
Cooperation Model of a Multiagent Parallel File System for Clusters

Maŕıa S. Ṕerez, Alberto Śanchez, V́ıctor Robles and José M. Pẽna
Facultad de Inforḿatica

Universidad Polit́ecnica de Madrid, Spain
e-mail:{mperez,ascampos,vrobles,jmpena}@fi.upm.es

Jemal Abawajy
School of Computer

Carleton University. Ottawa, Canada
e-mail: abawjem@scs.carleton.ca

Abstract

MAPFS is a parallel file system integrated with a multi-
agent system responsible for the information retrieval. One
of the fields where the agents can be very useful is precisely
in the development of information recovery systems. The
usage of a multiagent system implies coordination among
the agents that belong to such system. The main goal of
the agents cooperation is the interaction among them for
achieving a common objective in a distributed system. Thus,
a communication framework must be provided. This paper
shows the MAPFS cooperation model and its communica-
tion framework, emphasizing its relation with the whole sys-
tem.

1. Introduction

MAPFS is a MultiAgent Parallel File Systems for clus-
ters and offers a file system interface that includes tradi-
tional, advanced, collective, caching operations and hints
[13]. MAPFS consists of two subsystems with two clearly
defined tasks: (i) MAPFSFS, which provides the parallel
file system functionality and (ii) MAPFSMAS, responsi-
ble for the information retrieval. MAPFSMAS is an in-
dependent subsystem, which provides support to the main
subsystem (MAPFSFS) in three different areas:

• Access to the information: This feature is the main task
of MAPFS MAS. Data are stored in I/O nodes (a set of
disks distributed among several server nodes).

• Caching service: MAPFS takes advantage of the tem-
poral and spatial locality of data stored in servers. A
cache has a copy of the most recently used data in a

storage device, which is faster than the original stor-
age device. However, using a cache causes an impor-
tant coherence problem. Inside MAPFSMAS, there
is a set of agents which manage this feature. These
agents are namedcache agents. They are responsible
for using a cache coherence protocol and control data
transfer between both storage devices.

• I/O optimizations: MAPFS takes advantage of differ-
ent I/O optimizations techniques, such as caching and
prefetching (described above) and usage of hints. The
use of the agents methodology in this area makes flex-
ible the use of such I/O optimizations. For this pro-
posal,hints agentsare used.

With the aim of achieving these goals, MAPFSMAS
is constituted by a set of agents which interact among
them, that is, amultiagent system(MAS). In this case,
agents collaborate in order to provide the features men-
tioned above. Agents must be reconfigured because of the
dynamic and changing environment in which they coex-
ist. These agents adapt their behavior depending on the re-
sponse of the medium and their own learning. In this paper
the MAPFS cooperation model is shown, emphasizing its
relation with the whole system.

This paper, whose main purpose is to describe the co-
ordination and communication features of MAPFS, is or-
ganized as follows. Section 2 presents an overview of co-
operative systems. Section 3 shows the MAPFS architec-
ture. Section 4 analyzes the MAPFS cooperation model
and describes the communication features of MAPFS. Fi-
nally, section 5 summarizes our conclusions and outlines
the future work.



2 Background

There is not a precise definition of anagent. In fact,
there are many definitions of agents. Franklin and Graesser
define an agent, using its feature ofautonomy[7]: “An au-
tonomous agent is a system situated within and a part of
an environment that senses that environment and acts on it,
over time, in pursuit of its own agenda and so as to affect
what it senses in the future”. Wooldridge and Jennings fo-
cused the definition of an agent on its properties [17]: “an
agent is used to denote a hardware or software-based com-
puter system that enjoys the following properties:

• autonomy: agents operate without the direct interven-
tion of humans or others, and have some kind of con-
trol over their actions and internal state;

• social ability: agents interact with other agents
(and possibly humans) via some kind of agent-
communication language;

• reactivity: agents perceive the environment and re-
spond in a timely fashion to changes that occur in it;

• pro-activeness: agents do not simply act in response
to their environment, they are able to exhibit goal-
directed behavior by taking the initiative.”

This paper focuses on the social ability property of an agent.
Russell and Norvig define an agent in three steps [15],

ordered by increasing complexity:

• Generic agents: “An agent is anything that can be
viewed as perceiving its environment through sensors
and acting upon that environment through effectors.”

• Rational agents: “An ideal rational agent should do
whatever is expected to maximize its performance
measure, on the basis of the evidence provided by the
percepts’ sequence and whatever built-in knowledge
the agent has.”

• Autonomous agents: “An agent is autonomous to the
extent that its actions and choices depend on its own
experience, rather than on knowledge of the environ-
ment that has been built-in by the designer.”

Other authors emphasize several optional features of the
agents such as mobility or intelligence in order to define
them [16],[10].

On the other hand, the main goal of the cooperation
among agents is the interaction of such agents in order to
achieve a common objective in the distributed space. The
two main branchs in the design of methods and architectures
related to this problem are: (i) Multi-agent systems (MAS)
and (ii) Distributed Problem Solving (DPS) [4]. Both fields

overlap their objectives and give them feedback, although
only the MAS field is related to the topic of agents, and
therefore, we focus our work on this one.

Agents cooperation can be made by means of a set of
steps [9]:

• It is necessary to provide every agentgoals, that is,
descriptions of the desired state of their “world” or en-
vironment.

• Every agent must make a set ofactions in order to
modify their state. Moreover,plans must be built,
which must contain precise instructions for achieving
the goals.

• Every agent must have planned a set ofevents.

• According to the planning, agents must run the plan.

• The cooperationis achieved usingshared plans, that
is, making the planning in a shared way.

One important aspect of the cooperation is thecommuni-
cationamong agents. For obtaining the communication and
interoperability, it is necessary to use:

• A common language;

• common ideas about the knowledge agents inter-
change;

• the capacity for interchanging this information.

For standardizing this way of communication, a common
or standard language is used. In this sense, KSE (Knowl-
edge Sharing Effort) has several research lines [1], [2], [8].

There are specific agent languages, oriented to commu-
nication of agents. KQML (Knowledge Query Manipula-
tion Language) [3], [2], [5], is one of the most known agent
communication languages. This language is composed of a
set of messages, known asperformatives, which are used for
specifying agent communication elements. In [11], Labrou
and Finin widely describe the KQML reserved performa-
tives. Some of them are used in MAPFS.

Some researchers have built generic multi-agent system
architectures, which can be used in different domains. Par-
ticularly, Flores and Wijngaards describes a generic MAS
architecture for dynamic collaboration in an open environ-
ment [6]. This work, like ours, considers the agent as a
social entity and emphasizes the importance of the social
factor in the agents interaction.

3. MAPFS Architecture

As we mentioned previously, MAPFS consist of two
subsystems: MAPFSFS and MAPFSMAS.

2



USER INTERFACE

Manager

To the

structure

CACHE

Cache To the
multiagent

AGENCY

system
cache Manager

Hints
Manager

Communication
Manager

File

MAPFS

MAPFS

Figure 1. MAPFS Structure

MAPFS MAS is the subsystem responsible for the in-
formation retrieval. Files are stored in servers, which con-
stitute the server-side of the underlying architecture. The
grouping of servers from a logical point of view in MAPFS
is denominatedstorage group[14].

On the other hand, MAPFS has to provide both an user
interface and connection capacity through a network in a
distributed system. These task are responsibility of two dif-
ferent modules in the architecture: theuser interfaceand
thecommunication manager, respectively.

Besides, the file system uses hints that provides opti-
mization techniques to the whole system. This functionality
is implemented by thehint manager, which communicates
with an agency. In such way, the agency provides auton-
omy to the system. For this reason, hints agents are used in
MAPFS.

Finally, MAPFS manages different caches of the file sys-
tem. The responsible module is thecache manager. This
manager communicates with both a cache structure and the
multiagent system. For this aim, there are cache agents in
MAPFS.

In order to assemble all the file system functionality and
build the file model, thefile manageris used. This sub-
system constitutes the central core of the file system, and
therefore, the main module of MAPFSFS.

Figure 1 shows the MAPFS architecture, where the com-
ponent modules are shown.

The multiagent system consists of a set of agents, with
the following features:

• Agents management must betransparent, in the same
way an ideal distributed system is.

• Themobilitymakes possible the code transfer between
two different nodes within a system. This transfer can
be very useful in an information recovery system, and

particularly in MAPFS. Mobile agents are useful in
three general areas. One is disconnected computing,
such as laptops and PDAs. The second is dynamic de-
ployment of software. The third category is informa-
tion retrieval systems, that is, applications where the
agent can be sent to the data source and carry out the
process of filtering data. MAPFS can take advantage
of this last feature. In fact, mobile agents have a num-
ber of key features desirable for a network system [12]:

– Network load reduction: The network traffic in
a distributed system is a “bottleneck”. With the
usage of mobile agents, this network load can
be avoided, since this kind of agents is based on
the idea of migrating computations to data rather
than data to computations.

– Network latency decrease: The use of the net-
work increases its latency. Mobile agents over-
come network latency due to their local execu-
tion.

– Asynchronous and autonomous execution: Mo-
bile agents can operate asynchronously and au-
tonomously respect to their parent process.

– Dynamic adaptation: Mobile agents have the
ability to perceive their environment and react to
changes.

– Heterogeneity: Mobile agents often depend on
their execution environment, but they are usually
computer independent.

– Robustness and fault tolerance: Mobile agents
can be dispatched to another host in the network
when the source host fails.

All this features are desirable for the information re-
trieval in a distributed system.

• MAPFS uses anagent hierarchy, which solves the in-
formation retrieval problem in a transparent and effi-
cient way. The taxonomy of agents used in MAPFS is
composed of:

– Extractor agents: They are the responsible for the
information retrieval in the MAPFS file subsys-
tem.

– Distributor agents: They distribute the workload
to extractor agents. These agents are placed at a
higher level in the agents hierarchy.

– Cache agents: They are associated with one or
more extractor agents, caching their data. This
relation is susceptible to modify. These agents
are responsible for the following tasks: (i) syn-
chronization between the cache structure and the
storage device and (ii) cache coherence.

3



– Hints agents: They are used in order to increase
the performance of the I/O system, by means of
the definition of hints about the usage and layout
of such system.

• As we mentioned previously, the usage of a multiagent
system impliescoordinationamong the system agents.

4. MAPFS Cooperation Model

The dynamic behavior of MAPFS agents is originated in
two sources:

1. The dynamic and changing environment in which they
coexist.

2. The messages sent and received by agents with the aim
of collaborating in the information retrieval.

Therefore, MAPFS agents adapt their behavior depend-
ing on the response of the environment and their partners
agents.

4.1 MAPFS Cooperation Features

For modeling agents cooperation, several related con-
cepts have been formalized:

• Firstly, every agent must know itsgoals, that is, de-
scriptions of the desired state of the agents “world”
or environment. The goals depend on the kind of
agent: extractor agents are subordinate to the distribu-
tor agents and they do not depend on the environment.
However, distributor agents goals are completely de-
pendent on the environment and are the most similar
to the whole system goal. These goals correspond to
the user requests. Cache agents goals correspond to the
desires or requests of extractor agents. Every request
of the information made by extractor agents is solved
by cache agents. If data are not available in the cache
structure, cache agents aim to get data. Hints agents
are only activated when optimization techniques are
used in MAPFS. Formally, agents goals can be notated
and described in this way:

– gda: distributor agents goals

– gea: extractor agents goals

– gca: cache agents goals

– gha: hints agents goals

gda(x) = exists(d,Gy)
where x is a distributor agent belonging to any server

Sz/Sz ∈ Gy

∧ d is a concrete item

∧ existsis a predicate that indicates if a item is

available for an user in a storage group

gea(x) = serves(x, y)
where x is a extractor agent belonging to any storage

groupGz/y is a distributor agent belonging to the same

group

∧ servesis a predicate that indicates if x has satisfied

the request of the agent y

gca(x) = provides(x, y)
where x is a cache agent belonging to any storage

groupGz/y is a extractor agent belonging to the same

group

∧ providesis a predicate that indicates if x has the

data item requested by the agent y in the cache structure

gha(x) = provides hints(x, y)
where x is a hint agent belonging to any storage

groupGz/y is a cache agent belonging to the same

group

∧ provideshints is a predicate that is false

only when the agent x cannot get the metadata required

by the agent y. Otherwise, the predicate is true

• According to agents goals, plans contain precise in-
structions or actions for achieving such objectives.
Again, actions and plans depend on the concrete kind
of agent:

– pda: distributor agents plans

– pea: extractor agents plans

– pca: cache agents plans

– pha: hints agents plans

4



pda(x) = if¬exists(d,Gy) −→ ∀y / is a ea(y)
∧ y ∈ Gy thenask(d, y)
where x is a distributor agent belonging to any server

Sz/Sz ∈ Gy

∧ d is a concrete item

∧ is a ea is a predicate that is true if y is

an extractor agent and false otherwise

∧ askis a function that generates an event for

asking the retrieval of the item d by the agent y

pea(x) = if¬serves(x, y) ∧ is asked(y, d) −→
∀z / is a ca(z) then ask(d,z)

where x is a extractor agent belonging to any storage group

Gz/y is a distributor agent belonging to the same group

∧ d is a concrete item

∧ is a ca is a predicate that is true if z is a cache agent

and false otherwise

∧ askis a function that generates an event for asking

the retrieval of the item d by the agent z

pca(x) = if¬provides(x, y) ∧ is asked(y, d) −→
obtain(d)
where x is a cache agent belonging to any storage group

Gz/y is a extractor agent belonging to the same group

∧ obtain is a function used for obtaining the data item

from the disk and store it in the cache structure

pha(x) = if¬provides hints(x, y)
∧ is asked(y, h) −→ obtain(h)
where x is a hint agent belonging to any storage

groupGz/y is a cache agent belonging to the same group

∧ obtain is a function used for obtaining metadata

and providing it to agent y

The functionobtain andobtain duplicate()belong to
the MAPFSFS and are parallel file system read/write
operations.

• Every agent must have planned a set ofevents, which
must be managed by such agents. There are two kinds

EA

CA

DA

HA

DA: Distributor Agents
EA: Extractor Agents
CA: Cache Agents
HA: Hints Agents

User or
user program

(1) User event

(2) Extraction event

(3) Cache event

(4) Hints event

Metadata Data

Figure 2. Events tree in MAPFS

of events: (i) events originated by the user or by the
user applications and (ii) events originated by agents.
The first kind of event is the original source of event,
because only when a user or a user application make
a I/O request, theevents treeis initiated. Such tree is
depicted in Figure 2.

As can be seen in Figure 2, the order in which events
are generated is the following one: (i) firstly, an user
or user program makes an I/O request. This one gen-
erates an user event, which is caught by one distributor
agent; (ii) this one generates an extraction event, di-
rected towards an extractor agent, which is responsible
for obtaining/storing data; (iii) usually, the extractor
agent looks up the data item in the cache,delegating
to a cache agent for this task; the cache agent must
both return data to the extractor agent and store them
in the cache structure; (iv) if the system uses some op-

5



timization technique, it is necessary to use hints agents.
In this case, hints agents are responsible for obtaining
metadata from disks.

• According to the planning, the agent must run the plan.
The planning model isevent-driven. If an event is gen-
erated and the premises are true, the correspond ac-
tions are executed, modifying the system state.

• The cooperationis achieved usingshared plans, that
is, making the planning in a shared way. In this
case, the cooperation is achieved through two differ-
ent schemas: (i) there are replicas of all the agents;
these agents must coordinate their efforts with the aim
of satisfying the system goals; e.g. the cache struc-
ture must be divided into sections and each cache agent
must manage one section; the distributor agent is re-
sponsible for distributing the work. This planning is
denominatedintra-planning. (ii) Every storage group
must interoperate with the rest of the storage groups
in order to plan the system. This planning is named
inter-planning.

4.2 Putting it together

In this section, we describe how the cooperation model
fits into the MAPFS architecture, analyzing the contents of
every module:

• User Interface: This module provides access to the
MAPFS functionality, offering the MAPFS interface,
that is, the set of parallel I/O operations. Therefore,
the cooperation model is not related to this module.

• Communication Manager: This module is responsi-
ble for three tasks: (i) transference of information in
MAPFS; (ii) communication between the cache man-
ager and the file storage server with the aim of updat-
ing the cache and (iii) distribution of the agents in the
MAPFS system. This module is the distribution chan-
nel of the agents belonging to all the MAS.

• Cache Manager: This module is responsible for mod-
eling the cache coherence protocol, which is imple-
mented by cache agents.

• Hints Manager: This module provides capacity for
using different optimization techniques by means of
hints. This feature is implemented by hints agents.

• File Manager: This module implements the
MAPFS FS subsystem functionality. Extractor
agents make requests to this module.

• Agency: It is the software container where the differ-
ent agents are created and develop their work. There-
fore, the communication manager, the cache manager,

the hints manager and the file manager are linked to
the agency.

Goals and plans must be implemented in the respective
modules:

• Distributor agents goals and plans are situated in the
Communication Manager.

• Extractor agents goals and plans are situated in the File
Manager.

• Cache agents goals and plans are situated in the Cache
Manager.

• Hints agents goals and plans are situated in the Hints
Manager.

In order to use a standard communication language, we
have used KQML as the format of the messages inter-
changed by MAPFS agents. KQML is a language and an
associated protocol to support high level communication
among several agents. The standard gives us a large set
of primitives to be used to build KQML messages. Since
KQML can be used to obtain information from any agent,
it seems appropriate to consider it as a good candidate to
communicate all the MAPFS agents.

As an example, Figure 3 shows the KQML response per-
formative from a hint agent to a cache agent, once hints are
obtained.

(tell

:sender x

:receiver y

:in-reply-to id ca

:reply-with id ha

:language Prolog

:ontology MAPFS

:content “exists(h, Gx) ”)

Figure 3. Response performative from a hint
agent to a cache agent, once hints ar e ob-
tained

5. Conclusions and Future Work

This paper describes the coordination and communica-
tion features of MAPFS. First of all, an overview of coop-
erative systems is presented. Next, this paper describes the

6



MAPFS architecture. As can be seen, MAPFS consists of
two subsystems: MAPFSFS and MAPFSMAS. This pa-
per focuses on the second subsystems. Within this subsys-
tem, the MAPFS cooperation model is analyzed, describing
the social features of the agents used in MAPFSMAS and
showing a sample KQML performative used by hints agents
in MAPFS.

The main contribution of this work is the usage of the
agent technology in the implementation of a parallel file
system, so that MAPFS benefits from the advantages of this
technology and its coordination and communication model.

As future work, we will evaluate the performance of
MAPFS MAS and the overload of MAPFS performatives
in the system. Also, MAPFSMAS can be enhanced, by
means of the addition of mobility.

References

[1] American National Standard. Knowledge Interchange
Format.Draft Proposed American National Standard
(dpANS), NCITS.T2/98-004, 1998.

[2] ARPA knowledge sharing initiative. specification of
the KQML agent-communication language.External
Interfaces Working Grop working paper, 1993.

[3] H. Chalupsky, T. Finin, R. Fritzson, D. McKay,
S. Shapiro, and G. Wiederhold. An overview of
KQML: A knowledge query and manipulation lan-
guage. Technical report, Computer Science Depart-
ment. Stanford University, April 1992.

[4] E. Durfee and J. Rosenschein. Distributed problem
solving and multi-agent systems: Comparisons and
examples. InProceedings of the Thirteenth Inter-
national Distributed Artificial Intelligent Workshop,
1994.

[5] Tim Finin, Yannis Labrou, and James Mayfield.
KQML as an agent communication language.”Soft-
ware Agents”, MIT Press. Cambridge, 1997.

[6] Roberto A. Flores and Niek J.E. Wijngaards. Primi-
tive interaction protocol for agents in a dynamic en-
vironment. InProceedings of the 12th Workshop on
Knowledge Acquisition, Modeling and Management
(KAW’99), October 1999.

[7] Stan Franklin and Art Graesser. Is it an agent,
or just a program?: A taxonomy for autonomous
agents. InProceedings of the Third International
Workshop on Agent Theories, Architectures and Lan-
guages, Springer-Verlag, 1996.

[8] T. R. Gruber. A translation approach to portable ontol-
ogy specification.Knowledge Acquisition, 5(2):199–
220, 1993.

[9] H. Haugeneder and D. Steiner. Cooperating agents:
Concepts and applications. InProceedings of the
Agent Software Seminar. London, England. Unicom
Seminars Ltd, pages 80–106, 1995.

[10] Michael Knapik and Jay Johnson.Developing In-
telligent Agents for Distributed Systems. Computing
McGraw-Hill, 1998.

[11] Yannis Labrou and Tim Finin. A Proposal for a new
KQML Specification. Technical Report TR CS-97-03,
Baltimore, MD 21250, 1997.

[12] D. B. Lange and M. Oshima.Programming and De-
ploying Java Mobile Agents With Aglets. Addison-
Wesley Pub Co, August 1998.

[13] Maŕıa S. Ṕerez, F́elix Garćıa, and Jeśus Carretero.
A new multiagent based architecture for high perfor-
mance I/O in clusters.2001 International Conference
on Parallel Processing Workshops, September 2001.

[14] Maŕıa S. Ṕerez, Alberto Śanchez, Jośe M. Pẽna, V́ıctor
Robles, Jeśus Carretero, and Félix Garćıa. Storage
groups: A new approach for providing dynamic re-
configuration in data-based clusters. In2004 IASTED
Conference on Parallel and Distributed Computing
and Networks (PDCN 2004), February 2004.

[15] S. Russell and P. Norvig.Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ. Prentice-
Hall, 1994.

[16] Tony White and Bernard Pagurek. Emergent behavior
and mobile agents. 1999.

[17] Michael Wooldridge and Nicholas R. Jennings. Intel-
ligent agents: Theory and practice.Knowledge Engi-
neering Review, 1995.

7


