
Predicting Access to Persistent Objects through

Static Code Analysis ⋆

Rizkallah Touma1, Anna Queralt1, Toni Cortes1,2, and Maŕıa S. Pérez3

1 Barcelona Supercomputing Center (BSC)
2 Universitat Politècnica de Catalunya (UPC)

3 Ontology Engineering Group (OEG), Universidad Politécnica de Madrid
{rizk.touma, anna.queralt, toni.cortes}@bsc.es, mperez@fi.upm.es

Abstract. In this paper, we present a fully-automatic approach to pre-
dict access to persistent objects through static code analysis of object-
oriented applications. Previous techniques have been based on moni-
toring application execution and add a non-negligible overhead to its
execution time and/or consume a considerable amount of memory. By
contrast, our approach achieves high-accuracy prediction through anal-
ysis done prior to executing an application and does not add any over-
head. We evaluate the approach and compare it with the most common
technique used to predict access to persistent objects. The experimental
results indicate that our approach offers better accuracy and makes the
predictions with more time in advance.

1 Introduction

Persistent Object Stores (POSs), such as object-oriented databases and Object-
Relational Mapping systems (ORM), are storage systems that expose persistent
data in the form of objects and relations between these objects. This structure is
rich in semantics ideal for predicting access to persistent data [9] and has invited
a significant amount of research due to the importance of these predictions in
areas such as prefetching, cache replacement and dynamic data placement.

In this paper, we present a fully-automatic approach that predicts access to
persistent objects through static code analysis of object-oriented applications.
Our approach takes advantage of the symmetry between application objects and
POS objects to perform the prediction process before the application is executed
and does not cause any overhead. In our experimental study, we demonstrate the
viability of the proposed approach by answering the following research questions:
– RQ1: What is the accuracy of the proposed approach?

⋆ This work has been supported by the European Union’s Horizon 2020 research and
innovation program (grant H2020-MSCA-ITN-2014-642963), the Spanish Govern-
ment (grant SEV2015-0493 of the Severo Ochoa Program), the Spanish Ministry
of Science and Innovation (contract TIN2015-65316) and Generalitat de Catalunya
(contract 2014-SGR-1051). The authors would also like to thank Alex Barceló for
his feedback on the formalization included in this paper.

– RQ2: How much in advance can the approach make the predictions?
We also compare our approach with the Referenced-Objects Predictor (see

Section 2) and the experimental results show that our approach offers better
accuracy in all of the studied benchmarks, with reductions in false positives of
as much as 30% in some cases. Moreover, our approach predicts accesses farther
in advance giving additional time for the predictions to be utilized.

2 Related Work

The simplest technique to predict access to persistent objects is the Referenced-
Objects Predictor (ROP), which is based on the following heuristic: each time
an object is accessed, all the objects referenced from it are likely to be accessed
as well [9]. In spite of its simplicity, this predictor is widely used in commercial
POSs because it does not involve a complex and costly prediction process.

More complex approaches have used various techniques such as Markov-
Chains [10], traversal profiling [6, 7] and the Lempel-Ziv compression algorithm
[2] while the approach presented in [3] compares the accuracy of three machine
learning techniques. The main drawbacks of these approaches are the overhead
they add to application execution and the fact that they are based on a most-
common case scenario which might lead to erroneous predictions in some cases.

Predicting access to persistent objects at the type-level was introduced in [5]
based on the argument that patterns do not necessarily exist between individual
objects but rather between object types. Type-level access prediction is more
powerful than its object-level counterpart and can capture patterns even when
different objects of the same type are accessed. Moreover, information is not
stored for each individual object which reduces the amount of used memory.

The approach brought forward in this paper combines the idea of applica-
tion type graphs, presented in [7], with type-level access hints. The work in [7]
proceeds by creating an object graph and generating object-level access hints
based on profiling done during application execution. On the other hand, our
approach generates type-level access hints based on static code analysis thus ben-
efiting from the advantages of type-level prediction while avoiding the problems
stemming from performing the process during application execution.

Previous approaches that use static analysis to detect access to persistent
data have targeted specific types of data structures such as linked data structures
[1, 4, 8], recursive data structures [11, 13] or matrices [12]. To the best of our
knowledge, our work is the first that predicts access to persistent objects of any
type prior to application execution.

3 Running Example

Figure 1 shows the partial implementation of a bank management system, all
classes represent persistent types except the BankManagement class. The method
setAllTransCustomers() updates the customers of all the transactions to a new
customer restricting such updates to customers of the same company. In order

1 public class BankManagement {

2 private List<Transaction> trans;

3 private Customer manager;

4

5 public void setAllTransCustomers()

{

6 for (Transaction t : trans) {

7 t.getAccount()

.setCustomer(manager);

8 }

9 }

10 }

11

12 /* Persistent Classes */

13 public class Transaction {

14 private Account acc;

15 private Employee emp;

16 private TransactionType type;

17

18 public Account getAccount() {

19 if (type.typeID == 1) {

20 emp.doSomething();

21 } else {

22 emp.dept.doSomethingElse();

23 }

24 return acc;

25 }

26 }

27

28 public class Account {

29 private Customer cust;

30 }

31

32 public void setCustomer(Customer

newCust) {

33 if (cust.comp == newCust.comp) {

34 cust = newCust;

35 }

36 }

37 }

38

39 public class Customer {

40 public Company comp;

41 }

42

43 public class Employee {

44 public Department dept;

45 }

Fig. 1. Example Object-Oriented Application Code

to do so, it retrieves and iterates through all the Transaction objects and then
navigates to the referenced Account and Customer until reaching the Company
of each transaction and compares it with the new customer’s company.

For this example, ROP would predict that each time a Transaction object is
accessed, the referenced Transaction Type, Account and Employee objects will be
accessed as well. However, the method setAllTransCustomers() does not access
the predicted Transaction Type and Employee objects but needs the Customer
and Company objects which are not predicted.

On the other hand, using static code analysis we can see that when se-
tAllTransCustomers() is executed it accesses: (1) the object BankManagement.
manager, (2) all the Transaction objects, and (3) the Account, Customer and
Company objects of each transaction by calling getAccount() and setCustomer().
We can also see that getAccount() might access the Department of the Employee
of a Transaction, depending on which branch of the conditional statement start-
ing on line 19 is executed. Using this information, we can automatically generate
method-specific access hints that predict which objects are going to be accessed.

4 Proposed Approach

Assuming we have an object-oriented application that uses a POS, we define T as
the set of types of the application and PT ⊆ T as its subset of persistent types.
Furthermore, ∀t ∈ T we define (1) Ft : the set of persistent member fields of t
such that ∀f ∈ Ft : type(f) ∈ PT , (2) Mt : the set of member methods of t.

Fig. 2. Type graph GT of the application
from Fig. 1. Solid lines represent single asso-
ciations and dashed lines represent collection
associations.

Fig. 3. Method type graph Gm of
the method getAccount() from Fig. 1.
Navigations highlighted in gray are
branch-dependent.

4.1 Type Graphs

Application Type Graph The type graph of an application, as defined in [7],
is a directed graph GT = (T,A) where:
– T is the set of types defined by the application.
– A is a function T×F → PT×{single, collection} representing a set of associ-

ations between types. Given types t and t′ and field f , if A(t, f) → (t′, c) then
there is an association from t to t′ represented by f ∈ Ft where type(f) = t′

with cardinality c indicating whether the association is single or collection.
Example. Figure 2 shows the type graph of the application from Fig. 1.

Some of the associations of this type graph are: (1) A(Bank Management, trans)
7→ (Transaction, collection), (2) A(Transaction, acc) 7→ (Account, single).

Method Type Graph We construct the type graph Gm of a method m ∈
Mt from the associations that are navigated by the method’s instructions. A
navigation of an association t ⇁f t′ is triggered when an instruction accesses
a field f in an object of type t (navigation source) to navigate to an object of
type t′ (navigation target) such that A(t, f) → (t′, c). A navigation of a collection
association has multiple target objects corresponding to the collection’s elements.

Example. Figure 3 shows Gm of method getAccount() from Fig. 1.

Augmented Method Type Graph We construct the augmented method
type graph AGm of a method m ∈ Mt by adding association navigations that
are caused by the invocation of another method m′ ∈ Mt′ to Gm as follows:

– The type graph of the invoked method Gm′ is added to Gm through the
navigation t ⇁f t′ that caused the invocation of m′.

– The association navigations that are triggered by passing a persistent object
as a parameter to m′ are added directly to Gm.

Example. Figure 4 shows the augmented method type graphAGm of method
setAllTransCustomers(). Note that the navigationsBankManagement ⇁manager

Customer ⇁comp Company are triggered by passing the persistent object Bank
Management.manager as a parameter to the method setCustomer(newCust).

Fig. 4. Augmented method type graph AGm of setAllTransCustomers() from Fig. 1.

4.2 Access Hints

We traverse a method’s augmented graph and generate its set of access hints as:
AHm =

{

ah | ah = f1.f2.fn where ti ⇁
fi ti+1 ∈ AGM : 1 ≤ i < n

}

Each access hint ah ∈ AHm corresponds to a sequence of association navigations
in AGm and indicates that the navigations’ target object(s) is/are accessed.

Example. The augmented method type graph AGm of Fig. 4 results in the
following set of access hints for method setAllTransCustomers() :

AHm = {trans.type, trans.emp, trans.acc.cust.comp, manager.comp}

4.3 Nondeterministic Application Behavior

Branch-Dependent Navigations They are navigations that depend on a
method’s branching behavior and might not be triggered depending on which
branch is taken during execution. We divide them in two types:
– Navigations not triggered inside all the branches of a conditional statement.
– Navigations of collection associations triggered in loop statements with bran-

ching instructions (continue, break, return) or increments greater than 1.
Including branch-dependent navigations in Gm might result in false positives

if the branch from which the navigation is triggered is not taken during execution.
On the other hand, excluding them might result in a miss if the branch is indeed
taken. Both strategies are evaluated and discussed in Section 5.

Example. In Fig. 3, the navigations Transaction ⇁emp Employee ⇁dept

Department, highlighted in gray, are branch dependent (they are only triggered
in one of the conditional statement’s branches) while the navigation Transaction

⇁emp Employee is not (it is triggered inside both branches).

Overridden Methods A method m ∈ Mt might have overridden methods
OMm in the subtypes of its type STt. When an object is defined of type t but
initialized to a subtype t′ ∈ STt, the methods executed on the object are not
known until runtime. Hence, using the access hints of m might lead to erroneous
predictions. We propose to handle this case by adding one of the following sets
of access hints to AHm (both strategies are evaluated in Section 5):
–

⋂

m′∈OMm
AHm′ : intersection of access hints of overridden versions of m.

–
⋃

m′∈OMm
AHm′ : union of access hints of overridden versions of m.

0.01 0.01

0.40

0.66

0.98 0.98 1.00 1.00 0.98 0.99

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�BDNs

�OMs

�BDNs

∪OMs

BDNs

�OMs

BDNs

∪OMs

depth

1

depth

3

T
P
R

F
P
R

(a) OO7

0.86

0.01

0.89

0.03 0.03

0.97 0.99 0.98 1.00 1.00 1.00

0.01 0.01

0.98 0.98 1.00 1.00

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 1011121314151617

T
P
R

F
P
R

�BDNs �BDNs BDNs BDNs depth depth

�OMs ∪OMs �OMs ∪OMs 1 3

(b) JPAB

0.10 0.10

1.00 1.00 1.00 1.00 1.00 1.00

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�BDNs

�OMs

�BDNs

∪OMs

BDNs

�OMs

BDNs

∪OMs

depth

1

depth

3

T
P
R

F
P
R

(c) K-Means

0.07 0.07 0.12 0.12

0.97 0.97 1.00 1.00 1.00 1.00

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

�BDNs

�OMs

�BDNs

∪OMs

BDNs

�OMs

BDNs

∪OMs

depth

1

depth

3

T
P
R

F
P
R

(d) Princeton Graph Algorithms

Fig. 5. True Positive Ratio (TPR) and False Positive Ratio (FPR) of our approach (left
of the dashed line) compared with ROP (right of the dashed line). Columns represent:
- ¬BDNs / BDNs : exclude / include branch-dependent navigations
- ∪OMs / ∩OMs : intersection / union of overridden methods’ access hints

5 Evaluation

We implemented a prototype of our approach in Java using IBM Wala and eval-
uated it on two benchmarks specifically designed for POSs and two benchmarks
typically used for computation-intensive workloads:
– OO7: the de facto standard benchmark for POSs and OO databases.
– JPAB: measures the performance of ORMs compliant with Java Persistent

API (JPA) using 4 types of workloads (persist, retrieve, query and update).
– K-Means: a clustering algorithm typically used as a big data benchmark.
– Princeton Graph Algorithms (PGA): a set of various graph algorithms

with different types of graphs (undirected, directed, weighted).
We compared our approach with the ROP explained in Section 2 using the

minimum possible depth of 1 as well as a depth of 3 to predict access to objects.
In all the experiments, we used Hibernate 4.1.0 with PostgreSQL 9.3 as the
persistent storage. In the following, we present our experimental results.

RQ1: What is the accuracy of the proposed approach?
We answered this question by testing the different strategies proposed in Section
4.3 to deal with branch-dependent navigations and overridden methods. Figure
5 shows the True Positive Ratio (correctly predicted objects / accessed objects)
and False Positive Ratio (incorrectly predicted objects / total predicted objects)

0%

20%

40%

60%

80%

100%

0 1 10 100 1,000 10,000

(a) OO7

0�

20�

40�

60%

80%

100%

0 1 10 100 1,000 10,000

(b) JPAB

0	

20	

40	

60%

80%

100%

0 1 10 100 1,000 10,000

(c) K-Means

0

20

40

60%

80%

100%

0 1 10 100 1,000 10,000

(d) PGA

Fig. 6. The x-axis represents the number of persistent accesses between the prediction
that a persistent object o will be accessed and the actual access to o. The y-axis
represents the percentage of accesses that are predicted for each x-axis value. Solid
lines represent our approach and dashed lines represent ROP.

of these strategies compared with ROP. Regardless of the used strategy, our
approach results in fewer false positives in all of the studied benchmarks.

The only exception is taking the union of overridden methods’ access hints
with JPAB, represented by the solid-colored set of columns in Figure 5(b), which
results in a sharp increase in false positives. This is due to the implementation
of JPAB which includes five different tests each with its independent persistent
classes, all of which are subclasses of a common abstract class. Hence, taking the
union of overridden methods’ access hints results in predicting access to many
objects unrelated to the test being executed. We reran the analysis excluding the
methods of the common abstract class and their overridden versions. The results
are shown by the dotted set of columns in Figure 5(b) and indicate that excluding
this case, the behavior of JPAB is similar to that of the other benchmarks.

Based on the results of this experiment, we recommend excluding branch-
dependent navigations when memory resources are scarce since this strategy
does not result in any false positives. By contrast, branch-dependent navigations
should be included when we are willing to sacrifice some memory, which will be
occupied with false positives, in return of a higher true positive ratio. Finally, we
recommend to always take the intersection of overridden methods’ access hints
in order to avoid problems with special cases similar to JPAB.

RQ2: How much in advance can the approach make the predictions?
We measured how much in advance our approach can make the predictions and
compared it with ROP by calculating the number of persistent accesses between
the time that an object o is predicted to be accessed and the actual access to
o. For example, Figure 6 shows that with OO7, 95% of predictions made by our
approach are done at least 1 persistent access in advance and 70% of predictions

at least 10 persistent accesses in advance. The results shown in Fig. 6 indicate
that in the case of JPAB, the improvement we obtain over ROP is very small
because the benchmark’s data model does not allow for predictions to be made
far in advance. However, with the other benchmarks, most significantly with
K-Means, our approach is able to predict accesses much farther in advance.

6 Conclusions

In this paper, we presented a novel approach to automatically predict access to
persistent objects through static code analysis of object-oriented applications.
The approach performs the analysis prior to application execution and does not
add any overhead. The experimental results show that our approach achieves
better accuracy than the ROP without performing any analysis during applica-
tion execution. Moreover, the true advantage of our approach comes from the
fact that it can predict access to persistent objects farther in advance which in-
dicates that the predictions can be easily exploited to apply smarter prefetching,
cache replacement policies and/or dynamic data placement mechanisms.

References

1. B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked
data structures in Java. In Proceedings of PACT 2001, pages 280–291, 2001.

2. K. M. Curewitz, P. Krishnan, and J. S. Vitter. Practical prefetching via data
compression. SIGMOD Rec., 22(2):257–266, 1993.

3. S. Garbatov and J. Cachopo. Data access pattern analysis and prediction for
object-oriented applications. INFOCOMP Computer Science, 10(4):1–14, 2011.

4. E. H. Gornish, E. D. Granston, and A. V. Veidenbaum. Compiler-directed data
prefetching in multiprocessors with memory hierarchies. In Proceedings of ICS
1990, pages 354–368. ACM, 1990.

5. W. Han, K. Whang, and Y. Moon. A formal framework for prefetching based on
the type-level access pattern in object-relational DBMSs. IEEE Trans. Knowledge
Data Eng., 17(10):1436–1448, 2005.

6. Z. He and A. Marquez. Path and cache conscious prefetching (PCCP). The VLDB
journal, 16(2):235–249, 2007.

7. A. Ibrahim and W. Cook. Automatic prefetching by traversal profiling in object
persistence architectures. In Proceedings of ECOOP 2006, pages 50–73. 2006.

8. M. Karlsson, F. Dahlgren, and P. Stenström. A prefetching technique for irregular
accesses to linked data structures. In Proceedings of HPCA, pages 206–217. 2000.

9. N. Knafla. A prefetching technique for object-oriented databases. In Advances in
Databases, volume 1271, pages 154–168. Springer-Verlag, 1997.

10. N. Knafla. Analysing object relationships to predict page access for prefetching.
In Proceedings of POS-8 and PJW-3, pages 160–170. Morgan Kaufmann, 1999.

11. C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data struc-
tures. In Proceedings of ASPLOS VII, pages 222–233. ACM, 1996.

12. T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler
algorithm for prefetching. In Proceedings of ASPLOS V, pages 62–73. ACM, 1992.

13. A. Stoutchinin, J. N. Amaral, G. R. Gao, J. C. Dehnert, S. Jain, and A. Douillet.
Speculative Prefetching of Induction Pointers, pages 289–303. 2001.

