) is worse than
using larger populations (mainly 200 and 150 individuals, but
this also holds for some configurations using 100 individu-
als). Regarding the number of nWins, we can see that the best
configurations are statistically better that most of the other
ones (46–41 out of 54 other configurations, respectively).
However, among them the differences are very small, both
in the number of nWins and the average ranking accord-
ing to the Friedman test. This means that there is not one
single configuration that can bring good results, but several
configurations with similar performance due to the superior
importance of some of the considered parameters on the final
behavior of the algorithm. In this case, those parameters are
the initial population and the step factor, whereas the maxi-
mum population does not seem to be of great importance in
this study.

As with the noiseless testbed, the same procedure is
repeated with the whole set of functions. The results obtained
are again very similar to those presented in Table 7, with the
same best and worst configurations. In this case, the best
configuration is statistically better than 48 out of 54 other
configurations.
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Table 6 Statistical tests of the benchmarked configurations for the subset of functions obtained by random sampling from the noiseless testbed

Configuration Average ranking nWins

Best pop: 100, max pop: 25,000, factor: 10 23.82 41

2nd pop: 200, max pop: 6,400, factor: 10 24.17 28

3rd pop: 150, max pop: 6,400, factor: 10 24.47 27

· · ·
52nd pop: 25, max pop: 6,400, factor: 5 34.32 −50

53rd pop: 25, max pop: 15,000, factor: 5 36.48 −50

Worst pop: 25, max pop: 25,000, factor: 5 37.19 −51

Table 7 Statistical tests of the benchmarked configurations for the subset of functions obtained by random sampling from the noisy testbed

Configuration Average ranking nWins

Best pop: 200, max pop: 25,000, factor: 20 18.62 46

2nd pop: 100, max pop: 6,400, factor: 20 20.23 41

3rd pop: 150, max pop: 15,000, factor: 20 20.76 41

· · ·
52nd pop: 25, max pop: 25,000, factor: 5 34.82 −38

53rd pop: 25, max pop: 15,000, factor: 5 35.21 −39

Worst pop: 25, max pop: 6,400, factor: 5 36.91 −44

Figures 1 and 2 depict two parallel coordinates plots of the
parameters considered in the parameter tuning phase. Paral-
lel coordinates is a useful technique which has been success-
fully used to represent high dimensional data as polylines
in two dimensions. More recently, it has been used to cap-
ture the underlying interactions between the parameters of a
PSO algorithm [6]. In this case, the first three axes represent
the parameters of the configurations, whereas the fourth one
represents the Friedman average ranking mentioned before
(smaller values for the ranking means better configurations).
These plots will help us to graphically confirm the conclu-
sions obtained from the statistical analysis. To ease the visu-
alization of the different polylines, a small jitter has been
added to the three parameters (not to the ranking) in order to
avoid the overlap of those lines and to be able to distinguish
which lines join which values of the parameters.

In Fig. 1 we can observe how the most important para-
meter for the noiseless testbed is the step factor. Configura-
tions using values of 10 or 20 are depicted with green/blue
dashed lines, which represent better configurations (accord-
ing to their average ranking), whereas configurations using
a value of 5 are shown with red solid lines. For the other
two parameters, configurations with good performance are
distributed more uniformly, which means that these are not
as critical as the step factor to determine the performance of
the algorithm.

In Fig. 2 we can observe how, for the noisy testbed, the
most important parameter is the initial population size. Con-
figurations using large values for this parameter are depicted

in blue/green dashed lines, which represent better configura-
tions (according to their average ranking), whereas config-
urations using small initial populations are shown with red
solid lines. Regarding the step factor, it is not clear which
value obtains the overall best performance. Configurations
using values of 20 seem to be slightly better in this case,
as shown in Table 7, but there is not a clear distinction on
this. For the other parameter, the maximum population size,
configurations with good performance are distributed more
uniformly, which means that this parameter is not as critical
as the initial population size or the step factor to determine
the performance of the algorithm.

5 Experimental results

In this section, we first analyze the behavior of the hybrid
algorithm and show the ability of the MOS algorithm to adjust
the participation of the composing algorithms and select the
most appropriate for each problem. Then, the results obtained
on both testbeds are presented. We will discuss first the results
on the noiseless testbed and, afterwards, those on the noisy
testbed.

5.1 Hybridization analysis

In Sect. 3 we presented and described the MOS algorithm.
One of the key issues discussed in this section was the type of
interaction emerging from the combination of two different
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Fig. 1 Parallel coordinates
representation of the parameter
tuning for the noiseless testbed

Fig. 2 Parallel coordinates
representation of the parameter
tuning for the noisy testbed

Evolutionary Algorithms. As we said, such a combination
could lead to two different situations: a collaborative syn-
ergy of both algorithms or a competitive selection of the best
performing one.

Ideally, the first one of these two behaviors is desired. This
would be the case of problems in which several algorithms
perform differently at different stages of the search. However,
this is not usually the case and, most of the times, the sec-
ond type of interaction (competitive selection) arises. When
this happens, the hybrid algorithm should be able to evaluate
the performance of each algorithm and adjust their participa-
tion accordingly. In the BBOB benchmark considered for this
contribution, IPOP-CMA-ES has shown to be very competi-
tive in terms of number of functions solved [25,26]. However,
there are some functions in the benchmark that are especially
difficult to solve by IPOP-CMA-ES. For example, as it can
be seen in the results reported in [25], Rastrigin ( f3) and
Büche-Rastrigin ( f4) functions were two of those functions.
At this point, our hypothesis is that it should be possible to
combine IPOP-CMA-ES with another algorithm (Differen-
tial Evolution in this case) for which those functions are easier
to solve in such a way that the hybrid algorithm can decide at

each point which algorithm should be used. Furthermore, the
hybrid algorithm should take accurate decisions and maintain
the good performance that the IPOP-CMA-ES has shown on
other functions.

Table 8 shows the average errors for each algorithm
(IPOP-CMA-ES, DE and MOS) on functions f3 and f4 in
20-D. As it can be observed, the MOS hybrid algorithm has a
performance similar to that of DE, as both algorithms are able
to solve both functions to the requested precision. However,
IPOP-CMA-ES is not able to solve any of the two functions.

If we look at Fig. 3a and b we can see what is exactly
happening in these two functions. In both cases, the hybrid
algorithm quickly finds that DE is able to find better solutions
for these functions and thus increases the participation ratio
of this technique. The difference in the slope of the curves
for both functions represents the relative difference in the
performance of each algorithm on each function: DE is able
to find better solutions than IPOP-CMA-ES in both functions,
but the difference in the performance is more pronounced in
f4 than in f3.

On the other hand, IPOP-CMA-ES is better than DE in
many other functions. We can consider, for example, func-
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Table 8 Average error for
Rastrigin ( f3) and
Büche-Rastrigin ( f4) functions
in 20-D

IPOP-CMA-ES DE MOS

f3 5.62e+00 ± 1.69e+00 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

f4 1.36e+01 ± 1.24e+00 0.00e+00 ± 0.00e+00 0.00e+00 ± 0.00e+00

(a) (b)

Fig. 3 Participation adjustment of the hybrid algorithm: DE dominance

Table 9 Average error for
Ellipsoidal ( f10) and Weierstrass
( f16) functions in 20-D

IPOP-CMA-ES DE MOS

f10 0.00e+00 ± 0.00e+00 1.12e+04 ± 4.22e+03 0.00e+00 ± 0.00e+00
f16 1.20e−05 ± 4.98e−05 4.04e+00 ± 9.51e−01 3.74e−06 ± 1.34e−06

tions f10 and f16, for which the average error of the three
algorithms is given in Table 9.

As in the previous case, the hybrid algorithm is able to
detect which of the available techniques is finding better solu-
tions and adjusts the participation ratios accordingly. How-
ever, now it is IPOP-CMA-ES the algorithm that sees its
participation increased, as it is shown in Fig. 4a and b.

With these two examples we have shown how the hybrid
algorithm is able to select, from multiple techniques, the one
which is getting better results, increasing its participation.
This type of hybridization is effective to create robust hybrid
algorithms in which the limitations of one algorithm are com-
plemented by other algorithm and vice-versa. With this in
mind, we will proceed to the overall analysis of the hybrid
algorithm in both the noiseless and the noisy testbeds.

5.2 Results on the noiseless testbed

Results from experiments according to Hansen et al. [13] on
the benchmark functions of the noiseless testbed given in
[4,11] are presented in Figs. 5 and 6. The runs have been
conducted with the configuration depicted in Table 2 for the
common parameters and the values obtained after the para-

meter tuning for the hybridization parameters highlighted in
Table 6.

The overall results in the noiseless testbed are quite sat-
isfactory in terms of achieved precision and scalability. The
hybrid algorithm here presented is able to solve 24, 24, 24,
24, 22 and 21 functions out of 24 in 2, 3, 5, 10, 20 and 40
dimensions, respectively.1

Compared to the individual use of its composing algo-
rithms, the hybrid algorithm obtains more stable results than
any of them. Furthermore, functions f 3 and f 4 which are
extremely hard to solve by the IPOP-CMA-ES algorithm,
are now solved thanks to the hybridization with the DE algo-
rithm. On the other hand, the most difficult function for our
approach is f24, for which convergence is never reached for
dimension 20 or above. Nevertheless, this is somehow rea-
sonable, as this function has been designed to be deceptive
for Evolution Strategies (and the DE is also unable to deal
with it).

Furthermore, it can also be observed that the proposed
algorithm achieves one of the best results in terms of
ECDF values, compared with the algorithms presented in

1 The complete 120 results in the noiseless testbed can be accessed in
the following URL: http://laurel.datsi.fi.upm.es/research.
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(a) (b)

Fig. 4 Participation adjustment of the hybrid algorithm: IPOP-CMA-ES dominance

Fig. 5 Noiseless functions 5-D. Left subplots: Empirical Cumulative
Distribution Function (ECDF) of the running time (number of func-
tion evaluations), divided by search space dimension D, to fall below
fopt + � f with � f = 10k , where k is the first value in the legend. The
vertical black line indicates the maximum number of function evalua-
tions. The legends indicate the number of functions that were solved in
at least one trial. Light brown lines in the background show ECDFs for

target value 10−8 of all algorithms benchmarked during BBOB 2009.
Right subplots: ECDF of the best achieved � f divided by 10k (upper left
lines in continuation of the left subplot), and best achieved � f divided
by 10−8 for running times of D, 10 D, 100 D . . . function evaluations
(from right to left cycling black-cyan-magenta). D = DIM denotes
search space dimension (5 in this case) and � f = Df denotes the dif-
ference to the optimal function value

the BBOB-2009 workshop, for all the groups of functions,
as it can be seen in Figs. 5, 6.

Additionally, we can also observe in those figures how the
proposed algorithm is slower to converge to good solutions
than many of the algorithms that appear in the comparison.
This behavior is more pronounced at the beginning of the
search (while log10 of FEvals/DIM is <3). From this point,
the convergence speed of the algorithm increases and it is able
to solve more functions than most of the reference algorithm
from the BBOB 2009 workshop. To some degree, this behav-
ior is normal, as the regulatory mechanisms implemented by
the MOS framework need some time to take a decision and
adjust the participation of each technique accordingly. Fur-
thermore, in some cases this adjustment is not as fast as it
would be desirable, especially when the number of FEs allo-

cated for each step is relatively large. For this reason, it is
important to tune the parameters in order to optimize the
desired behavior of the hybrid algorithm: speed of conver-
gence or precision. In this case, the latter has been considered
(although it has not always to be the case).

Finally, we have conducted a statistical validation follow-
ing the recommendations provided in [8]. For this compar-
ison, we have considered the average error for all the func-
tions and dimensions. First of all, we applied Friedman’s
test in order to see whether there are global differences in
the results. Given that the p-value obtained (4.82e−09) is
lower than the considered level of significance α = 0.05,
there are significant differences in the results for the noise-
less testbed. According to this result, we conduct a post-hoc
statistical analysis to detect particular differences among the
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Fig. 6 Noiseless functions 20-D. See caption of Fig. 5

Table 10 Statistical validation
(MOS is the control algorithm)
√

means that there are statistical
differences with significance
level α = 0.05

MOS vs. z-value p-value Holm p-value Hochberg p-value

IPOP-CMA-ES 2.09E+00 3.65E−02 3.65E−02
√

3.65E−02
√

DE 4.45E+00 8.63E−06 1.73E−05
√

1.73E−05
√

Fig. 7 Noisy functions 5-D. Left subplots: Empirical Cumulative Dis-
tribution Function (ECDF) of the running time (number of function eval-
uations), divided by search space dimension D, to fall below fopt +� f
with � f = 10k , where k is the first value in the legend. The vertical
black line indicates the maximum number of function evaluations. The
legends indicate the number of functions that were solved in at least
one trial. Light brown lines in the background show ECDFs for target

value 10−8 of all algorithms benchmarked during BBOB 2009. Right
subplots: ECDF of the best achieved � f divided by 10k (upper left
lines in continuation of the left subplot), and best achieved � f divided
by 10−8 for running times of D, 10 D, 100 D . . . function evaluations
(from right to left cycling black-cyan-magenta). D = DIM denotes
search space dimension (5 in this case) and � f = Df denotes the dif-
ference to the optimal function value

algorithms. Table 10 presents the obtained results according
to Holm and Hochberg tests. In both the cases, the tests were
able to find significant differences, being MOS the control
algorithm.

5.3 Results on the noisy testbed

The results for the benchmark functions of the noisy testbed
given in [5,12] are presented in Figs. 7 and 8. As for the
noiseless testbed, all the runs have been conducted with the

configuration depicted in Table 2 for the common parameters
and the values obtained after the parameter tuning for the
hybridization parameters highlighted in Table 7.

The overall results in the noisy testbed are compara-
tively good in terms of achieved precision, but could be still
improved, especially on functions with severe noise on larger
dimensions. The hybrid algorithm here presented is able to
solve 30, 28, 22, 19, 18 and 13 functions out of 30 in 2, 3,
5, 10, 20 and 40 dimensions, respectively. It seems that the
noise added to the functions makes the performance of the
algorithm deteriorate as the number of dimensions increases.
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Fig. 8 Noisy functions 20-D. See caption of Fig. 7

Table 11 Statistical validation (MOS is the control algorithm)

MOS vs. z-value p-value Holm p-value Hochberg p-value

IPOP-CMA-ES 8.70E−01 3.85E−01 3.85E−01 3.85E−01
DE 7.12E+00 1.12E−12 2.24E−12

√
2.24E−12

√

√
means that there are statistical differences with significance level α = 0.05

This effect is more pronounced in the case of those functions
with severe noise than in those with a moderate noise.2

As it happened with the noiseless testbed, it can also be
observed that the proposed algorithm achieves one of the
best results in terms of ECDF values, compared with the
algorithms presented in the BBOB-2009 workshop, for all
the groups of functions, as it can be seen in Figs. 7 and 8.
Actually, it obtains the best results in functions with moderate
noise, whereas it is only improved by one of the algorithms
of the workshop in the other two groups of functions.

Regarding the convergence speed, we can observe that
the differences with other algorithms have been reduced,
compared with those of the noiseless testbed. The additional
difficulty introduced by the noise makes it difficult for all
the algorithms to converge to good solutions quickly, which
attenuates the overhead effect of the hybridization mecha-
nisms of our algorithm. In particular, the hybrid algorithm
is still slower in functions with moderate noise (although it
finally converges to better results). For the other two groups
of functions, the convergence speed is similar to that exhib-
ited by reference algorithms. As in the case of the noiseless
testbed, this behavior is more pronounced at the beginning of
the search (roughly, while log10 of FEvals/DIM is <2, 3 or
4, depending on the case). From this point, the convergence
speed of the algorithm increases.

Finally, we conducted the same statistical validation as for
the noiseless testbed. First, Friedman’s test gave a p-value of
4.81e−18, which is clearly below the considered level of
significance α = 0.05. Thus, we used the same post-hoc

2 The complete 150 results in the noisy testbed can be accessed in the
following URL: http://laurel.datsi.fi.upm.es/research.

tests in order to find the particular differences among the
algorithms. Table 11 presents these results. It can be observed
that, in this case, the DE algorithm is much worse than IPOP-
CMA-ES and thus there are significant differences between
MOS and DE, but not between MOS and IPOP-CMA-ES, as
this is the selected algorithm for most of the functions of this
testbed.

6 Conclusions

In this paper, a hybrid algorithm combining Differential Evo-
lution and IPOP-CMA-ES has been presented and bench-
marked on both the BBOB-2010 noiseless and noisy test-
beds. A thorough parameter tuning has been conducted on
several of the key parameters of the algorithm to analyze
their influence in its performance. The results of this analy-
sis have been graphically depicted for better comprehension.
The study shows important differences between the values
for the parameters of the algorithm needed to obtain the best
results in the two different testbeds. Regarding the noiseless
testbed, the experimental results show a good performance
on all the groups of functions and a good scalability. In par-
ticular, the proposed algorithm has been able to solve 24, 24,
24, 24, 22 and 21 functions out of 24 in 2, 3, 5, 10, 20 and
40 dimensions, respectively. Furthermore, it obtains better
results than its composing algorithms when used individually
according to the conducted statistical validation. Addition-
ally, a comparative analysis with the algorithms presented at
the BBOB-2009 workshop reveals that our approach obtains
one of the best results in terms of convergence. In the case of
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the noisy testbed, the hybrid algorithm is able to solve 30, 28,
22, 19, 18 and 13 functions out of 30 in 2, 3, 5, 10, 20 and 40
dimensions, respectively. The results are very competitive in
terms of convergence (the best results in one of the groups
of functions) and not significantly slower than the reference
algorithms, mainly because the extra difficulty introduced
by the noise on these functions makes all the algorithms to
converge more slowly. However, on multimodal functions
with severe noise the results can still be improved, which
opens new research directions in order to find better restart
mechanisms and combinations of algorithms. The statistical
analysis reveals better performance than the DE algorithm
but not statistically better that IPOP-CMA-ES. This is due to
the fact that the DE algorithm performs very poorly on this
testbed and the hybrid algorithm selects IPOP-CMA-ES as
the main algorithm most of the time.

Further research will investigate with new techniques to
complement the two used algorithms in those functions in
which the hybrid algorithms obtains worse results. A more
thorough study on the control mechanisms, especially those
related to the detection of the stagnation and the restart of the
search process, could be also useful to increase the stability
in those functions in which the convergence to the global
optimum is not always obtained. Finally, a deeper study on
the participation adjustment mechanisms would also be of
great interest, especially to develop new criteria which will
allow a faster detection and selection of one technique when
it is significantly better than the others in order to reduce
the gap in terms of convergence speed with other continuous
optimizers.
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