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Abstract

Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and
interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide
fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte
Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete
molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models,
preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers
of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects
of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the
neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The
method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations
of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive
model of the behavior of synapses under different conditions without the need for additional computationally expensive
Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and
curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under
experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the
results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the
simulation of high numbers of synapses and it is therefore an excellent tool for multi-scale simulations.
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Introduction

Most information in the mammalian nervous system flows

through chemical synapses. These are complex structures com-

prising a presynaptic element (usually an axon terminal) and a

postsynaptic element (a dendritic spine, a dendritic shaft, an axon,

or a soma) separated by a narrow gap known as the synaptic cleft.

The neurotransmitter is stored in synaptic vesicles located in the

presynaptic terminal. For release to take place, the membrane of

one or more vesicles must fuse with a region of the presynaptic

membrane, the active zone, lining the synaptic cleft. On the

opposite side, the postsynaptic membrane is thickened by the

presence of specific receptors and other molecules. Under the

electron microscope, this area appears as an electron-dense

thickening of the membrane that is known as the postsynaptic

density (PSD) [1][2]. The surface area of the active zone is

proportional to the probability of synaptic vesicle release [3][4],

while the surface area of the PSD is proportional to the total

number of synaptic receptors (for example, for AMPA receptors,

see [5][6][7][8]).

Multiple factors influence the diffusion of neurotransmitter

molecules from their release to their interaction with specific

receptors [9][10][11]. The initial concentration of the released

neurotransmitter in the extracellular space depends on the volume of

the synaptic cleft. The subsequent diffusion of neurotransmitter

molecules outside the cleft may be influenced by the geometrical

characteristics of the membranes that surround the synaptic

junction. Moreover, specific transporters in the neuronal and glial

membranes surrounding the synapse are involved in the rapid

removal of the released neurotransmitter from the extracellular

space, thereby permitting the rapid, repeated use of the synapse.

However, direct observation of the various synaptic events at the

molecular and ultrastructural levels in vivo or in vitro is rather difficult,

if not impossible, especially in highly complex structures such as the

cerebral cortex. Simulation approaches are thus useful to assess the

influence of different parameters on the behavior of the synapse,

such as the geometrical characteristics of the synaptic junction and

its surroundings, the temperature, the presence of transporters or the

number and mobility of receptors (e.g., [12], [13]).

Simulation approaches in neuroscience have considered differ-

ent models, scales and techniques, according to the phenomenon

being studied. Molecular dynamics are able to describe extracel-

lular and membrane interactions or ion channel permeation [14],

while some biochemical processes, such as molecular reaction-
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diffusion, require Monte Carlo particle-based simulators like

MCell [15][16], ChemCell [17] or Smoldyn [18][19]. For the

modeling of longitudinal ionic diffusion up to the level of neuronal

circuits, some simulators such as NEURON [20][21], GENESIS

[22] or similar software (reviewed in [23]) use various approaches

from simple integrate-and-fire models to highly complex Hodgk-

ing-Huxley simulations, which describe compartmental models.

Nevertheless, there are limitation issues that restrict the use of

some simulation techniques. For example, current computational

resources (in time and memory) prevent molecular simulation

from being applied to describe full-system behavior at that scale.

Some phenomena require detailed simulation at molecular level

[24], which actually alters the parameters under which a larger-

scale model operates. However, in other cases, many events

happening on smaller scales have minimal or no effect on larger-

scale processes, or, at least, they can be generalized in such a way

that they can be sufficiently simplified to make their use in a

larger-scale simulation feasible [25].

The field of multi-scale simulations [26][27][28] deals with this

problem. In these approaches, the simulation, in a given scale, is

generalized in the form of a simpler constructive rule that keeps

the information of the key phenomena for simulation levels in a

higher scale. This paper proposes the use of a machine learning

method to extract the ruling patterns from a corpus of Monte

Carlo simulations of synapses covering a wide range of physio-

logical and geometrical characteristics. These patterns are later

used as a predictive model of the behavior of synapses under

different conditions without the need for additional Monte Carlo

simulations. The use of these patterns greatly reduces the resources

necessary for the simulation of this particular biological function,

enabling the simulation of neuronal circuits involving thousands of

different synapses, otherwise unaffordable with currently available

computational resources.

Materials and Methods

Model synapses and Monte Carlo simulations
We have analyzed simulations based on simplified models of

excitatory synapses where AMPA receptors are present and the

neurotransmitter involved is glutamate. Since the number of

receptors that can be found in a synapse is proportional to the area

of the PSD, we have modeled synapses of different shapes and sizes

to explore the influence of geometry on synaptic behavior.

Figure 1. Geometrical model of chemical synapses. (A) 1. Presynaptic element containing synaptic vesicles (SV) and the active zone (AZ), at the
center of which the neurotransmitter is released. 2. Synaptic cleft height. 3. Synaptic length. 4. Total apposition length. In this particular example the
total apposition length is two times the synaptic length. 5. Postsynaptic element showing the postsynaptic density (PSD) where synaptic receptors
are located. (B) The complete 3D geometry model composed of the pre- and postsynaptic elements of the synapse; the surrounding neuronal and
glial processes; and the extracellular space. Neuronal and glial processes have been represented as polyhedral elements. The space between these
elements was uniform – between 38 nm and 65 nm, depending on the size of the central synapse. The volume that represents the extracellular space
was approximately 20% of the total volume.
doi:10.1371/journal.pone.0068888.g001
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We developed models that had a simple geometry, as far as

shape is concerned, but had a variable set of parameters that

specified the dimensions of the structures involved in the synaptic

junction (Figure 1 and Table 1). In these simple models, the pre-

and postsynaptic elements were box-shaped structures that were

separated by a gap of between 15 and 20 nm (synaptic cleft height)

[29]. The synapse was represented by a square with a side length

(Ls) of between 150 and 750 nm (equivalent to the cross-sectional

length of the paired pre- and postsynaptic densities, see Figure 1,

A). Outside the synaptic junction, the apposition of cell

membranes of the pre- and postsynaptic elements extended an

additional distance in all directions. The side length of the total

apposition of cell membranes (E) was considered to be from 1 to 2

times the side length of the modeled synaptic junction (See

Figure 1, A).

The density of receptors ([AMPA]) in the PSD was set at

different levels ranging from 1000 to 3000 molecules per mm2 [8].

Glutamate transporter molecules were also modeled since the

uptake of glutamate by them is essential to restore the resting level

of neurotransmitter in the extracellular medium. Transporters

were located on the membranes of the neuronal elements involved

in the synaptic junction as well as on the membranes of other

neuronal processes and glial elements located in the surrounding

volume (Figure 1, B). For simplicity, we assumed that these other

cells shapes were polyhedral, rather than spherical [30]. To

explore the influence of the presence of glutamate transporters in

cell membranes surrounding the synapse, we simulated densities of

transporter molecules ([T]) ranging from the total absence of

transporters to 10000 molecules/mm2 [31]. We adopted the

glutamate transporter kinetic model and rate constants described

in [32]. The volume that represents the extracellular space was

approximately 20% of the total volume [33]. The distance

between the extrasynaptic elements was uniform, and the cell

membranes were between 38 nm and 65 nm apart ([34], [11]),

depending on the size of the central synapse (Figure 1B).

Once the geometrical models were built, the simulations were

carried out with MCell software [35], exploiting the highly

optimized Monte Carlo algorithms that it uses to track the

stochastic behavior of diffusing molecules. Each simulation began

with the release of the content of a synaptic vesicle, which was

assumed to be 5000 glutamate molecules [36]. We used a value of

0.4 mm2/ms as an estimation of the diffusion coefficient of

glutamate (Dg) [37][38]. To simulate the behavior of AMPA

receptors upon interaction with glutamate molecules, we adopted

the kinetic model and rate constants described by Jonas et al. [39]

(Figure 2). Before the release of glutamate, all receptors were in the

unliganded, closed state. After release, the receptors could be

found in seven possible transition states, but we focused on the

percentage of open receptors as a function of time since glutamate

release. Modeling and simulation parameters are summarized in

Table 1.

We randomly generated a total of 1000 different models of

synapses, uniformly covering all parameter ranges (Table 1). We

then simulated these configurations with MCell. Each simulation

consisted of 10,000 iterations with a time step of 1 ms,

corresponding to a total simulation time of 10 ms after neuro-

transmitter release. Due to the stochastic nature of the simulations,

each of the 1000 model synapses was simulated 200 times with

different random seeds. The synaptic model simulations were

performed using a supercomputer, the Magerit system, located at

the CeSViMA [40]. Magerit is a cluster consisting of 245 eServer

BladeCenter PS702 computer nodes, with a total of 3920 IBM

PowerPC 3.3 GHz CPU cores and 7840 GB of RAM. The MCell

developing team [35] kindly provided a version of the MCell

software for the PowerPC architecture. The simulation of synaptic

models involved 200,000 jobs executed on this supercomputer,

requiring more than 3,500 CPU hours. Since 800 CPUs were used

simultaneously, the whole set of simulations took approximately

4.5 hours.

When every model synapse had been simulated 200 times, the

average percentage of open AMPA receptors was plotted as a

function of time since glutamate release (Figure 3). The curves

obtained were consistent with previous studies, such as those

presented by [32], [41], [42] and [43]. All curves show a rapid

climb to a single peak followed by a slower descent, with an

apparent asymptote at 0. We have referred to the initial section of

the curve (containing the rapid ascent, peak and descent) as the

peak interval and the remainder of the curve as the tail. The peak

interval contains the most relevant information, i.e. the amplitude of

the peak and the time it takes to reach it. These two characteristics

depend on the synapse configuration. An exploratory analysis of

the data showed that the smaller the active zone and PSD, the

faster the peak is generally reached and a higher value is achieved.

It is important to remember that these are AMPA activation

percentage values, and therefore are relative to the absolute

number of AMPA receptors present, which depends on the density

of receptors and the size of the synapse. Figure 4 shows a

Table 1. Modeling and simulation parameters.

Parameter Values

AMPA receptor density: [AMPA] 1000 to 3000 receptors per mm2

Glutamate transporter density: [T] 0 to 10000 molecules per mm2

Side length of the square representing the synapse: Ls 150 to 750 nm

Side length of the total apposition of cell membranes: E 1 to 2 times the side length of the synapse

Synaptic cleft height: Hc 15 to 20 nm

Glutamate molecules per vesicle 5000

Glutamate diffusion coefficient: Dg 0.4 mm2/ms

Time step 1 ms

Iterations 10000 (total simulation time = 10 ms)

Number of simulation runs for each model 200

Abbreviations used are also shown.
doi:10.1371/journal.pone.0068888.t001
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comparison between the AMPA activation series obtained from

synapses of different sizes.

Receptor activation function
The experimental simulations performed with the help of MCell

provided a comprehensive dataset of AMPA receptor behavior in

a wide range of different synapses. For each synapse configuration,

this dataset contained a unique time series (the average of 200

simulation runs) showing the evolution of the percentage of open

receptors at any given time. Using this information, our main

objective was to design an effective methodology for constructing a

receptor activation prediction model. This model can be expressed as the

following mathematical function:

AMPAO~F (½AMPA�,½T �,Ls,Hc,E,t)

where AMPAO (the average percentage of AMPA receptors that

are in the open state) is a function of the concentration of AMPA

receptors in the active zone [AMPA], the concentration of

glutamate transporters [T], the synaptic size expressed as its side

length Ls, the cleft height Hc, the extra space coefficient around

the synapse E (the total apposition length would be E times Ls),

and the time t from glutamate release. This function would allow

us to determine the average AMPA receptor activation, for any

synapse, without the need to execute a new set of computationally

intensive Monte Carlo simulations. It is important to note that the

model is potentially capable of predicting the behavior of any

given synapse provided that its physiological and geometrical

parameters are known; i.e. [AMPA], [T], Ls, Hc, and E. Thus, this

model is not merely a curve-fitting technique, but a more general

model that would be able to predict the behavior of any different

synapse without further adjustment to its internal parameters.

Figure 2. AMPA receptor kinetic model. Receptor states and rate constants were taken from [28]. Before the release of glutamate (Glu), all
receptors were in the unliganded closed state (C0 state). Among the seven possible states of the receptor (C0 to C5 and O) we focused on the
percentage of open receptors (O state) as a function of time since the release of glutamate.
doi:10.1371/journal.pone.0068888.g002

Figure 3. Percentage of open AMPA receptors after the release
of a single vesicle of glutamate. An example of the characteristic
curve obtained with Monte Carlo simulations of synapses. The peak
interval contains the rapidly rising segment from the release of
glutamate at t = 0 to the peak, and the descending segment to the
point where the curve decreases to 50% of the peak amplitude. The tail
is the rest of the simulated curve. Synapse parameter values:
[AMPA] = 2000 molecules/mm2, [T] = 5000 molecules/mm2, Ls = 600 nm,
Hc = 15 nm, E = 2.00.
doi:10.1371/journal.pone.0068888.g003

Figure 4. Monte Carlo simulations of synapses of different
sizes. The five curves represent the percentage of open AMPA
receptors after the release of glutamate in synapses of five different
side lengths. These side lengths are shown in the upper right inset. All
other parameters were kept constant. Each curve represents the mean
of 200 Monte Carlo simulations performed with MCell. The rest of the
synapse parameter values are [AMPA] = 2000 molecules/mm2,
[T] = 5000 molecules/mm2, Hc = 15 nm and E = 2.00.
doi:10.1371/journal.pone.0068888.g004
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Determining the receptor activation function
As explained before, F can be considered as a mathematical

function. A first step in its definition must be to determine its

mathematical form, i.e. how it can be expressed. To obtain this

form, we searched for mathematical functions that could fit the

curves that were obtained during the simulation process. More

specifically we tested the following functions:

N Polynomial (y~a0za1xzza2x2za3x3z::: ): From degree

1 to 9.

N Fourier (y~a0za1cos (xw)zb1sin (xw)z::: ): From 1 to 8

terms.

N Gauss (y~a0za1exp ({((x{b1)=c1)2)z::: ): From 1 to 8

terms.

N Sum of Sine (y~a1sin (b1xzc1)za2sin (b2xzc2)z::: ):

From 1 to 8 terms.

N Exponential (y~a1exp (b1x)za2exp (b2x)z::: ): With 1 and

2 exponential terms.

N Rational (y~
a0za1xza2x2z:::

b0zb1xzb2x2z:::
): From degree 0 to 5 in

numerator and from degree 1 to 5 in denominator.

These six families of functions were selected in order to produce

a comprehensive set of options from which a final model could be

chosen. A total of 65 different function candidates were

considered. Each function was then fitted to the average

simulation curves previously obtained from each synapse config-

uration, using the standard Nonlinear Least Squares curve fit

technique included in the MATLAB mathematical tool [44]. The

results of these fits were then evaluated using the two following

metrics:

N Root mean squared error (RMSE). This is one of the most

commonly used measures of precision of a statistical model.

RMSE is an aggregation of the individual differences

(residuals) between the values predicted by an estimator and

the values actually observed.

N Coefficient of determination (R2). This is the proportion of

variability in a data set that is accounted for by the statistical

model. It provides a measure of how well future outcomes are

likely to be predicted by the model.

Given a reference data set Y with n values yi, each of which has

an associated predicted value y’i then the total sum of squares and

the residual sum of squares are defined as:

SStot~
X

i

(yi{�yy)2

SSerr~
X

i

(yi{y’i)
2

And RMSE and R2 metrics can be expressed as:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffi
SSerr

n

r

R2~1{
SSerr

SStot

RMSE has a value equal or greater than 0, where 0 indicates a

perfect fit to the reference data. R2 usually has a value between 0

and 1 (sometimes it can be less than 0), where 1 indicates an exact

fit to the reference data and a value less than or equal to 0

indicates no fit at all. Calculating the values of RMSE and R2 for

each curve tested provided a numerical basis to determine which

function model fitted best to the synapse behavior observed.

The twelve best curve fitting results in terms of RMSE and R2

are shown in Table 2. RMSE and R2 for the 65 functions tested

can be found in the Supporting Information (Table S1 in File S1).

The rational model composed of a fraction of two 4-dregree

polynomials and the 8-term Fourier series achieved the best

results. Simpler functions of the Fourier, Gauss or exponential

families (including the widely used alpha functions) yielded

progressively worse metrics. We selected the best case for each

function family in Table 2. The five selected candidate functions

were:

N 4-by-4 degree polynomial rational function: y~

p1x4zp2x3zp3x2zp4xzp5

x4zq1x3zq2x2zq3xzq4
(9 coefficients)

N 8-term Fourier series:y~a0z
X8

i~1

(ai cos (ixw)zbi sin (ixw))
(18 coefficients)

N 8-term Gauss series: y~a0z
X8

i~1

ai exp ({((x{bi)=ci)
2) (25

coefficients)

N 2-term exponential function:y~aexp (bx)zcexp (dx) (4 coef-

ficients)

N 9th degree polynomial:y~p1x9zp2x8z:::zp9xzp10 (10

coefficients)

Estimation of function coefficients
For every one of the synapse configuration curves obtained

during MCell simulations (each curve was the average of 200

runs), the coefficients of each function model were estimated by

the curve fitting process provided by MATLAB. In order to

directly define the AMPAO function, it is necessary to establish the

relationship between these values and the synapse physiological

parameters ([AMPA], [T], Ls, Hc, and E). The main difficulty at

this point was that we had 5 possible candidate functions, each

with a different set of coefficients. Our preliminary objective was

to obtain, for each function coefficient pi, a mathematical

Table 2. Best curve-fitting test results.

Curve fit RMSE
Rank
RMSE R2 Rank R2

Rational (degree 4/4) 0.07093 1 0.99927 2

Fourier (8 terms) 0.11295 2 0.99936 1

Fourier (7 terms) 0.13507 3 0.99917 3

Fourier (6 terms) 0.16887 4 0.99876 4

Gauss (8 terms) 0.19396 5 0.99780 5

Gauss (7 terms) 0.22078 6 0.99713 6

Gauss (6 terms) 0.26144 7 0.99649 7

Fourier (5 terms) 0.30286 8 0.99604 8

Exponential (2 terms) 0.31985 9 0.98877 12

Gauss (5 terms) 0.35277 10 0.99427 9

Polynomial (degree 9) 0.41844 11 0.99241 10

Gauss (4 terms) 0.46706 12 0.99038 11

Ranked list of the 12 best curve-fitting techniques studied for the synapse MCell
Monte Carlo simulation data.
doi:10.1371/journal.pone.0068888.t002
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expression that allowed us to calculate its value in terms of

[AMPA], [T], Ls, Hc, and E. For this task we selected a linear

model of the following form:

pi~vi,0zvi,1½AMPA�zvi,2½T �zvi,3Lszvi,4Hczvi,5E

Therefore, for a function model F with a set of n+1 coefficients

{p0, …, pn} and a given synapse configuration ([AMPA], [T], Ls,

Hc and E), the values of coefficients could be calculated as:

P~V.ST

Where

P~

p0

p1

..

.

pn

2
66664

3
77775,S~

1

½AMPA�
½T �
Ls

Hc

E

2
666666664

3
777777775

,V~

v0,0 � � � v0,5

..

. ..
.

vn,0 � � � vn,5

2
664

3
775

V is an n+1-by-5 matrix that contains the coefficients of the

linear model. These coefficients can be calculated using a standard

linear regression algorithm [45]. In order to produce accurate

results from the proposed linear model, a linear relationship must

exist between the function parameters and the synapse configu-

ration coefficients ([AMPA], [T], Ls, Hc, and E). To determine if

this was the case, we used Pearson’s linear correlation. Correlation

values for every parameter of the five candidate functions can be

seen in the Supporting Information (Tables S4 to S8 in File S1).

Our study revealed that none of the function candidates

presented a set of coefficients where all of them have linear

correlation with the synapse configuration parameters ([AMPA],

[T], Ls, Hc, and E). This means that, regardless of the function

finally selected, the AMPAO function coefficients cannot be

linearly obtained from the synapse configuration parameters.

Therefore we needed to develop a more advanced solution to the

problem of creating a general estimator of the AMPAO function.

After this preliminary study, we concluded that constructing the

receptor activation prediction model required the use of advanced

statistical analysis tools. The simulation data generated with MCell

as previously described was processed and analyzed in a multi-

stage process that involved tasks such as data sampling, fold

creation, supervised machine learning, validation and curve fitting.

A schematic representation of the entire process can be seen in

Figure 5. Each of the depicted stages will now be described below

in detail.

Stage 1: Data sampling
The simulation data consisted of a set of average percentage of

open AMPA receptors time series, each one corresponding to a

different set of values of the synapse configuration parameters

([AMPA], [T], Ls, Hc, and E). Each of these time series contained

information from 10 ms of simulated time, with a resolution of 1

ms. This means that each time series was composed of a set of

10,000 points. Considering that the simulation dataset contained

1000 different configurations, trying to analyze all obtained data

(more than 10,000,000 points) would be extremely difficult from a

computational point of view. As a reasonable alternative, the data

sampling stage reduces the size of each AMPA time series to a set of

100 representative points. 50% of these points were selected from

the curve points flanking the peak (peak interval), in order to

maximize the amount of information obtained from the part of the

series where maximum variability is observed. The rest were

automatically taken from the long tail of the curve, which presents

much less variability. More specifically, this sampling process is

performed in the following way:

1. The peak interval is determined: This sub-section of the AMPA

curve begins at the start of the curve, includes the peak and ends

when the AMPAO value decreases to 50% of the peak amplitude

(see Figure 3).

2. A set of 50 points is taken from this sub-section. The sub-section

duration is divided into 50 equal segments and the beginning of

each of these segments is taken as part of the sub-sample to ensure

all points are uniformly distributed in time.

3. A similar sampling process is performed for the rest of the curve

(excluding the peak interval), selecting another 50 points uniformly

distributed in time.

The peak interval is only a small part of the curve. However, the

resulting curve sample will contain a lot of information about this

sub-section. The reason for this is that this sub-section contains the

most relevant information about the behavior of AMPA receptors,

since it is the one that shows most of their activity. This more

sophisticated way of performing the curve sampling (oversampling)

ensures that information is preserved throughout the sampling

process. The resulting small set of 100 chosen points contains the

most relevant information regarding the open AMPA receptors’

behavior and its size is much more convenient for further statistical

analysis.

Stage 2: Fold creation
Once the simulation dataset had been sampled, a machine

learning process was applied, aimed at training a supervised

learning model capable of predicting the average percentage of

open AMPA receptors for a given synapse configuration. In a

general sense, supervised learning is the process of mathematically

extracting a pattern or function that explains a series of target

values (e.g. a curve) present in a set of supervised training examples

(e.g. a set of observed values related to the target curve). Each

example is normally a pair consisting of a vector of input values

and a desired output value (e.g. the observed values and the related

value of the target curve). The resulting mathematical model can

be a classifier (if the target values are discrete) or a regression function

(if the target values are continuous). If the learning process is

successful, the resulting model becomes a predictor of the target

values. The learning algorithm used defines the way that this process

is performed. In the method presented here, the different AMPA

behavior series were used as training examples. The synapse

configuration parameters and the time instant were the input

vector ([AMPA], [T], Ls, Hc, E, t) and the open AMPA percentage

was the desired output value.

Directly training a supervised learning model using all

simulation data available can, however, cause an undesired effect:

overfitting. When a machine learning prediction model is trained

using a single dataset, it is possible that random error noise present

in that particular set will be described by the resulting model,

instead of the relevant underlying relationships between the data.

When a model is overfitted to its training data it generally has poor

predictive capabilities, as it is only able to describe the particular

examples already present in the training dataset. One of the most

common techniques employed to avoid this undesired

Machine Learning for Synapse Receptor Prediction
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phenomenon when training supervised learning models is the use

of a stratified 10-fold cross-validation [46]. This technique consists

of dividing the input dataset into 10 subgroups of equal size (called

folds) and using them to generate 10 separate fold configurations.

In each configuration, one of the folds (different in each one) is

used as a test set and the remaining 9 as a joint training set. For each

fold configuration the machine learning model is trained using the

training set. The same model is then validated (checked to determine

whether it can correctly predict the output value) using the test set.

The AMPA activation prediction method performs a typical 10-

fold cross-validation process such as the one described above. The

1000 synapse configurations available were separated into 10

groups of equal size and the corresponding fold configurations

were generated, including a different training set and test set for each

fold. These configurations were then used in the next stages of the

process.

Stage 3: Machine learning
To generate the AMPA receptor behavior prediction model

during the machine learning stage, several regression algorithms

were tested:

Figure 5. Receptor activation prediction process. The proposed method constructs a machine-learning-based prediction model of the synaptic
receptor behavior in 5 distinct steps: 1. Data sampling, 2. Fold creation, 3. Machine learning, 4. Validation and 5. Curve fitting. This figure represents
the main information workflow of the method.
doi:10.1371/journal.pone.0068888.g005
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N Linear regression. The aim of a regression analysis [45] is to

determine the statistical relation that exists between a

dependent variable and one or more independent variables.

A functional relation between the variables must be postulated,

and a linear curve is fitted to the data.

N The K-Nearest Neighbors algorithm (KNN) [47] is a

classifier/regression algorithm based on agreement. When

used for regression, an object is assigned to a weighted average

of its k nearest neighbors in the training set.

N A Multi-Layer Perceptron (MLP) [48] is an artificial neural

network model that selects the corresponding output for the

specific input data. The MLP extends the standard linear

perceptron using several layers of neurons. It can be used both

as a classifier and regression technique, depending on the input

variables.

N M5 [49] is an algorithm that generates a decision model in the

form of a tree. This algorithm builds trees whose leaves are

associated with multivariate linear models and the nodes of the

tree are chosen over the attribute that maximizes the expected

error reduction as a function of the standard deviation of

output parameter. More specifically, a M5P variant [50] was

considered in the present study. These model trees can be

easily converted into regression rules.

N Multivariate adaptive regression splines (MARS) are a form of

regression analysis introduced by Jerome Friedman in 1991

[51]. They are non-parametric regression techniques and can

be seen as an extension of linear models that automatically

model non-linearities and interactions between variables.

N Projection Pursuit Regression (PPR) [52] is a method for non-

parametric multiple regression. It is more general than

standard stepwise regression procedures, does not require the

definition of a metric in the predictor space, and lends itself to

graphical interpretation.

These machine learning algorithms were selected in order to

perform a study that was as comprehensive as possible. The six

techniques presented are well known, widely used and scientifically

relevant. All of these where tested using the available data from the

1000 synapse configurations in order to determine the most

suitable machine learning technique for the problem at hand. The

performance of classification/regression algorithms always de-

pends greatly on the characteristics of the data to be analyzed, and

there is no single algorithm that produces optimal results for any

given problem. This phenomenon can be explained by the no free

lunch theorem, which states ‘‘any two learning algorithms are

equivalent when their performance is averaged across all possible

problems’’ [53]. Using the selected machine learning algorithms, a

regression model was trained from the training set of each fold

configuration. The accuracy and correctness of these models were

then evaluated in the next stage.

Stage 4: Validation
Once the algorithms had been trained, their correctness was

validated using the test set of each fold configuration. For this

purpose we used the two validation metrics previously described

(RMSE and R2). The input vector of each point in the test set is

introduced in the prediction model. The result is then compared to

the expected value. Once all points are predicted, the RMSE and

R2 metrics are calculated. Detailed results of these tests can be

found in the Supporting Information (Tables S2 and S3 in

File S1). The M5P algorithm produced the best results according

to both performance metrics (See Table 3 and Results section).

Stage 5: Curve fitting
At the end of the validation stage, the process produced a series

of points and two precision metrics. The points are the predicted

values for the percentage of open AMPA receptors at each instant

of time selected in data sampling stage 2. The precision metrics

indicate how accurate this prediction is.

Assuming that these prediction metrics show acceptable values,

the fifth stage attempts to infer a mathematical function capable of

determining the percentage of open AMPA receptors for any given

time instant. As previously described, several function models

where tested in order to find the most suitable match (polynomial,

Fourier, Gauss, sum of sine, exponential, and rational). At this

point we selected the two best previously studied models: i) a

rational polynomial model (the best function model according to

RMSE) and ii) a Fourier series (the best function model according

to R2) of the following form:

AMPA
(i)
O (t)~

p1t4zp2t3zp3t2zp4tzp5

t4zq1t3zq2t2zq3tzq4

AMPA
(ii)
O (t)~a0z

X8

i~1

(aicos(itw)zbisin(itw))

The first case involves a fraction of two 4-degree polynomials,

containing a total of nine coefficients. The second case is an 8-term

Fourier series with 18 coefficients. Using the predicted points

obtained from the validation stage, it is possible to calculate the

values of these coefficients by means of an automatic curve-fitting

process. This curve fitting was performed using the MATLAB

curve-fitting tool. The precision of this process was again

measured using the two metrics indicated in validation stage 4.

Ultimately, only one of these two AMPAO models (either the

rational function or the Fourier series) is necessary. Therefore, in

order to determine the best performing one, it was necessary to

evaluate the final results of this curve-fitting stage. These results

are presented and discussed in the following section.

The entire AMPA activation prediction process was implemented

using the C++, Python and Java programming languages and the

MCell Description Language (MDL).

The five stages of the receptor activation prediction process were

developed as a set of configurable programs written in Python,

Java and C++. For the supervised machine learning tools and

Table 3. Validation stage results.

Regression technique RMSE R2

M5P 0.6357 0.9808

KNN 0.8875 0.9774

MLP 18.812 0.8722

PPR 24.231 0.8255

Linear Regression 31.067 0.7235

MARS 31.077 0.7234

The average value of each validation metric for each regression technique is
shown, sorted from best to worst. The metrics are calculated for each case by
comparing the initial curve sample of 100 points with the corresponding 100
predicted points obtained using each regression algorithm. M5P obtained the
best results with both RMSE and R2 metrics.
doi:10.1371/journal.pone.0068888.t003
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algorithms, Weka data mining open source software was used [46].

Other mathematical and programing tools used include R [54],

MATLAB [44] and the NumPy and SciPy libraries.

The five-stage receptor activation prediction process was

executed on a regular desktop computer with a 4-core Intel i5

2.4GHz CPU and 4GB of RAM. The process was carried out in

separate stages, with a total aggregated computation time of less

than 5 hours. Software can be downloaded from http://cajalbbp.

cesvima.upm.es/ampaprediction and ModelDB (http://senselab.

med.yale.edu/ModelDB/showmodel.asp?model = 150207).

Results

Machine learning validation results
During stages 2 and 3 of the AMPA activation prediction process,

the simulation dataset was divided into 10 fold configurations that

were used during the machine learning process. Stage 4 was

concerned with the statistical evaluation of the results of these

processes. For each fold configuration, the RMSE and R2 metrics

were calculated after using the M5P algorithm, producing the

results shown in Table 3.

As can be seen, all metrics provided excellent results. The M5P

algorithm seems to be a very suitable technique for the task at

hand, capable of very accurately predicting the values of the

average percentage of activated AMPA receptors. All fold

configurations showed very close-fitting values both for RMSE

and R2, and the aggregated results (containing the predicted values

for all synapse configurations samples) were equally good. The R2

metric was especially interesting since it is the more sophisticated

one, and is especially appropriate for prediction assessment. In this

case the average value was above 0.98, indicating an almost exact

fit to the test data (a value of 1 would indicate an exact prediction).

This is especially relevant since, as described in the Materials and

Methods section, the 10-fold cross-validation process ensures that

no information from any synapse configuration is used to train the

part of the machine learning model that predicts it. This seems to

indicate that the M5P algorithm has been able to avoid overfitting

and has been capable of inferring the underlying relations between

the synapse configuration characteristics, the time elapsed since

glutamate vesicle liberation and the AMPA receptors activation.

It is important to remember that these results are related to the

validation stage of the receptor activation prediction process, and

therefore are obtained from the sampled simulation values only

(100 per synapse configuration).

Final prediction results
After the machine learning validation had taken place, the final

curve fitting stage was performed. This made use of the 100 points

predicted for each synapse configuration to infer the entire series

of open AMPA receptors (AMPAO). As explained previously, this

series was fitted to the rational and Fourier models presented in

the Materials and Methods section. The results of this curve fitting

process were evaluated using the RMSE and R2 metrics. In this

case, all the original values of each AMPA curve were compared to

the corresponding mathematical function obtained after the curve

fitting process. This gave a final measurement of the AMPA

prediction capabilities of the method presented, since the final

estimated curve was compared to the original experimental data.

Figure 6 shows two examples of this final predicted curve,

compared with the Monte Carlo simulated experimental series

obtained with MCell. The figure also shows the 100 predicted

points per curve obtained in the machine learning validation stage,

that were used afterwards to fit the final receptor behavior

prediction curve.

The same fitting process was performed for both curve models

(rational and Fourier) and all 1000 synapse configurations, and the

precision metrics were calculated. Table 4 shows the final mean

and standard deviation values observed for those metrics. Detailed

results can be seen in the Supporting Information, Table S9 in

File S1.

Results show that, using the rational function, the final AMPA

activation prediction model provides a very accurate estimation of the

average percentage of active AMPA receptors curves. Both

precision metrics (RMSE and R2) present excellent results,

validating the quality of the prediction model and demonstrating

its desired characteristics. The resulting model is capable of

predicting the average AMPA receptor activation curve for any

synapse configuration whose parameters are within the range of

the synapses originally simulated using the Monte Carlo method.

Figure 6. Predicted receptor activation curves. Two examples of
predicted curves (fitted using the rational model) compared with the
experimental curves obtained by Monte Carlo simulations. The Monte
Carlo simulation curves (blue traces) are the mean of 200 simulations
performed with MCell. The 100 predicted points per curve (small
crosses) were obtained in the machine learning validation stage. These
points were later used to fit the predicted curve (red traces). (A):
[AMPA] = 1614 molecules/mm2, [T] = 508 molecules/mm2, Ls = 534 nm,
Hc = 18 nm, E = .65. The error metrics for the final predicted curve
were: RMSE = 0.2058, R2 = 0.9984. (B): [AMPA] = 2878 molecules/mm2,
[T] = 9155 molecules/mm2, Ls = 456 nm, Hc = 16 nm, E = 1.36. The error
metrics for the final predicted curve were: RMSE = 0.1857, R2 = 0.9981.
doi:10.1371/journal.pone.0068888.g006
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Thus, curves representing continuous changes in synapse param-

eters can be generated (Figure 7). The Fourier series seems to

produce equally accurate curves, but at the cost of having a much

more complex model (18 coefficients against 9 in the rational

model). For this reason we do not recommend the use of the

Fourier model for this stage, although its numerical results are

equally good.

Not all synaptic parameters have the same impact on the

average percentage of activated AMPA receptors. To determine

which of these parameters are the most influential in our

simulations, we calculated the Pearson’s linear correlation

coefficient of each synaptic parameter with the average peak

amplitude of the percentage of activated AMPA receptors. The

most influential parameter, revealed by the highest (inverse)

correlation, was Ls, with a coefficient of 20.795. E and Hc yielded

much lower coefficients of 0.330 and 20.305, respectively,

followed by [T] and [AMPA], with 20.260 and 20.008,

respectively (all these values are shown in Table S10 in File S1).

We also evaluated the possibility that for certain values of the

variables, our method would give better results than for other

values. To do this, we plotted the distribution of RMSE and R2

error values against the values of the five variables used in the

model synapses (see Table S9 in File S1), and we found no

evidence of clustering of good (or bad) error values around any

variable values (see Figures S1 and S2 in File S1).

Extendibility of the prediction model
Results show that the method presented in this paper can

generate a very accurate AMPA receptor activation prediction

model based on a series of synaptic Monte Carlo simulations,

using five different variables ([AMPA], [T], Ls, Hc and E). This is,

of course, a simplified model of the synapse, and other variable

parameters could be taken into account, depending on the specific

interests of the researcher using our method. The techniques

described in this paper are designed to be easily adapted, so new

synaptic parameters can be readily incorporated into the model.

Moreover, since the method includes its own evaluation mecha-

nisms, it provides a measurement of the accuracy of the prediction

model for the synaptic parameters selected.

To illustrate this extendibility, we performed an additional series

of experiments, increasing the number of variables to 6. We kept

the five original variables, and added a new one: the diffusion

coefficient of glutamate, Dg, which had previously been consid-

ered constant. For this new series, we generated 2000 new synaptic

configurations, randomly varying the five original synaptic

variables within the same ranges used in the previous experiments

(see Table 1 for details). The new variable Dg, was randomly

sampled between 0.25 and 0.75 mm2/ms [55][56][57]. The

sample size for Monte Carlo simulations was doubled (from

1000 configurations to 2000) to exhaustively cover all new data

variability due to the introduction of the additional variable. Using

this new experimental dataset, we performed the five stages of our

method, as in the case of the original simulation dataset. Error

metrics are summarized in table 5. Detailed results can be found in

the Supporting Information, Table S11 in File S1.

The model accuracy was still very high, although lower than

with the original experimental series. This was most probably due

to the increased complexity arising from the addition of a new

variable. In this case, the Fourier fit produced better results than

the rational fit with both accuracy metrics. Therefore, in this

particular case we would recommend the use of this technique in

stage 5 of our method. This example illustrates how the

incorporated accuracy metrics can help our method to achieve

the best possible results.

Discussion

In this paper we have demonstrated the difficulties of

constructing an accurate automated predictor of the behavior of

Monte Carlo simulations of synaptic receptors in synapses with a

wide range of different structural and physiological characteristics.

Table 4. Final prediction results.

Mean
(Rational)

Stdev
(Rational)

Mean
(Fourier)

Stdev
(Fourier)

RMSE 0.3122 0.4537 0.3252 0.4387

R2 0.9914 0.04789 0.9929 0.0340

Final AMPA receptor activation prediction results obtained using either the 4-
by-4 degree polynomial rational function or the 8-term Fourier series as curve-
fitting models.
doi:10.1371/journal.pone.0068888.t004

Figure 7. Comparison between predicted and Monte Carlo
simulated curves of the percentage of open AMPA receptors.
The figure shows 13 curves where all synapse parameters were kept
constant except the side length of the synapse (Ls). Five curves (marked
with arrows) were generated by Monte Carlo simulations to serve as
references (Ls = 150 nm, 300 nm, 450 nm, 600 nm and 750 nm). The
rest of the synapse parameter values were [AMPA] = 2000 molecules/
mm2, [T] = 2500 molecules/mm2, Hc = 20 nm and E = 1.75.
doi:10.1371/journal.pone.0068888.g007

Table 5. Final prediction results with an extended scenario.

Mean
(Rational)

Stdev
(Rational)

Mean
(Fourier)

Stdev
(Fourier)

RMSE 0.7221 3.4980 0.6167 1.8710

R2 0.9643 0.1214 0.9728 0.0930

Summary of the AMPA receptor activation prediction results obtained using
either the 4-by-4 degree polynomial rational function or the 8-term Fourier
series as curve-fitting models. In these experiments, an extended simulation
dataset was used, including six different synaptic variables. The new variable
included was the diffusion coefficient of glutamate.
doi:10.1371/journal.pone.0068888.t005
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Nevertheless, we have developed an advanced synapse behavior

modeling process that is capable of achieving this goal.

The entire process described in the present article is performed

automatically. The extensive range of synaptic structural and

physiological configurations to be explored in order to generate a

comprehensive synapse receptor behavior model requires a

method where the neuroscientist is only concerned with the

relevant aspects of the experimental configuration and results,

relying on the computer to perform all the sophisticated data

handling and mathematical analysis. A computer, using standard

statistical software tools, can perform all five stages by itself and no

human supervision is required once the initial simulation data

have been gathered.

The prediction mechanism used in the present study is generic,

which means that it does not work by simply ‘‘memorizing’’ its

training data and afterwards recalling the corresponding informa-

tion when asked about a previously simulated synapse configura-

tion. On the contrary, it is capable of extracting knowledge and

learning highly complex patterns that describe how synapse

receptors behave under different conditions. It applies this

knowledge afterwards, when required to predict a new, not

previously simulated synapse configuration. The nature of the 10-

fold cross-validation process guarantees that no data from any

specific synapse configuration is used when training a model to

predict it (since it cannot be in the training set and test set at the same

time). This avoids overfitting and makes the generation of more

general prediction models possible.

Furthermore, once the prediction model is created, no further

experimental Monte Carlo simulations are required. Since the

prediction model is able to extrapolate results other than those

used for learning, this model can be used in place of experimental

simulations. Of course, the generic nature of the receptor

prediction model will strongly depend on the quality of the initial

experimental data used to train it. This data has to be sufficiently

rich in order for the machine learning process to be able to learn

and extract useful synapse behavior patterns. In this paper we have

explored a wide range of different structural and physiological

synapse characteristics in order to create a comprehensive training

set. With this requirement fulfilled, the prediction function

effectively replaces the average percentage of open receptors

observed by a series of experimental simulations, which would be

much more computationally expensive. Therefore, from an

experimental perspective, the receptor behavior prediction model

represents an excellent tool, since it drastically reduces the

computational cost of determining this average receptor behavior.

To better understand the magnitude of this improvement, it is

important to consider the time spent and computational resources

used during the development of this technique. To create the

initial training set a total of 200,000 synapse simulations were

executed using MCell (1,000 synapse configurations, 200 execu-

tions per configuration). These simulations were carried out on the

Magerit supercomputer, using 800 CPU cores and amounting to a

total of over 3,500 aggregate CPU hours, or approximately 1 min/

simulation on average (since 800 CPU cores were used in parallel,

the whole set of simulations took approximately 4.5 hours). In

contrast, once the receptor activation prediction model presented

here has been trained, it only requires approximately 8 CPU

seconds to predict the average behavior of a specific synapse on a

regular 4-core desktop computer (Intel Core i5 2.4Ghz), that is, a

total of 32 seconds of CPU time (8 seconds 64 cores). Our

receptor activation prediction technique would require only

8.9 hours (32,000 seconds) of aggregated CPU time to generate

1,000 synapse configurations (the same number that were

generated using MCell). Therefore, the use of this technique

maintains the accuracy of Monte Carlo simulations (for the range

of parameters that we have considered) reducing the computa-

tional cost from 3,500 to 8.9 CPU hours, thus reducing the CPU

total time by a factor of approximately 1/400th. This is an

important achievement since there are trillions of synapses in the

brain. For example, only one mm3 of human cerebral cortex

contains around 109 synapses [58]. Thus, the simulation of even a

small portion of the brain would require a cumbersome

computational effort, especially if different conditions, such as

developing vs. adult, or normal vs. pathological nervous tissue

need to be modeled and compared. With our method, large

numbers of different synapses can be simulated using a regular

computer. Indeed, as mentioned above, a regular 4-core desktop

computer can generate the average behavior of one synapse in 8

seconds, that is, 450 different synapses per hour. If our technique

were implemented in a supercomputer such as Magerit, using 800

processing cores, the number of simulated synapses would increase

at least by two orders of magnitude, to 90,000 per hour or more.

Figure 8. Comparison of computational costs of synapse
Monte Carlo simulations vs. the proposed AMPA prediction
model. CPU time required for obtaining statistically representative
average AMPA receptor activation information (mean of 200 stochastic
simulations) using both methods on a regular desktop computer. (A):
Comparison between the CPU cost of estimating average behavior of a
single synapse. (B): Linear extrapolation of the CPU time required to
model an increasingly large number of synapses. This includes the initial
set of Monte Carlo simulations (1000 synapse configurations) required
to train the machine learning model. The prediction model CPU time
curve growth is barely perceptible due to the great slope difference
with the Monte Carlo simulations curve (the Monte Carlo simulations
CPU time grows approximately 400 times faster). In both cases, CPU
time is presented in logarithmic scale.
doi:10.1371/journal.pone.0068888.g008

Machine Learning for Synapse Receptor Prediction

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e68888



Thus the simulation of thousands of millions of synapses present in

the brain would be feasible by incrementing computation time and

power. For example, future availability of exascale computers

(with hundreds of thousands or even millions of processing cores)

will represent an important advance in the simulation of synapses

in the whole brain. The computational benefits of our method-

ology are summarized in Figure 8.

It is important to acknowledge that the receptor activation

prediction model cannot be trained without previously generating

the Monte Carlo simulation dataset. The great advantage of the

present method is that it is only necessary to perform this large set

of simulations once. After carrying out the initial training that we

have presented in this paper, the prediction model is capable of

estimating the behavior of synapses that have not been previously

simulated, so new Monte Carlo simulations are not required. In

this way, an arbitrarily large population of synapses with different

parameters can be modeled, provided that these parameters are

within the range used in the initial Monte Carlo simulations.

Alternatively, the influence of the variation of a given parameter

on the behavior of individual synapses can also be modeled. For

example, it is possible to predict the AMPA receptor activation

curve of a population of synapses whose sizes and AMPA receptor

densities are within the ranges used in this study. The same data

can be used to explore the influence of variations of size and/or

receptor density on individual synapses during development, as

well as in plasticity or pathological circumstances. In the present

work, the data generated with Monte Carlo simulations yielded

the evolution of AMPA receptor states over time in a set of

simulated synapses of different characteristics. We considered the

peak amplitude of open AMPA receptors as a relevant parameter

and our method has consequently focused on this parameter,

trying to predict its value for different synaptic configurations. In

principle, nothing precludes the use of this method for the

prediction of other aspects of synaptic function. For example, the

area under the curve of open AMPA receptors; the concentration

of glutamate within the synaptic cleft at a given time point; and the

evolution of any other AMPA receptor state could also be

predicted from the same set of Monte Carlo simulations using the

same method. However, it is not possible to know a priori how

accurate the predictions will be, or how many initial Monte Carlo

simulations will be necessary. Although this is certainly a

disadvantage, our method does incorporate its own accuracy

metrics to allow the user to evaluate new prediction scenarios.

In addition to the benefits already outlined, the low computa-

tional cost of this method and its accuracy makes it especially

useful in the field of multi-scale simulations. In recent years,

biology has adopted these kinds of simulations to deal with

problems that cannot be described, at least not easily, with a

single-scale modeling technique [26][59][60][61]. Multi-scale

simulations (in any of the fields they have been applied) are

divided into two main categories (i) Sequential (also known as serial,

implicit or message passing) and (ii) Concurrent (parallel or explicit)

[25][62]. Sequential multi-scale simulations define a hierarchy of

modeling techniques in which the small-scale models working on

highly-detailed elements provide information to construct large-

scale models that deal with coarse-grain representations. Parallel

multi-scale simulations bring together methods that operate at

different scales in a combined approach. The simulations of these

different scales are run simultaneously, exchanging information

between them.

Our method can be considered as a sequential multi-scale

simulation technique since a set of individual synapses are first

simulated with MCell at the microsecond/nanometer scale. These

simulations are then used to extract general principles governing

the behavior of synapses. Using this information, relevant

characteristics of synapses can finally be predicted for new

synapses without the need for new Monte Carlo simulations and

at a much lower computational cost.

Supporting Information

File S1 Contains: Figure S1. Final prediction results
compared to the synaptic parameters (rational model).
Comparison between prediction errors obtained using the 4-by-4

rational curve fitting model and the different synaptic parameters.

(A): Comparison to RMSE. (B): Comparison to R2. Figure S2.
Final prediction results compared to the synaptic
parameters (Fourier model). Comparison between predic-

tion errors obtained using the Fourier curve fitting model and the

different synaptic parameters. (A): Comparison to RMSE. (B):

Comparison to R2. Table S1. Curve fitting test results.
Average curve fitting test results for all possible curve

fitting alternatives tested against the Monte Carlo simulation

data. Table S2. Machine learning techniques evaluation
results: RMSE. Comparison of validation results (RMSE)

obtained during the 10-fold cross-validation process for all

machine learning techniques tested. Table S3. Machine
learning techniques evaluation result: R2. Comparison of

validation results (R2) obtained during the 10-fold cross-validation

process for all machine learning techniques tested. Table S4.
Linear correlation between synapse parameters and
function coefficients: 4-by-4 degree polynomial rational
function. Observed linear correlation between synapse param-

eters and coefficients of the 4-by-4 degree polynomial rational

function for all Monte Carlo synapse simulations. Table S5.
Linear correlation between synapse parameters and
function coefficients: 8-term Fourier series. Observed

linear correlation between synapse parameters and coefficients of

the 8-term Fourier series for all Monte Carlo synapse simulations.

Table S6 Linear correlation between synapse parame-
ters and function coefficients: 8-term Gauss series.
Observed linear correlation between synapse parameters and

coefficients of the 8-term Gauss series for all Monte Carlo synapse

simulations. Table S7. Linear correlation between syn-
apse parameters and function coefficients: 2-term
exponential function. Observed linear correlation between

synapse parameters and coefficients of the 2-term exponential

function for all Monte Carlo synapse simulations. Table S8.
Linear correlation between synapse parameters and
function coefficients: 9-degree polynomial. Observed

linear correlation between synapse parameters and coefficients of

the 9-degree polynomial function for all Monte Carlo synapse

simulations. Table S9. Final prediction results. Compar-

ison between Monte Carlo simulations and prediction results

obtained for all 1000 synapse simulations, using the 4-by-4 rational

and Fourier curve fitting models. (A): Detailed results. (B): Average

and stdev values. Table S10. Correlation between synap-
tic parameters and AMPA activated receptors curve
peak. Pearson’s linear correlation coefficient between the AMPA

activated receptors curve peak and the values of the different

synaptic parameters. Table S11. Final prediction results of
the extended experiment. Comparison between Monte Carlo

simulations and prediction results obtained for all 2000 synapse

simulations, using the 4-by-4 rational and Fourier curve fitting

models. (A): Detailed results. (B): Average and stdev values.
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