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Abstract

The last advances in computation have made feasible the resolution of very complex prob-
lems. Grid computing has matured to currently become one of the most successful ini-
tiatives for dealing with these challenging problems, which usually require tackling huge
volumes of data. Although the main goal of the grid technology is sharing resources among
several virtual organizations, few research works are oriented to increase the performance
of grid solutions.

MAPFS-Grid is a complete suite of components for providing high performance access
to huge volumes of data in a grid environment. MAPFS-Grid is composed of three different
services: (i) Parallel Data Access Service, a WSRF-compliant grid service; (ii) MAPFS-
DSI, a GridFTP-compliant service, and (iii) MAPFS-DAI, an OGSA-DAI-compliant ser-
vice. Each one is suitable for different scenarios, which will be described along the article.

This paper describes and evaluates the performance of MAPFS-Grid, showing the main
advantages of MAPFS-Grid vs other proposals.

Key words: Data access services, data exchange, data-intensive applications, data grids,
data storage.

1 Introduction

Advances in the computational field have made possible to develop increasingly
complex applications to face new and challenging problems. Most of these ap-
plications require the management and analysis of large volumes of data, which
range from terabytes to petabytes. These data-intensive applications can be found
in several domains, including Physics [27], climate modeling [34], Biology [55] or
visualization [23]. The I/O phase usually constitutes the bottleneck of these appli-
cations.
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Data grid [15,6,28] aims at developing suitable solutions to these kinds of applica-
tions by means of grid-based tools. Indeed, a data grid is specifically designed to
store, manage, and provide reliable access to data.

Data grid services must provide a series of features in order to achieve maximum
performance:

• Ability to search through numerous available datasets.
• Ability to select suitable computational resources to perform data analysis.
• Ability to manage access permissions.
• Intelligent resource allocation and scheduling.

Due to the basic grid principles, the environment is characterized by its heterogene-
ity. In the case of a data grid, this includes different storage systems, data access
mechanisms, data access policies, and data formats. The data grid management in-
frastructure must act as an abstraction layer that provides a common, standard and
efficient procedure to access the information stored.

Although data grid allows heterogeneous data resources to be shared, only few re-
search works in the field of data grid are oriented to increase the performance of
these solutions [32,9].

The aim of this work is to develop a complete suite of services for high perfor-
mance access to huge volumes of data in a grid environment. Our approach, named
MAPFS-Grid [40], is intended to provide a high performance access by means of
the following kind of services:

(1) A generic WSRF-compliant data access service, which uses Simple Object
Access Protocol (SOAP) and Web services technology. This proposal follows
the OGSA guidelines [22], which propose Web services as basic technology
for building grids.

(2) A performance-oriented data access service based on GridFTP and built within
MAPFS-Grid. GridFTP [2] is a high-performance and reliable file transfer
protocol, although it does not follow strictly the OGSA scheme.

(3) An OGSA-DAI-compliant service for providing a uniform access and bet-
ter performance than OGSA-DAI [4]. OGSA-DAI provides a uniform way
of querying, accessing, updating, and transforming different type of data re-
sources by means of web services.

All these three scenarios cover the needs of most data grid-based applications.
Moreover, services provided by MAPFS-Grid are incorporated within the generic
architecture of a grid. Figure 1 shows the scheme in which MAPFS-Grid is inte-
grated. MAPFS-Grid uses other core grid services and supports data management
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and storage system, allowing other services (such as the replica manager) to offer
more complex functionalities. All these other services are out of the scope of this
paper, although are integrated together with MAPFS-Grid.
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Fig. 1. Services provided by MAPFS-Grid and related

The outline of this paper is as follows. Section 2 describes our proposal, MAPFS-
Grid, as a suite of three different data services intended to provide high performance
in different scenarios. Section 3 shows different experimental results, which evalu-
ate the main characteristics of MAPFS-Grid. Section 4 enumerates different works
related to our proposal. Finally, in Section 5 the conclusions of our work and the
open research lines are described.

2 MAPFS-Grid, a suite of services for accessing large volumes of data

As we have seen in the previous section, different needs arise in data management
and access in grids. We have noticed three important aspects related to these needs:

(1) An efficient data service that manages file resources following the OGSA ar-
chitecture is required. The Web services technology is suitable for managing
services and resources through Web Service Resource Framework (WSRF)
[37]. As far as we know, there are not WSRF-based data services designed to
increase the performance of the I/O operations.

(2) The most important drawback of the previous scenario is the low perfor-
mance exhibited by web services. In fact, the use of XML and SOAP as
transfer protocol is not appropriate for performance-critical applications [16].
Although there are different proposals for dealing with this decrease of per-
formance [52], [45], [33], none of them are suitable for scenarios demanding
high throughput. In this context, GridFTP is an optimized protocol for transfer
of large files, since it is not based on SOAP transfer. Additionally, GridFTP
extends the basic FTP protocol to support data transfer among multiple servers
(striping). Furthermore, GridFTP enables the use of multiple TCP streams in
parallel from a source to a sink (parallelism) [3].
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(3) Every grid project usually provides “ad hoc” solutions to the data manage-
ment. A data service often offers a native interface, which does not provide in-
teroperability with other I/O systems. OGSA-DAI [4] has emerged to provide
a uniform access to data sources in a grid environment. However, OGSA-DAI
is not focused on the performance of the I/O operations. Therefore, providing
a bridge between the interoperability and the performance optimization is an
important need of current data grid projects.

MAPFS-Grid tries to build a generic framework where all these problems can be
solved, by means of the definition of different services, suitable for these three iden-
tified scenarios.

MAPFS-Grid makes use of MAPFS [39], a high-performance parallel file system
for clusters of workstations. MAPFS (Multi Agent Parallel File System) has been
developed in the Universidad Politécnica de Madrid since 2003. The main contri-
bution of MAPFS is the conceptual use of agents to provide applications with new
properties, with the aim of increasing their adaptation to dynamic and complex en-
vironments. MAPFS is based on a multiagent architecture that offers features such
as data acquisition, caching, prefetching, and the use of hints.

The feasibility of the combination between MAPFS and MAPFS-Grid is due to the
fact that grid environments are composed of different and heterogeneous resources,
being clusters one of the most used because of its good relation power vs. cost.
Thus, it is possible to improve the grid data operations through parallel accesses
into the clusters resources. MAPFS distributes data stripes over all the nodes of a
cluster. On the other hand, MAPFS-Grid allows heterogeneous servers connected
by means of a wide-area network to be used as data repositories, by storing data in
a parallel way through all the clusters and individual nodes which compose the grid.

The heterogeneity of grid environments makes the application of parallelism diffi-
cult. In fact, since every resource of the grid can be composed of several compo-
nents (e.g., clusters of workstations), it is necessary to optimize the I/O performance
of every resource before tackling the global I/O optimization. Therefore, MAPFS-
Grid, as a complete suite of services, provides two levels of software parallelism in
a grid:

(1) The high level provides parallelism among the grid storage elements, that is,
inter-storage element parallelism.

(2) The low level provides parallelism among the set of nodes of each cluster, that
is, intra-cluster parallelism. At this level, MAPFS is applied.

Both levels are integrated and cooperate with the aim of providing an enhanced
I/O bandwidth. Figure 2 shows the double parallelism of MAPFS-Grid. The inner
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Fig. 2. Two levels of parallelism in MAPFS-Grid

level is achieved only if the storage element is a cluster of nodes. The outer level is
provided among a set of storage elements, at grid level. Next subsections describe
the three MAPFS-Grid services.

2.1 MAPFS-Grid Parallel Data Access Service (PDAS)

Our first proposal is to provide a grid-like interface to MAPFS. This WSRF-com-
pliant service, named PDAS, allows parallel I/O operations to be made in a cluster
environment. The conception of this service comes from Data Access and Integra-
tion Service (DAIS) [17]. PDAS is an adaptation of this concept from the perfor-
mance and parallelism viewpoints.

The two levels of parallelism provided by PDAS are shown in Figure 3. The level
1 parallelism is provided by several PDAS (in every storage element), which give
support to a distributed data repository. The level 2 parallelism is offered directly
by MAPFS, in those storage elements which are clusters. As this figure shows, data
to be transfered are divided in blocks which are sent to each storage element. These
data blocks are internally divided and sent to each node if the storage element is a
cluster.

The main advantage of PDAS is that constitutes a WSRF-compliant grid service,
which provides reasonably good performance and it is easy to deploy in a grid
scenario where the main components are clusters of workstations.
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2.2 MAPFS Data Storage Interface (MAPFS-DSI)

As previously mentioned, one of the limitations of grid services, and thus MAPFS-
Grid PDAS, is the use of SOAP, which introduces a noticeable amount of overhead.
In those services demanding very high performance, it is necessary to find alterna-
tives to SOAP. GridFTP is one of them, since it provides several features for opti-
mizing the data transfer from a source to a sink, following a client-server scheme.

GridFTP provides two different approaches for increasing the performance of the
transfer between client and servers, that is, parallelism and striping. The parallelism
consists in using multiple TCP streams in parallel from a source to a sink. On the
other hand, the striping characteristic allows GridFTP to transfer data among mul-
tiple servers.

Focusing on the GridFTP server, it is possible to optimize its performance by mod-
ifying one of its modules. This module is the Data Storage Interface (DSI), whose
responsibility is to read and write to the local storage system. The DSI is composed
of several function signatures, which must be filled with suitable semantics to pro-
vide a specific functionality. An important characteristic is the fact that the DSI can
be loaded at runtime. We have used this flexibility of the GridFTP server for trans-
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forming the I/O operations. MAPFS I/O routines are used instead for enhancing
the server 1 . The result is MAPFS-DSI. MAPFS-DSI enables GridFTP clients to
read and write data in a storage system based on MAPFS. As the architecture for
MAPFS is a cluster of workstations, the GridFTP server should be the master node
from a cluster of workstation, where MAPFS is installed.

In order to provide all these characteristics, MAPFS-DSI is composed of two mod-
ules:

(1) The DSI module, which acts as interface between the GridFTP server and
the I/O system. However, the I/O operation is not directly performed by this
module. The second module is responsible for this task.

(2) The MAPFS driver, which performs the actual I/O operation. This driver in-
vokes the specific MAPFS operations.

MAPFS-DSI is embedded within the general scenario in which GridFTP is used. As
we can see in the Figure 4, there are two independent parts of the architecture that
can improve the performance of a data transfer operation. Firstly, the specific fea-
tures of GridFTP (TCP stream parallelism and striping), which can be used in any
GridFTP server. Secondly, the parallel access provided by MAPFS. This implies
that the use of MAPFS within the GridFTP server offers two levels of data paral-
lelism, avoiding that the server storage system becomes a bottleneck in the whole
data transfer process. MAPFS-DSI offers great flexibility, since several combina-
tions of both levels of parallelism can be used in different configurations.

1 A complete list of these functions can be found in [41].
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2.3 MAPFS Data Access and Integration (MAPFS-DAI)

Due to the existence of an extensive number of data sources and storage systems in
different grid projects, the interoperability among them is playing a revelant role in
the grid research.

OGSA-DAI [31] project intends to provide a uniform access to data resources,
being compliant with OGSA [21]. However, the performance of OGSA-DAI is
quite poor 2 . MAPFS-DAI constitutes an extension of the OGSA-DAI architecture,
whose aim is to increase this performance.

As Figure 5 shows, the MAPFS-DAI architecture is divided into four layers:

(1) Data Layer, composed of data resources. Data resources exposed by MAPFS-
DAI are flat and unformatted files. On the other hand, OGSA-DAI gives sup-
port to other kind of data resources, such as relational and XML databases.

(2) Business Logic Layer, which is composed of:
• A suitable data service resource, which is named File Data Service Re-

source, associated to flat and unformatted files.
• A MAPFS-DAI accessor, whose main goal is to control access to the under-

lying data resource, that is, files. The MAPFS-DAI accessor enables activi-
ties to access data resources. Activities are the operations performed by data
service resources. Currently in MAPFS-DAI, we have two activities, one for
reading (FileAccessActivity) and another one for writing (FileWritingActiv-
ity), which are compliant with the File Activities defined by OGSA-DAI.

(3) Presentation Layer, which provides the web service interfaces to data services.
MAPFS-DAI uses WSRF.

(4) Client Layer, with two components: client application and client toolkit. The
client toolkit makes the development of client applications easy by provid-
ing useful and simple tools to create the perform and response documents
exchanged between the client and server. Both documents must fulfill the re-
quirements specified by the service schema. In this way, we can optimize the
storage system, without changing the client application.

The main disadvantage of providing a uniform access is that the performance is
drastically reduced (see Section 3). MAPFS-DAI relieves this decrease thanks to
the two levels of parallelism of the MAPFS-Grid philosophy, as the Figure 6 shows:

2 In [5] it is stated that “We expect to invest significant effort in engineering good perfor-
mance. . . ”
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(1) The high level provides parallelism among the set of storage elements.
(2) The low level provides parallelism among the set of nodes of each cluster.

Therefore, the main advantage of MAPFS-DAI is its interoperability. Every storage
element that exhibits the OGSA-DAI interface can be used together with MAPFS-
DAI elements. Due to the same interface of OGSA-DAI, several storage systems
providing this interface could be accessed in parallel.

As a summary, MAPFS-Grid offers a suite of data services oriented to three paradig-
matic scenarios in data grid applications. All these services take advantage of dou-
ble parallelism.

3 Evaluation

This section analyzes in depth the performance and different benefits of the pro-
posed approach. This analysis aims at demonstrating the efficiency of the proposed
two levels of parallelism (intra-cluster and inter-storage elements) vs. the perfor-
mance obtained by traditional grid data transfer methods.

In this case, the work environment is designed to test the benefits of the proposed
grid I/O architecture, obtaining the theoretical and practical limit of the infrastruc-
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ture. Thus, it is only constituted by two compound storage elements. UPM 1 con-
sists of 8 Intel Xeon 2.40GHz nodes with 1 GB of RAM memory, connected by
a Gigabit network. The hard disk in each node provides 30 MB/s approximately.
UPM 2 consists of 4 Intel Xeon 3.0GHz nodes with 2 GB of RAM memory, con-
nected by a Gigabit network. The hard disk in each node provides 50 MB/s approx-
imately. Results can be extrapolated to higher grid environments, because as we
will see below the technology limits the maximum performance obtained.

To prevent the client from being the throughput bottleneck of this system, a high-
performance client is required. An Intel Xeon 3GHz system featuring two hard
disks set in a RAID 0 array is selected as client. This client offers a disk read/write
bandwidth of around 130 MB/s. Client and storage elements are connected by a
Gigabit network.

Experiments have been conducted varying parameters that have a clear influence in
the performance of I/O operations on compound storage elements:

(1) Number of nodes that are part of the storage element. Tests are designed to
measure the performance improvements obtained by using the whole poten-
tial of a cluster or a set of non-individuals nodes working together facing to

10



traditional single storage elements. The tests analyze the influence of this pa-
rameter in the performance. Thus, most of the tests are made over UPM 1
because it has a higher number of nodes.

(2) Block size BScs sent between the client c and the storage element s. Since the
system is designed to manage massive amounts of data, the block size plays
an important role. 64 KB was selected as the most suitable slide size sent by
MAPFS parallel to every node. This size corresponds with the maximum data
size that DMA drivers can manage. In order to maintain the same conditions
among tests, the same block size between client and storage element has to
be used. Besides, the chosen block size should take advantage of the parallel
access to the whole set of nodes. Therefore, it must be multiple both of the
MAPFS slide size (64 KB) and the number of nodes (1,2,4,8).

BScs = lcm(1, 2, 4, 8) × 64KB = 512KB

Thus, the system is tested considering the default 512 KB block size, then
1 MB, 2 MB and 4MB block sizes.

(3) File size. Memory hierarchy is designed to take advantage of faster accesses
and lower latencies of lower levels, such as cache and memory, vs. the highest
levels, like disk storage, to enhance the I/O phase. Memory accesses can be
also faster than data sending through network, just as this occurs in the test
environment. Therefore, memory hierarchy can hide the benefit obtained by
means of the use of parallelism among nodes to access small file size because
most of data are accessed in lower levels of memory. Nevertheless, file sizes
higher than the memory size cause accessing the highest levels of memory hi-
erarchy to make the I/O operation, where parallel accesses are very beneficial.

Firstly, we have compared the WSRF-based data services, PDAS and MAPFS-DAI,
to other kind of systems, like OGSA-DAI. OGSA-DAI assists the access and inte-
gration of data, located in separated data sources. Some experiments have been run
on UPM 1 to evaluate the performance of file accesses by means of intra-cluster
parallelism level provided by PDAS and MAPFS-DAI comparing it to OGSA-DAI
architecture. Figure 7 shows the comparison between the performance of read and
write operations, respectively, on UPM 1 by using WSRF-based data services.

The block size is a key factor in the performance of WSRF-based data services.
Figure 7 shows that the block size has a clear influence in the performance while
the improvement achieved increasing the number of nodes is hidden due to the high
influence of the transfer method. In this way, the use of MAPFS-Grid PDAS and
MAPFS-DAI only involves a slight improvement according to the parallel use of
a higher number of nodes accessed in I/O operations. The improvement is slight
in spite of the parallel data access because the high influence data transfer through
the network has vs. data access to disk limits the enhancement. Both, MAPFS-Grid
PDAS and OGSA-DAI-based solutions are WSRF-based data services, and their
performance is limited by the the overhead produced in the transfer protocol used
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Fig. 7. Performance obtained by the proposed WSRF-based data services to access a 12 GB
filesize on UPM 1

in Web services, SOAP. Thus, a high percentage of time (e.g., 98.7 % on average of
the OGSA-DAI operation time) is consumed by performing the file transfer instead
of accessing data.

Furthermore, Figure 7 shows that the MAPFS-Grid PDAS access over a single
storage element obtains better performance than OGSA-DAI compliant systems.
OGSA-DAI has lower performance due to the overhead introduced by the interop-
erability layer by sending messages and running activities required by the fulfill-
ment of the OGSA-DAI common interface. In this sense, its performance is much
lower than MAPFS-Grid PDAS because it is not only a protocol problem, but also
a message-passing problem due to the use of the OGSA-DAI’s common messages.

As a result, to improve the performance of WSRF-based data services, it is nec-
essary to reduce the transfer time, since the data access time inside the storage
element has not a high influence in the results. Parallel techniques applied to the
inter-storage element level can be used to decrease the transfer time.

Both elements UPM 1 and UPM 2 can be used in parallel by taking advantage of
the inter-storage element parallelism level, obtaining a performance improvement.
In all the figures, we have named Parallel X to this approach, where X is the specific
component (i.e., PDAS, MAPFS-DAI, MAPFS-DSI). Figure 8 shows bandwidths
achieved in read and write operations, respectively, on UPM 1 and UPM 2 in a par-
allel way by using WSRF-based data services.

There is a noteworthy improvement in the achieved bandwidth due to the use of the
inter-storage element level of parallelism. The average improvement when using
this level of parallelism is 69.28 % for PDAS and 16.81 % for MAPFS-DAI, ob-
taining the highest improvements for 512 KB blocks. In the case of MAPFS-DAI,
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the improvement is less than PDAS. However, different kinds of systems (such
as MAPFS-DAI, fileAccess based on OGSA-DAI, CASTOR, and so on) could be
used together by means of OGSA-DAI since they provide the same interface.

Furthermore, the performance of PDAS write operations achieves the maximum
performance of the SOAP protocol used in data transfers of this kind of services.
Nowadays, the maximum performance that can be achieved by SOAP is around
6-7 MB/s [43] due to different causes shown in [25]. The SOAP maximum perfor-
mance limits the improvement of the inter-cluster parallelism in WSRF-based data
services but the achievement of its maximum performance states the optimization
of the use of the infrastructure thanks our proposal.

Secondly, we have compared the usual DSI provided by GridFTP, called file DSI,
which only accesses the master cluster node, to our proposal, MAPFS-DSI, which
accesses in a parallel way the whole cluster.

In this case, it is important to note that the time of accessing a file in a parallel way
among the nodes of the cluster is superimposed by the transfer time. In this sense,
as it can be seen in Figure 9, when the number of nodes increases, MAPFS-DSI pro-
vides an improvement vs. GridFTP file DSI, enhancing the use of GridFTP. Only
if MAPFS-DSI is used without parallelism (1 node), its performance is lower than
GridFTP file DSI because of the overhead observed in MAPFS when accessing a
single node. Nevertheless, in some cases, the extra coordination overhead required
by a higher number of nodes (8 nodes) cannot be compensated by the performance
improvement.

13



0

5

10

15

20

25

30

35

100 MB 1 GB 6 GB 12 GB

B
a

n
d

w
id

th
 (

M
B

/s
)

Filesize

(a) Read

20

25

30

35

40

45

50

55

60

100 MB 1 GB 6 GB 12 GB

B
a

n
d

w
id

th
 (

M
B

/s
)

Filesize

(b) Write

GridFTP File DSI MAPFS-DSI 1 node MAPFS-DSI 2 nodes

MAPFS-DSI 4 nodes MAPFS-DSI 8 nodes

Fig. 9. Comparison between MAPFS-DSI and GridFTP file DSI to access a file on UPM 1

Furthermore, when the file size is increased, an increment of the performance is
obtained, being higher in 1 GB. The reason behind this behavior is the influence
of the memory hierarchy. Since UPM 1 has 1 GB of RAM memory, most of data
from 1 GB file size are accessed from memory instead of disk. On the other hand,
file sizes higher than 1 GB require the access to disk, decreasing the performance.
File sizes lower than 1 GB take advantage of the whole access to memory although
the cost of the initial connection is high enough to hide the mentioned benefit. In
this case, the low time to access the file size cannot make up for the high cost of the
initial connection.
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The block size has a meaningful influence in the performance of GridFTP and
therefore MAPFS-DSI. According to block sizes, Figure 10 shows as block size is
increased the obtained bandwidth decreases.

14



Moreover, both inter-storage element and intra-cluster parallelism can be consid-
ered. A parallel GridFTP file DSI version has been built to run tests, although it
can only take advantage of inter-storage element parallelism. On the other hand,
MAPFS-DSI can obtain benefits from both of them.

Figure 11 shows the I/O bandwidth obtained by the application of both levels of
parallelism on UPM 1 and UPM 2 storage elements by using a version parallel of
GridFTP file DSI and MAPFS-DSI.
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Fig. 11. Comparison between MAPFS-DSI and GridFTP file DSI to access a file on UPM
1

The use of both levels of parallelism obtains noteworthy improvements, as it can
be seen in Figure 11. Increasing the number of storage elements and nodes of the
cluster means an improvement in the performance. Whereas the average improve-
ment achieved by the inter-storage element parallelism compared to a single stor-
age element for read operations is 73.45 %, the improvement is 88.16 % for write
operations. The inter-storage parallelism level also causes a great improvement in
file DSI performance (parallel GridFTP file-DSI), but it is still worse than MAPFS-
DSI.

Finally, Figure 11 shows as MAPFS-DSI achieves the maximum possible network
bandwidth by using the two levels of parallelism. Considering that the work envi-
ronment is a real environment and the network is not dedicated, such network is
acting as a bottleneck of the whole system. Nevertheless, the performance obtained
by file DSI of GridFTP is limited by the I/O bandwidth of the hard disks of the clus-
ter master node. As the predicted advances in Computer Science state the network
performance will increase higher than the I/O system [51], this is a much harder
limitation.
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All the shown results allow us to extract some interesting conclusions that validate
our proposal. As grid environments are composed of different storage elements,
and clusters stand out among them, it is possible to improve the grid data transfers
accessing in a parallel way within clusters. Furthermore, a parallel access among
several storage elements can enhance the whole transfer performance.

4 Related Work

In the last years, many projects have been performed to provide effective data ac-
cess for grid applications. A taxonomy of data grids is proposed in [50]. The el-
ements of this taxonomy related to store data are i) data transport and ii) data
replication and storage management. Next subsections describe these two lines. At
the end of this section, a comparison between current data grid approaches and our
proposal is made.

4.1 Data transport

In data grid, data transport implies not only information transfer but also security
and management issues. There are several commonly-used technologies on this
field, which are going to be briefly commented.

SOAP [43] is a versatile protocol for exchanging messages over Internet. SOAP
provides a basic and standard messaging framework especially suitable for Web
services. Since the grid community has changed its orientation towards a service
model [22] following the Web services approach, SOAP is considered as the de-
fault data transport in this model. However, SOAP is considerably slow and does
not provide security, what must be solved by the middleware, for instance, by means
of Grid Security Infrastructure (GSI) [24] in Globus.

GridFTP [1] is an extension of the standard FTP protocol, providing secure and
efficient data management in grid architectures. In order to exhibit this behavior,
GridFTP includes among others:

• Authentication, authorization, and access control by means of GSI.
• Parallel and striped data transfer.
• Support for reliable and restartable data transfer.
• Automatic negotiation of TCP buffer and window sizes.
• Instrumentation and monitoring tools.

16



The use of GridFTP parallel threads increases the effective network bandwidth im-
proving the link utilization.

Alongside with these two basic, most-popular alternatives, there are many others
aimed to provide more sophisticated data grid features. Internet Backplane Protocol
(IBP) [42,8], Kangaroo [48] and Storage Resource Broker (SRB) [7] are examples
of them.

The first one, IBP is an end-to-end data movement mechanism that tries to optimize
the data movement from a node to another one by storing information at interme-
diate locations. IBP provides a semantic similar to UNIX system. It is based on a
concept called exNode, similar to a UNIX inode.

Kangaroo is integrated into the Condor grid project and it presents itself as a reli-
able data movement system. It achieves reliability by running the transfer process
in background and transparently managing faults. Kangaroo provides an interface
to get, put, commit, and push operations.

The SRB I/O provides a UNIX-style file I/O interface for accessing heterogeneous
data distributed over wide area nodes. SRB I/O provides streaming data transfer
making multiple files possible to be sent using multiple streams to a storage re-
source.

4.2 Data replication and storage management

Due to the large-scale distributed nature of data grids not only information trans-
fer, but also management (including data distribution, location, and replication)
becomes a key element in providing efficient and reliable services. Nowadays there
are several initiatives focused on these aspects, some of them integrated with the
previously described data transfer technologies, some simply taking advantage of
them and others based on their own solutions. The most significant examples are
briefly described below.

GIGa-scale Global Location Engine (Giggle) [14] is a Replica Location Service
(RLS) framework. The aim of RLS is to replicate data that are written once and
read many. This service maintains information whereas there are physically located
file replicas. A RLS is composed of a Replica Catalog and a Replica Location Index
(RLI). Whereas the Replica Catalog is in charge of knowing the logical representa-
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tion of the physical locations, the RLI indexes the catalog itself.

Grid Data Mirroring Package (GDMP) [44] is a secure and high-speed replication
manager of data files and object databases by using Replica Catalogs and GridFTP.
GDMP is based on the publisher-subscriber model. Every server publishes the set
of files added to the Replica Catalog enabling clients request replicas of them. In
order to provide security to the client connection, GSI is used.

SRB is one of the most widely used data grid architectures, since it provides a
uniform interface to heterogeneous storage systems, unifying the view of the files
stored in different locations. It uses replication to improve data availability and
performance. The replication consistency in SRB is provided by means of synchro-
nization and lock mechanisms propagating changes to other replicas.

Grid Datafarm (Gfarm) [46] is a high-speed I/O system designed for large-scale
architectures. Although it can manage several petabytes, it requires high-speed net-
work connections and large disk space in each storage element, which does not
properly fit with the grid philosophy. In this way, it can be seen as adapted to the
cluster computing idea.

The Storage Resource Managers (SRM) [38] interface provides a standard uniform
management mechanism to heterogeneous storage systems. It provides a common
interface to data grids, abstracting the peculiarities of each particular storage sys-
tem. SRM could be used to access different storage system such as CERN Ad-
vanced STORage manager (CASTOR) [13], a scalable and distributed hierarchical
storage management system developed at CERN in 1999. Other mass storage sys-
tems which provide a SRM interface are HPSS [53,29], Enstore [19], JASMine [26]
and dCache [20,18].

OGSA-DAI [35,36] is a middleware designed to integrate data from different sources
in grid environments. These include regular files, relational, and XML databases,
etc. OGSA-DAI provides a set of standard Web services for clients to access infor-
mation in a unified way.

4.3 Comparison between current data grid approaches and MAPFS-Grid

Current data grid approaches can be divided into three groups, according to the way
in which the I/O operations are performed.
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The first set of projects includes GridFTP [2], IBP [42], and Kangaroo [49], which
can be considered as end-to end data-movement mechanisms that try to move data
from a node to another. Once the data are in the local node, applications read or
write to the new copy. This way of transfer is provided by MAPFS-DSI. The other
two services of MAPFS-Grid, PDAS and MAPFS-DAI, enable performing direct
read or writes to data.

The second set of projects, whose main examples are GASS [10], Legion I/O [54],
and Gfarm [47], allows the application to perform direct operations on files, but
what the system really does is a local copy of the file and then the application ac-
cesses it. This feature is one of the big differences from our work to these projects.
Our system allows applications to directly read and write remote files, which are
actually distributed within several storage elements.

The third group of projects where SRB [7], GridFS [11], CASTOR [12], OGSA-
DAI [35] and XtreemFS [30] belong, offers the functionally of accessing remote
files directly just like we do on MAPFS-Grid by means of PDAS and MAPFS-
DAI. The difference with them, and also with all previous ones, is that our system
takes advantage of two levels of parallelism that are not used by any of the projects
presented so far. Most of them can only take advantage of one level of parallelism.

Finally, all previous projects offer only one interface, but MAPFS-Grid offers three
skins for the user to be able to choose the most adequate one regarding compatibil-
ity vs. performance.

5 Conclusions and future work

The grid technology allows a large number of heterogeneous resources to be shared
along geographically distributed sites. Data resources are common facilities in cur-
rent large projects. Our proposal, MAPFS-Grid, provides a suite of three compo-
nents for accessing efficiently large amounts of data in a grid environment. Every
component is focused on a different aspect related to access data in grids. All of
them take advantage of two levels of parallelism: the first level provides parallelism
among all the storage resources of the grid and the second level optimizes the I/O
operations in those storage resources corresponding to clusters.

Each MAPFS-Grid component fits properly with a different data scenario. MAPFS-
DSI is useful for performance-critical applications since the obtained performance
is optimal and it is only limited by the network bandwidth. MAPFS-Grid PDAS
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and MAPFS-DAI are appropriate to service-oriented applications, which usually
read and write parts of the remote files directly. Whereas MAPFS-Grid PDAS of-
fers better performance, MAPFS-DAI provides interoperability. Therefore, in order
to obtain a high number of accessible resources, MAPFS-DAI should be used. On
the other hand, MAPFS-Grid PDAS is suitable for efficient service-oriented appli-
cations.

As a summary, this approach provides a high performance parallel grid storage sys-
tem whose performance is only limited by the features of transfer methods, such
as the transfer protocol or network bandwidth. These technological limitations re-
strict the benefits achieved by this work. Nevertheless, close advances in network
technologies are going to involve a performance enhancement still high by this pro-
posal. Some advantages of the use of the proposed high performance infrastructure
are:

• Availability of huge shared storage capacity provided by several heterogeneous
and scattered distributed resources. Besides, parallelism improves the use of the
elements that make up the grid environment.

• Improvements of the I/O phase performance. Thus, MAPFS-Grid is especially
beneficial for being used by HPC grid data-intensive applications.

• Use flexibility. The different functionalities of each MAPFS-Grid component
make the adaptation to any kind of data access scenario possible.

Nevertheless, MAPFS-Grid also introduces a great level of complexity. The block-
size parameter and the number of storage elements used in a parallel way have to be
carefully chosen to reach the optimal performance. Furthermore, in a real environ-
ment where nodes are not dedicated to data storage, selecting the appropriate nodes
is a challenging area. They must not only be chosen depending on their available
disk space, but also considering their available bandwidth and current and future
load. Thus, as ongoing and future work, we are working on the design of a com-
plete system with all the benefits of the three components shown, which includes
self-optimizing features with the aim of operating at optimal performance in any
circumstances.
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