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Abstract—The cloud computing model aims to make large-
scale data-intensive computing affordable even for users with
limited financial resources, that cannot invest into expensive in-
frastructures necesssary to run them. In this context, MapReduce
is emerging as a highly scalable programming paradigm that
enables high-throughput data-intensive processing as a cloud
service. Its performance is highly dependent on the underly-
ing storage service, responsible to efficiently support massively
parallel data accesses by guaranteeing a high throughput under
heavy access concurrency. In this context, quality of service
plays a crucial role: the storage service needs to sustain a
stable throughput for each individual accesss, in addition to
achieving a high aggregated throughput under concurrency. In
this paper we propose a technique to address this problem using
component monitoring, application-side feedback and behavior
pattern analysis to automatically infer useful knowledge about
the causes of poor quality of service and provide an easy way to
reasonin about potential improvements. We apply our proposal
to BlobSeer, a representative data storage service specifically
designed to achieve high aggregated throughputs and show
through extensive experimentation substantial improvements in
the stability of individual data read accesses under MapReduce
workloads.

I. INTRODUCTION

The emerging cloud computing model [1], [?] is gaining
serious interest from both industry and academia for its pro-
posal to view the computation as a utility rather than a capital
investment. According to this model, users do not buy and
maintain their own hardware, nor have to deal with complex
large-scale application deployments and configurations, but
rather rent such resources as a service, paying only for what
is needed to solve their problem and nothing more.

In this context, applications that perform complex data pro-
cessing (data mining, online transaction record management,
simulations, etc.), initially reserved to governments and large
corporations that could afford the underlying infrastructures
to run them, now become accessible to a large public. In
order to achieve scalable data processing performance, several
paradigms have been proposed, such as MapReduce [2] and
Dryad [3]. MapReduce quickly gained popularity and was
hailed as a revolutionary new platform for large-scale, mas-
sively parallel data processing [4], attracting attention in the
role as a service to be offered on the clouds [5].

Since MapReduce applications are mostly data-intensive, a

critical component in this context is the underlying storage
service, which needs to deliver a high aggregated throughput
even under a heavy data access concurrency generated when
the service runs for a very large number of clients. On clouds
however, this alone is not sufficient, as multiple users share
the same infrastructure and need quality-of-service guarantees.
The data storage service must not only be able to sustain a
high aggregated throughput under heavy access concurrency,
but also guarantee a stable throughput for each individual data
access.

In this paper we focus on improving storage services run-
ning on clouds to deliver a stable throughput for indivdual data
transfers while still achieving a high aggregated throughput. A
stable throughput guarantee is however an inherently difficult
task, because a large number of factors is involved.

First, MapReduce frameworks run on infrastructures com-
prising thousands of commodity hardware components. In this
context, failures are rather the norm than the exception. Since
faults cause drops in performance, fault tolerance becomes
a critical aspect of throughput stability. Second, complex data
access patterns are generated that are likely to combine periods
of intensive I/O activity with periods of relative less intensive
I/O activity throughout runtime. This has a negative impact
on throughput stability, thus adaptation to access pattern is a
crucial issue as well.

The sheer complexity of both the state of the hardware
components and the data access pattern makes reasoning about
fault tolerance and adaptation to access pattern difficult, since
it is not feasible to find non-trivial dependencies manually.
Therefore, it is important to automate the process of identify-
ing and characterizing the circumstances that bring the storage
service in a state where there are significant fluctuations in the
sustained throughput and to take appropriate action to stabilize
the system. This paper proposes an innovative approach to this
problem. We summarize our contributions as follows:

We define a general methodology based on component
monitoring, application-side feedback and behavior pattern
analysis in order to discover and characterize the situations
that lead to fluctuations of individual data access throughput.
Our approach implicitly adapts itself to the hardware configu-
ration of the infrastructure, failure rate and data access pattern
of the application. We then apply our proposal to improve



BlobSeer [6], [7], a data management service specifically
designed to address the needs of data-intensive applications.
BlobSeer is now subject to integration efforts with state-of-the-
art cloud toolkits such as Nimbus [8]. Finaly, we perform ex-
tensive experimentations in hard conditions: highly-concurrent
data access patterns, for long periods of service uptime, while
supporting failures of the physical storage components. We
validate our approach by demonstrating substantial improve-
ments in individual throughput stability.

II. PROPOSAL

A. Overview

We propose a general approach to automate the process of
identifying and characterizing the events that cause significant
fluctuations in the sustained throughput of individual I/O
transfers. This enables the storage service to take appropriate
action in order to stabilize the system. We rely on three key
principles:

In-depth monitoring: The storage service is usually de-
ployed on large-scale infrastructures comprising thousands of
machines, each of which is prone to failures. Such components
are characterized by a large number of parameters, whose
values need to be measured in order to describe the state of
the system at a specific moment in time. Since data-intensive
applications generate complex access-pattern scenarios, it is
not feasible to predetermine what parameters are important
and should be monitored, as this limits the potential to identify
non-obvious bottlenecks. Therefore, it is important to collect
as much information as possible about each of the components
of the storage service.

Application-side feedback: While extensive monitoring
of the system helps to accurately define its state at a specific
moment in time, it is not enough to accurately identify a
situation where the throughput of individual I/O transfers
fluctuates, because the perceived quality of service from the
application point of view remains unknown. For example,
in the context of MapReduce applications, monitoring the
network traffic is not enough to infer the throughput achieved
for each task, because the division of each job into tasks
remains unknown to the storage service. Therefore, it is crucial
to gather dynamically feedback from the upper layers that rely
on the storage service in order to decide when the system
performs satisfactory and when it does not.

Behavior pattern analysis: Extensive monitoring infor-
mation gives a complete view of the behavior of the storage
service in time. Using the feedback from the upper layers, it
is also possible to determine when it performed satisfactory
and when it performed poorly. However, the complexity of the
behavior makes direct reasoning about the causes of potential
bottlenecks not feasible. Intuitively, explaining the behavior is
much easier if a set of behavior patterns can be identified,
which can be classified either as satisfactory or not. This
is so because once a classification is made, taking action to
stabilize the system basically means to predict a poor behavior
and enforce a policy to avoid it. The challenge however is to
describe the behavior patterns in such a way that they provide

meaningful insight with respect to throughput stability, thus
making healing mechanisms easy to implement.

Starting from these principles, we propose a methodology
to stabilize the throughput of the storage service as a series of
four steps:

1) Monitor the storage service: A wide range of parameters
that describe the state of each of the components of the storage
service is periodically collected during a long period of service
up-time. This is necessary in order to reliably approximate the
data access pattern generated by the data-intensive application.
An important aspect in this context is fault detection, as
information on when and how long individual faults last is
crucial in the identification of behavior patterns.

2) Identify behavior patterns: Starting from the monitored
parameters, the behavior of the storage service as a whole is
classified into behavior patterns. The classification must be
performed in such a way that, given the behavior at any mo-
ment in time, it unambiguously matches one of the identified
patterns. The critical part of this step is to extract mean-
ingful information with respect to throughput stability that
describes the behavior pattern. Considering the vast amount
of monitoring information, it is not feasible to perform this
step manually. Therefore, an automated knowledge discovery
method should be applied. For this purpose, we adapted a
global behavior modeling technique [9], [10] to identify and
describe the behavior patterns in our context. Specific details
are provided in Section II-B.

3) Classify behavior patterns according to feedback: In
order to identify a relationship between behavior patterns
and stability of throughput, the application-side feedback with
respect to the perceived quality of service is analyzed. More
specifically, for each data transfer a series of performance
metrics as observed by the upper layers is gathered. These
performance metrics are then aggregated for all data transfers
that occurred during the period in which the behavior pattern
was exhibited. The result of the aggregation is a score that is
associated to the behavior pattern and indicates how desirable
the behavior pattern is.

Once the classification has been performed, transitions from
desirable states to undesirable states are analyzed in order
to find the reason why the storage service does not offer a
stable throughput any longer. This step involves user-level
interpretation and depends on the quality of the generated
behavior model.

4) Predict and prevent undesired behavior patterns: Fi-
nally, understanding the reasons for each undesired behavior
enables the implementation of prediction and prevention mech-
anisms accordingly. More specifically, for each undesirable
state, the preconditions that trigger a transition to it are
determined. Using this information, a corresponding policy
is enabled, capable of executing a special set of rules while
these preconditions are satisfied. These rules are designed to
prevent this transition to occur or, if this is not possible, to
mitigate the effects of the undesired state. It is assumed that
the application is monitored throughout its execution and the
storage service has accessed to the monitoring information.



This makes the service able to predict when an undesirable
behavior is about to happen and to activate the corresponding
policy.

To illustrate our approach, we have chosen BlobSeer [6] as
a representative storage service for MapReduce data-intensive
applications. Our choice is mainly motivated by the ability of
BlobSeer to sustain a high throughput under heavy access con-
currency significantly better [7] than HDFS [11], the default
storage backend for the Hadoop [12] MapReduce framework,
largely used on today’s cloud platforms. While BlobSeer
leverages the underlying networking infrastructure better, this
also increases the likelihood of components being stretched to
their limits and consequently the likelihood of variations of
individual data-access throughput being noticed. BlobSeer is
now subjects to integration efforts with the Nimbus [8] cloud
toolkit, in cooperation with the Nimbus team.

B. GloBeM: Global Behavior Modeling

In order to identify and describe the behavior patterns of
the storage service approach to model the global behavior of
large-scale distributed systems [9], [10] (from now on it will
be named GloBeM). Its main objective is to build an abstract,
descriptive model of the global system state. This enables the
model to implicitly describe the interactions between entities,
which has the potential to unveil non-trivial dependencies
significant for the description of the behavior, which otherwise
would have gone unnoticed.

GloBeM follows a set of procedures in order to build such a
model, starting from monitoring information that corresponds
to the observed behavior. These basic monitoring data are then
aggregated into global monitoring parameters, representative
of the global system behavior instead of each single resource
separately. This aggregation can be performed in different
ways, but it normally consists in calculating global statistic
descriptors (mean, standard deviation, skewness, kurtosis, etc.)
values of each basic monitoring parameter for all resources
present. This ensures that global monitoring metrics are still
understandable from a human perspective. This global in-
formation undergoes a complex analysis process in order
to produce a global behavior representation. This process
is strongly based on machine learning and other knowledge
discovery techniques, such as virtual representation of infor-
mation systems [13], [14]. A behavior model presents the
following characteristics:

Finite state machine: The model can be expressed as a
finite state machine, with specific states and transitions. The
number of states is generally small (between 3 and 8).

State characterization based on monitoring parameters:
The different system states are expressed in terms of the origi-
nal monitoring parameters. This ensures that its characteristics
can be understood and directly used for management purposes.

Extended statistical information: The model is completed
with additional statistic metrics, further expanding the state
characterization.

C. BlobSeer

BlobSeer is an efficient distributed data management service
specifically designed to deliver a high throughput under heavy
access concurrency. Data is abstracted in BlobSeer as huge
sequences of bytes called BLOBs (Binary Large OBjects).
Each BLOB is manipulated through a simple versioning access
interface that enables fine-grained reads, writes and appends
of subsequences of bytes from/to the BLOB.

Three key design factors enable BlobSeer to achieve a high
throughput under heavy access concurrency: data striping,
distributed metadata management and versioning-based con-
currency control.

Data striping: Each BLOB is split into chunks that are
distributed among data providers, which are responsible to
store the chunks. To maintain data availability in spite of fail-
ures, each chunk is replicated on multiple distinct providers.
A configurable chunk distribution strategy is employed when
writes and appends are issued in order to optimize chunk
placement in such way that accesses to different chunks are
as much as possible handled by different machines, effectively
distributing the I/O workload.

Metadata decentralization: BlobSeer uses a distributed
metadata management scheme to avoid the bottleneck of
accessing the same centralized node and prevent a single point
of failure.

Versioning-based concurrency control: Writes and appends
to a BLOB never modify its contents, but rather generate
a new snapshot of it that looks and acts like the original
BLOB save for the applied update. Only the difference is
physically stored, with unmodified parts shared. This approach
enables the concurrency control to isolate updates in their
own snapshot, thus avoiding the need for synchronization
significantly better than lock-based approaches, which greatly
improves achieved throughput.

D. Applying our approach to BlobSeer

We illustrate our approach by implementing the proposed
methodology for BlobSeer, as presented in Figure 1. For
simplification purposes, we assume the only components of
BlobSeer that can cause bottlenecks are the data providers.
This is a reasonable assumption, as most of the I/O load
falls on the data providers, while metadata is managed in a
distributed fashion and incurs a minimal overhead [6]. For
this reason, monitoring is performed for the data providers
only.

1) Monitor the data providers: We periodically collect a
wide range of parameters that describe the state of each
data provider of the BlobSeer instance. For this task we
use GMonE [15], a monitoring framework for large-scale
distributed systems based on the publish-subscribe paradigm.

GMonE runs a process called resource monitor on every
node to be monitored. Each such node publishes monitoring
information to one or more monitoring archives at regular time
intervals. These monitoring archives act as the subscribers and
gather the monitoring information in a database, constructing
a historical record of the system’s evolution.
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Fig. 1. Our approach applied: Stabilizing throughput in BlobSeer

The resource monitors can be customized with monitoring
plugins, which can be used to adapt the monitoring process to a
specific scenario by selecting relevant monitoring information.
We developed a plug-in for BlobSeer that is responsible for
monitoring each provider and pushing the following parame-
ters into GMonE: number of read operations, number of write
operations, free space available, CPU load and memory usage.
These parameters represent the state of the provider at any
specific moment in time. Every node running a data provider
publishes this information each 45 seconds to a single central
monitoring archive that stores the monitoring information for
the whole experiment.

Once the monitoring information is gathered, an aggregation
process is undertaken: mean and standard deviation values are
calculated for each of the five previous metrics. Additionally,
unavailable data providers (due to a failure) are also included
as an extra globally monitored parameter. We call the result
of the gathering and aggregation the global history record of
the behavior of BlobSeer.

2) Identify behavior patterns: The historical data men-
tioned above is then fed into GloBeM in order to classify
the behavior of BlobSeer as a whole into a set of states, each
corresponding to a behavior pattern. Thanks to GloBeM, this
process is fully automated and we obtain a comprehensive
characterization of the states in terms of the most important
parameters that contribute to it.

3) Classify behavior patterns according to feedback: For
each data transfer, we consider as relevant client-side quality
of service indicators (i) the effective observed throughput and
(ii) the number of times the operation was interrupted by a
fault and had to be restarted. This information is logged for
each data transfer, averaged for each state of the behavior
model and then used to classify the states into desirable states
that offer good performance to the clients and undesirable
states that offer poor performance to the clients.

4) Predict and prevent undesired behavior patterns: Fi-
nally, the challenge is to improve the behavior of BlobSeer
in such way as to avoid undesirable states. This step is

completely dependent on the behavioral analysis of the model
generated by GloBeM. Since the model is tightly coupled
with the application data-access pattern, the infrastructure used
to deploy BlobSeer and the corresponding failure model, we
detail this step for each of our experiments separately in
Section IV.

III. EXPERIMENTAL SETUP

A. Application scenario: MapReduce data gathering and
analysis

We evaluate the effectiveness of our approach for simulated
MapReduce workloads that correspond to a typical data-
intensive computing scenario on clouds: continuously acquir-
ing (and possibly updating) very large datasets of unstructured
data while performing large-scale computations over the data.

For example, a startup might want to invest money into
a cloud application that crawls the web in search for new
text content such as web pages in order to build aggregated
statistics and infer new knowledge about a topic of interest.

In this context, simulating the corresponding MapReduce
workloads involves two aspects: i) a write access pattern that
corresponds to constant data gathering and maintenance of
data in the system and ii) a read access pattern that corresponds
to the data processing (in most cases the final result of the data
processing are small aggregated values that generate negligible
writes; moreover, intermediate data is not stored persistently
by MapReduce).

Write access pattern: As explained in [16], managing a
very large set of small files is not feasible. Therefore, data
is typically gathered in a few files of great size. Moreover,
experience with data-intensive applications has shown that
these very large files are generated mostly by appending
records concurrently and seldom overwriting any record. To
reproduce this behavior in BlobSeer, we create a small number
of BLOBs and have a set of clients (corresponding to “map”
tasks) generate and write random data concurrently to the
BLOBs. Each client predominantly appends and occasionally
overwrites chunks of 64 MB to a randomly selected BLOB
at random time intervals, sleeping meanwhile. The frequency
of writes corresponds to an overall constant write pressure of
1MB/s on each of the data provides of BlobSeer throughout
the duration of the experiment and corresponds to the maximal
rate that a single web crawler process can achieve under
normal circumstances.

Read access pattern: In order to model the data pro-
cessing aspect, we simulate MapReduce applications that scan
the whole dataset in parallel and compute some aggregated
statistics about it. This translates into a highly concurrent read
access pattern to the same BLOB. We implemented clients
that perform parallel reads of chunks of 64MB (which is the
default chunk size used in Hadoop MapReduce) from the same
BLOB version and then simulate a “map phase” on this data
by keeping the CPU busy. Globally, we strive to achieve an
average I/O time to computation time ratio of 1:7, which is
intended to account for the CPU time of both the “map phase”
and the “reduce phase”.



We execute both the data gathering and data processing
concurrently in order to simulate a realistic setting where
data is constantly analyzed while updates are processed in the
background. We implemented the clients in such a way as to
target an overall write to read ratio of 1:10. This comes from
the fact that in practice multiple MapReduce passes over the
same data are necessary to achieve the final result.

B. Platform description

We performed our experiments on Grid’5000 [17], a highly
configurable and controllable experimental platform for grid
and cloud research. We used 130 of the nodes of Lille cluster
and 275 of the nodes of Orsay cluster. The nodes are outfitted
with x86 64 CPUs, and 2 GB of RAM. We measured raw
buffered reads from the hard drives at 61.8MB/s on Lille
and 53.2 MB/s on Orsay, using the hdparm utility. Inter-node
bandwidth is 1 Gbit/s (we measured 117.5 MB/s for TCP end-
to-end sockets with MTU of 1500 B) and latency is 0.1 ms.

MapReduce-style computing systems are traditionally run-
ning on commodity hardware, collocating computation and
storage on the same physical box. However, recent proposals
advocate the use of converged networks to decouple the
computation from storage in order to enable a more flexible
and efficient datacenter design [18]. Since both approaches are
used by cloud providers, we evaluate the benefits of applying
global behavior modeling to BlobSeer in both scenarios. For
this purpose, we use the Lille cluster to model collocation
of computation and storage node by codeploying a client
process with a data provider process on the same node,
and the Orsay cluster to model decoupled computation and
storage by running the client and the data provider on different
nodes. In both scenarios we deploy on each node a GMonE
resource monitor that is responsible to collect the monitoring
data throughout the experimentation. Further, in each of the
clusters we reserve a special node to act as the GMonE
monitoring archive that collects the monitoring information
from all resource monitors. We will refer from now on to the
scenario that models collocation of computation and storage
on the Lille cluster simply as setting A and to the scenario
that models decoupled computation and storage on the Orsay
cluster as setting B.

C. Simulating node failures

Since real large-scale distributed environments are subject
to failures, we implemented a data provider failure-injection
framework that models failure patterns observed in real large-
scale systems build from commodity hardware that run for
long periods of time. We use the multi-state resource availabil-
ity characterization study described in [19] in order to generate
random failure scenarios for our experiments.

IV. RESULTS

We perform a multi-stage experimentation that involves:
(i) running an original BlobSeer instance under the data-
intensive access pattern and failure scenario described, (ii) ap-
plying our approach to analyze the behavior of BlobSeer and

TABLE I
GLOBAL STATES - SETTING A

parameter State 1 State 2 State 3 State 4
Avg. read ops. 68.9 121.2 60.0 98.7
Read ops stdev. 10.5 15.8 9.9 16.7
Avg. write ops. 43.2 38.4 45.3 38.5
Write ops stdev. 4.9 4.7 5.2 7.4
Free space stdev. 3.1e7 82.1e7 84.6e7 89.4e7
Nr. of providers 107.0 102.7 96.4 97.2

TABLE II
GLOBAL STATES - SETTING B

parameter State 1 State 2 State 3
Avg. read ops. 98.6 202.3 125.5
Read ops stdev. 17.7 27.6 21.9
Avg. write ops. 35.2 27.5 33.1
Write ops stdev. 4.5 3.9 4.5
Free space stdev. 17.2e6 13.0e6 15.5e6
Nr. of providers 129.2 126.2 122.0

identify potential improvements and finally (iii) running an
improved BlobSeer instance in the same conditions as the
original instance, comparing the results and proving that the
improvement hinted by the proposed methodology was indeed
successful in raising the performance of BlobSeer. This multi-
stage experimentation is performed for both settings A and B
described in Section III.

1) Running the original BlobSeer instance: We deploy a
BlobSeer instance in both settings A and B and monitor it
using GMonE. Both experimental settings have a fixed dura-
tion of 10 hours. During the experiments, the data-intensive
workload accessed a total of ' 11TB of data on setting A, out
of which ' 1.3TB were written and the rest read. Similarly,
a total of ' 17TB of data was generated on setting B, out of
which ' 1.5TB were written and the rest read.

2) Performing the global behavior modeling: We apply
GloBeM both for setting A and setting B in order to gen-
erate the corresponding global behavior model. Each of the
identified states of the model corresponds to a specific be-
havior pattern and contains the most significant parameters
that characterize the state. Tables I and II show the average
values for the most representative parameters of each state,
both for setting A and setting B respectively. It is important
to remember that these are not all the parameters that were
monitored, but only the ones selected by GloBeM as the
most representative. As can be seen, GloBeM identified four
possible states in the case of setting A and three in the case
of setting B.

The client-side feedback is gathered from the client logs as
explained in Section II-D. Average read bandwidths for each
of the states are represented in Table III for both settings A
and B.

TABLE III
AVERAGE READ BANDWIDTH

Scenario State 1 State 2 State 3 State 4
Setting A 24.2 20.1 31.5 23.9
Setting B 50.7 35.0 47.0

units are MB/s
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Fig. 2. Read faults: states are represented with different point styles

Figures 2(a) and 2(b) depict evolution in time of the
total number of read faults as observed by the clients for
both scenarios. At this point it is important to remember
that these are client related data and, therefore, neither read
bandwidth nor failure information was available to GloBeM
when identifying the states. Nevertheless, the different global
patterns identified correspond to clearly different behavior in
terms of client metrics, as Table III and Figures 2(a) and 2(b)
show.

As previously described, the GloBeM analysis generated
two global behavior models, each one corresponding to the
behavior of BlobSeer in settings A and B. We performed
further analysis using the effective read bandwidth and number
of read faults as observed from the client point of view in order
to classify the states of the behavior models into desired states
(where the performance metrics are satisfactory) and undesired
states (where the performance metrics can be improved).

In the case of setting A, State 2 presents the lowest average
read bandwidth (' 20MB/s). It is also the state where
most read faults occur, and where the failure pattern is more
erratic. A similar situation occurs with setting B. In this case
again State 2 is the one with the lowest average bandwidth
(' 35MB/s) and the most erratic read fault behavior. We
conclude these states (State 2 in both settings A and B) to
be undesired, because the worst quality of service is observed
from the client point of view.

Considering now the global state characterization provided
by GloBeM for both scenarios (Tables I and II), a distinctive
pattern can be identified for these undesired states: both have
clearly the highest average number of read operations and,
in the case of setting B specifically, a high standard deviation
for the number of read operations. This indicates a state where
the data providers are under heavy read load (hence the high
average value) and the read operation completion times are
fluctuating (hence the high standard deviation).

3) Improving BlobSeer: Now that the cause for fluctuations
in the stability of the throughput has been identified, our

objective is to improve BlobSeer’s quality of service by
implementing a mechanism that avoids reaching the undesired
states described above (State 2 in both settings). Since the
system is under constant write load in all states for both
settings A and B (Tables I and II) we aim at reducing the total
I/O pressure on every data provider by avoiding to allocate
providers under heavy read load to store new chunks generated
by writers.

This in turn improves the read throughput but at the cost
of a slightly less balanced chunk distribution. This eventually
affects the throughput of future read operations on the newly
written data. For this reason, avoiding writes on providers with
heavy read loads is just an emergency measure to prevent
reaching an undesired state. During normal functioning with
non-critically high read loads, the original load-balancing
strategy for writes can be used.

The average read operation characterization provided by
GloBeM for State 2, which is the undesired state (both in
settings A and B), is the key threshold to decide when
a provider is considered to be under heavy read load and
should not store new chunks. We implemented this policy in
the chunk allocation strategy of the provider manager. Since
data providers report periodically to the provider manager
with statistics, we simply avoid choosing providers for which
the average number of read operations goes higher than the
threshold. We enable choosing those providers again when the
number of read operations goes below this threshold.

4) Running the improved BlobSeer instance: The same ex-
periments were again conducted in the exact same conditions,
(for both settings A and B), using in this case the improved
BlobSeer chunk allocation strategy. As explained, the purpose
of this new strategy is to improve the overall quality of service
by avoiding the undesirable states identified by GloBeM (State
2 in both settings A and setting B).

As final measure of the quality of service improvement, a
deeper statistical comparison of the average read bandwidth
observed by the clients was done. Figures 3(a) and 3(b) show
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Fig. 3. Read bandwidth stability: distribution comparison

the read bandwidth distribution for each experimental scenario.
In each case, the values of the original and improved Blob-
Seer version are compared. Additionally, Table IV shows the
average and standard deviation observed in each experimental
setting.

TABLE IV
STATISTICAL DESCRIPTORS FOR READ BANDWIDTH (MB/S)

Scenario mean (MB/s) standard deviation
Setting A - Initial 24.9 9.6
Setting A - Advanced strategy 27.5 7.3
Setting B - Initial 44.7 10.5
Setting B - Advanced strategy 44.7 8.4

The results seem to indicate a clear improvement (especially
in setting A). However, in order to eliminate the possibility of
reaching this conclusion simply because of different biases in
the monitoring samples, we need further statistical assessment.
In order to declare the results obtained using the improved
BlobSeer implementation (depicted in Figures 3(a) and 3(b)
and Table IV) as statistically meaningful with respect to the
original implementation, we need to ensure that the differ-
ent monitoring samples are in fact obtained from different
probability distributions. This would certify that the quality
of service improvement observed is real, and not a matter of
simple bias.

To this end, we ran the Kolmogorov-Smirnov statistical
test [20], on both the initial read bandwidth results and the
improved read bandwidth results. This test essentially takes
two samples as input and outputs a p-value, which must be
smaller than 0.01 in order to conclude that they originate
from two different probability distributions. The obtained p-
values, represented in Table V clearly shows that our results
successfully passed the test.

Finally, the results show a clear quality of service improve-
ment in both settings A and B. In setting A, the average
read bandwidth shows a 10% increase and, which is more
important, the standard deviation was reduced substantially.
This indicates a lesser degree of dispersion in the effective

TABLE V
KOLMOGOROV-SMIRNOV TEST RESULTS

Scenario p-value
Setting A 2.098e−14
Setting B 0.004529

read bandwidth observed, and therefore a much more stable
bandwidth (for which the difference between the expected
bandwidth (the mean value) and the real bandwidth as mea-
sured by the client is lower). As it has been said, these read
bandwidth mean and standard deviation improvements indicate
an significant increase in the overall data access quality of
service.

In setting B, the average read bandwidth remained stable,
which is understandable given that, as explained in Section III,
we are close to the maximum physical hard drive transfer rate
limit of the testbed characteristics and, therefore, achieving a
higher value is very difficult. Nevertheless, the read bandwidth
standard deviation was again significantly reduced, resulting
in a much more stable data access and, therefore, improved
data access quality of service.

V. RELATED WORK

Modeling and characterizing the behavior of large scale
distributed systems has been approached in several other con-
texts. The most basic approach is benchmarking [21], which
enables manual analysis of the behavior of a system under
different workloads. Other approaches describe the system
formally using Colored Petri Nets (CPN) [22] or Abstract
State Machines (ASM) [23] in order to reason about behavior.
Rood and Lewis [24] propose a multi-state model and several
analysis techniques in order to forecast the resources avail-
ability, aiming at improving scheduler efficiency. Smith et al.
[25] analyze the run times of parallel applications from past
executions of similar applications. Barham et al. [26] propose
Magpie, a toolchain for automatically extracting a system’s
workload under realistic operating conditions. Finally, in the



same line Pan et al. [27] propose a tool for black-box diagnosis
of MapReduce systems, aimed at discovering problems and
bottlenecks.

Compared to all this related work, our approach simplifies
the analysis using a generic, global system model, therefore
enabling an easier further decision-making. It also emphasizes
less invasive monitoring and focuses on advanced knowledge
discovery techniques that can directly be applied to improve
the system. To the best of our knowledge, such an approach has
not been investigated so far in the area of distributed storage.

VI. CONCLUSIONS

In order to adequately support MapReduce distributed data-
intensive applications on the cloud, the underlying data storage
backend has to ensure besides a high aggregated throughput
under heavy access concurrency also a stable throughput for
each individual data transfer, which is a quality of service
constraint.

However the sheer complexity of the system’s behavior
makes reasoning about quality of service a difficult problem,
because a lot of distinct factors affect the behavior simulta-
neously: highly-concurrent data access patterns, long periods
of service uptime, failures of physical components, the highly
distributed nature of the storage service itself, etc.

This paper proposes a new approach to improve QoS in a
distributed storage system, based on component monitoring,
application-side feedback and global behavior modeling that
can be combined to infer useful knowledge about potential
bottlenecks, making reasoning about potential imporvements
much easier.

We have successfully applied our approach to improve the
individual throughput stability delivered by BlobSeer, a repre-
sentative distributed storage service which aims at providing
a high aggregated throughput under heavy access concurrency
and thus is an ideal candidate as a MapReduce backend.

Evaluations on the Grid’5000 testbed revealed substantial
improvement in individual read throughput stability, thereby
raising the overall quality of service provided by BlobSeer,
both for the case of collocated computation tasks with data
providers and decoupled computation and storage.

In the near future, we plan to pursue the encouraging results
found so far by adopting our approach for real MapReduce
deployments (such as Hadoop [12]) which are backed up by
real cloud middleware (such as Nimbus [8]). Furthermore, A
stable throughput at the level of the storage service makes
the cost of the I/O operations more predictable, which in
turn has the potential to improve the efficiency of scheduling
algorithms and reveal new options for quality of service
management at the upper layers. Future work in this direction
is planned as well in the long term.
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