
Improving grid fault tolerance by means of global behavior modeling

Jesús Montes
CeSViMa

Universidad Politécnica de Madrid
Madrid, Spain

Email: jmontes@cesvima.upm.es

Alberto Sánchez
E.T.S. de Ingenierı́a Informática

Universidad Rey Juan Carlos
Madrid, Spain

Email: alberto.sanchez@urjc.es

Marı́a S. Pérez
Facultad de Informática

Universidad Politécnica de Madrid
Madrid, Spain

Email: mperez@fi.upm.es

Abstract—Grid systems have proved to be one of the most
important new alternatives to face challenging problems but,
to exploit its benefits, dependability and fault tolerance are
key aspects. However, the vast complexity of these systems
limits the efficiency of traditional fault tolerance techniques.
It seems necessary to distinguish between resource-level fault
tolerance (focused on every machine) and service-level fault
tolerance (focused on global behavior). Techniques based on
these concepts can handle system complexity and increase
dependability.

We present an autonomous, self-adaptive fault tolerance
framework for grid systems, based on a new approach to model
distributed environments. The grid is considered as a single
entity, instead of a set of independent resources. This point of
view focuses on service-level fault tolerance, allowing us to see
the big picture and understand the system’s global behavior.
The resulting model’s simplicity is the key to provide system-
wide fault tolerance.

I. INTRODUCTION

Large scale distributed systems have paved the way to face
complex, technical and scientific challenges that can not be
solved with traditional systems, due to their huge computing
and/or storage requirements. Initiatives such as BOINC [1],
PlanetLab [2] or TeraGrid [3] and, more generally speaking,
grid [4] or the recent cloud computing [5] provide computing
and storage resources that can be scaled to a level difficult to
imagine elsewhere. Nevertheless, in spite of their potential,
building dependable grid systems is not an easy task.

For the purpose of providing fault tolerance to these
systems, a deep knowledge about the behavior of each single
element is usually required. However, the huge number of
different resources makes it almost impossible to analyze
and implement efficient policies on every one. Most of tra-
ditional and current grid management techniques are based
on this approach [6]–[8], dealing with each independent
resource’s behavior separately. A good alternative could be
simplifying the understanding of the whole system, studying
it as a single entity instead of the set of elements that
together form it. This abstraction would describe how the
system globally works and simplify its management.

Our approach combines the use of self-adaptive tech-
niques with a single entity vision of the grid in order
to provide fault tolerance and increase dependability. Our

approach is unique in that we use this single entity vision
to focus on service-related global aspects.

The paper is organized as follows. Section II addresses
fault tolerance issues, discussing the concept of failure on
grid systems and our approach to model global behavior.
Section III proposes a way to build dependable grid systems
based on global behavior modeling. Section IV validates
our approach. Section V shows different related work and
section VI explains the final conclusions and outlines future
research directions.

II. FAULT TOLERANCE ISSUES IN GRID COMPUTING

Most grids are not only distributed in nature, but also
heterogeneous, non-centralized and in most cases composed
of non-dedicated resources. Providing fault tolerance in such
complex systems is not a simple task. These properties,
added to the fact that grids are large scale systems (and
therefore they have a large number of resources), bring the
problem to a new level, and it does not seem a matter of sim-
ply adapting existing distributed computing fault tolerance
techniques.

The inherent complexity of grid systems makes the direct
application of these techniques very difficult. In grid, het-
erogeneity, variability and decentralization are considered, in
most cases, as system features. As a consequence, resources
can unpredictably appear and disappear, network links can
be temporarily or permanently interrupted, parts of the sys-
tem can be overloaded without any control from the global
system administrators and so on. These events are normally
considered faults in traditional distributed systems, but in
grid computing they are part of the system’s typical behavior.
Therefore, is not so clear if these events are faults or not.
The lesser degree of cohesion of grids dilutes the concept of
failure based on the loss or degradation of resources. Grids
are commonly seen as an immense set of resources that
provide a series of services. Their proper operation should be
understood in terms of the quality of the services provided
instead of the state of its resources.

A. Single entity vs. multiple entities

One of the most puzzling aspects of grid systems is that
they are considered as single elements in theory but, when it

comes to practice (specially in management related issues),
they are treated as a set of independent, loosely related,
elements. It might be argued that these systems are no simple
ones and their great complexity makes necessary to look
after every one of its parts. However, it could simply be a
matter of perspective.

To illustrate this idea, it is interesting first to analyze the
case of a single desktop computer. This apparently much
simpler system is commonly regarded and managed as a
single device but, in fact, it is composed of a large set of
sophisticated elements that cooperate. Elements like CPUs,
memory and its controllers, video cards, hard drives, network
interfaces and so on have distinctive functionalities and are
technologically complex, but are seen as parts of a single
entity, instead of a set of heterogeneous resources. This
change of perspective is due to the use of high-level tools
(basically the operating system) that provide an abstraction
layer between the real, heterogeneous and complex hardware
and the user. Several generic parameters are defined, such as
CPU load or network usage, in order to express the system
state in a standard manner. Even though this abstraction
carries some loss of information, it allows the managing
techniques to be standardized, regarding all desktop com-
puters by the same parameters. Considering fault tolerance,
generic procedures are developed in the same way.

If this concept is applied to grids, it becomes clear that
the proper tools for making this abstraction are yet to be
established. Grids are still considered as a set of parts,
instead of the sum of them. In consequence, the management
tools inherit the complexity of the system, not allowing
synergy to take place.

B. Fault tolerance in grid systems: resource-level vs.
service-level

Distinguished by its point of view, fault tolerance tech-
niques in grid systems can be split into two categories:
resource-level and service-level. In order to optimize perfor-
mance and increase system dependability the correct com-
bination of these two types of techniques should be applied.
However, some important aspects must be considered.

Resource-level fault tolerance involves the application of
standard fault tolerance techniques in each and every one
of the resources in the system. This might seem pretty
straightforward, but carefull consideration reveals that most
of typical grid characteristics could limit its efficiency, as
is now explained. The heterogeneous and non-dedicated
nature of the system increase complexity, but it is the non-
centralized aspect the one that becomes the great difficulty.
In many cases, the global management system has so limited
control of each resource that the only suitable solution seems
to increase redundancy.

Service-level fault tolerance, on the other hand, deals with
system-wide policies aiming to increase dependability of the
services provided. This is particularly important in utility

computing systems, where the quality-of-service (QoS) is
the key factor. However, as the fault tolerance policies have
to deal with the whole system, it is important to find ways
to efficiently manage this complexity. It is also important to
understand that, as the nature of the system is different from
resource-level fault tolerance, the terms in which this fault
tolerance is expressed certainly differ.

In resource-level fault tolerance basic concepts such as
fault or failure are directly inherited from traditional dis-
tributed systems. Events such as a machine turning unex-
pectedly off or the temporary loss of a network link are
clearly regarded as faults. But in a non-dedicated, non-
centralized distributed system like a grid, each partner that
shares resources keeps full control over its property (comput-
ing nodes, storage elements, network links, etc). Resource
providers can change the state of its own resources, without
consent from the grid global management. For instance,
some machines could be turned off, originating an event
that would be probably considered a fault in traditional
distributed systems fault tolerance. But in grid systems
these events are by no means considered as undesirable or
unexpected. They are more likely accepted situations that
not only may, but will occur as part of the natural evolution
of the grid. Therefore service-level fault tolerance can never
regard them as faults.

Service-level fault tolerance should focus on QoS issues
and global behavior. It can benefit from a representation
of the grid global state in a service oriented form. This
would become a behavior model based on globally service-
relevant states instead of the multiple specifics of each re-
source. This representation not only seems ideal for service-
level fault tolerance, but also provides the abstraction layer
mentioned in the previous subsection. With such a model,
grid management tools could finally have the previously
mentioned single entity perspective, incorporating the sys-
tem’s complexity without being overwhelmed by it. This
could also take service-level fault tolerance a step further,
better understanding and improving the systems behavior
and dependability.

C. GloBeM: Global behavior modelling of grid systems

A global behavior model would provide the abstraction
layer that finally makes the single entity point of view
possible in grid computing. In order to do so, this model
must have certain characteristics:

• Specific state definition: State characteristics and tran-
sition conditions should be unambiguously specified.

• Stability: The resulting model must be considerably
consistent with the system behavior over time.

• Simplicity: The resulting model should be understand-
able and provide basic and meaningful information
about the systems behavior.

• Relevance to service: The model states should be
related to the system services.

In [9], [10] we introduced a methodology for creating
this kind of model. It is strongly based on traditional data
mining tools, and also in more advanced knowledge discov-
ery techniques such as virtual representation of information
systems [11]. It uses monitoring information gathered from
a grid to produce a finite state machine that represents its
behavior (please refer to the above mentioned paper for
further details about this technique). This methodology is
now called GloBeM1. The resulting model produced by
GloBeM becomes an abstraction layer on top of the grid
infrastructure. However in [9] the global behavior model is
presented in a general way, and no specific application is
indicated. Our approach takes advantage of this single entity
point of view in order to improve fault tolerance in grid
systems. Our research focus on a new approach to service-
level fault tolerance, based on a single entity vision of the
grid.

III. SERVICE-LEVEL FAULT TOLERANCE BASED ON
GLOBAL BEHAVIOR MODELLING: FIRE

Combining the ideas of single entity view and service-
level fault tolerance, an autonomic management framework
called FIRE2 has been developed. The basic idea behind
FIRE is that, if several states can be distinguished within a
grid (the way GloBeM does it), different system behavior
should be obviously expected for each one of them. It
seems reasonable to assume that not all fault tolerance
techniques would be optimal for every state. Therefore, if
a set of compatible management policies are available, it
would be essential to identify which one is most adequate
for each state and provide the necessary mechanisms to
switch between them when the system shifts from one state
to another.

If we consider data replica allocation, for instance, several
different allocation policies could be used, depending on
the system state. Some polices could be optimal when the
network connections are heavy loaded, others when the CPU
usage is very unbalanced, etc. Dynamically selecting the ad-
equate replica allocation policy for each state could strongly
improve the overall system’s performance (assuming that all
policies are compatible among themselves). FIRE’s main
purpose is exactly that: to serve as a simple but effective
automated policy selector, based on a GloBeM’s finite state
machine model of the system’s behavior.

FIRE monitors the system and performs a representation
of information in a similar way the global behavior mod-
elling procedure does. Then it determines the current system
state, using a previously provided finite state machine model.

1Global Behavior Modeling
2The acronym FIRE stands for “FIRE Isn’t just a Replication

Environment”. The reason behind that name is that the system was
originally conceived as a data replication policies manager. Nowadays it has
grown beyond that, to deal with different types of service-level autonomic
management.

Grid Monitoring SystemMonitoring System

Management
System

Management
System

FIREFIRE

Status Manager

Policy Manager

Module X

Active
Policy

State
Info. and
decision

rules

Global
behavior

model

Module Y

...E
ve

nt
C

ha
nn

el

E
ff
ec
t o
rs

Sensors

Knowledge

Policy 1

Policy 2

Policy n

...

Figure 1. FIRE’s architecture

It then activates the correct policy for the current state. The
corresponding policy for each state must also be provided
to FIRE as part of its configuration.

The policies controlled by FIRE can be of any kind.
Typical examples of this are a set of interchangeable job
scheduling policies or the above mentioned data replication
policies. FIRE has to communicate with the proper manage-
ment subsystem (job scheduler, data manager, etc) in order
to activate the proper policy.

A. Architecture of FIRE

Figure 1 illustrates the FIRE’s architecture. It has been
designed to provide an extensible, adaptive, autonomic
framework for grid management. From an autonomic point
of view, the system must present the following elements:

• Sensors (the eyes): These are the elements that gather
information about the grid evolution and behavior. To
this purpose FIRE takes advantage of a grid monitoring
service.

• Effectors (the hands): These are the elements that per-
form the actual grid management, following a specific
policy or set of policies. The specific characteristics of
these effectors change depending on the grid services
and applications. In a data grid, for instance the ef-
fectors would be those software tools in charge of the
management operations such as data allocation, load
balancing, etc.

• Knowledge (the brain): This the autonomic system’s
core. It contains the necessary information and capabil-
ities to perform four basic tasks: a) Monitor (by means
of the sensors): This makes the system aware of its own
state. b) Analyze: This makes possible to understand the
system’s state in terms of the behavior model in use.
In the case of FIRE, this analysis is based on a global

behavior model generated using the GloBeM method-
ology. c) Plan: Once the system’s behavior has been
observed and understood, the appropriate management
decisions are made, in order to self-adapt to the current
conditions. d) Execute (by means of the effectors):
The planned decisions are executed. These four tasks
are the basis to provide autonomic capabilities to grid
management mechanisms. FIRE is focused on these
aspects, providing the knowledge element in the grid
autonomic management.

At it can be seen in Figure 1, FIRE itself does not stand
as a complete autonomic solution, but as a basic framework
to incorporate autonomic capabilities to a grid management
system. From an architectural point of view it is designed
around an standard event channel3 in order to naturally in-
crease its modularity and simplify its adaptation to different
management problems. FIRE has three main elements: the
event channel and the two main modules, connected through
it (the Status Manager and the Policy Manager). It may
contain also some other additional modules, in order to add
new functionalities.

The Status Manager gathers monitoring information from
the system resources. Then, with the use of the GloBeM
finite state machine model, determines the current state and
notifies it tho the Policy Manager. The Policy Manager
receives the current state and determines which policy is
to be activated. It then activates the policy and notifies this
fact to the corresponding management subsystem.

FIRE requires of some initial configuration (providing the
finite state model and the corresponding policies) and there-
fore it is not a completely autonomous system. However,
it makes the administration work much easier. Once the
finite state machine is automatically generated, the system
administrator only has to decide which policy fits better in
each state, in order to increase dependability. Using FIRE as
a basic management framework, system administrators can
effectively manage a large scale distributed system without
being overwhelmed by its complexity. The service oriented
behavior model is the key to “see the big picture” and focus
on global dependability and QoS.

IV. SYSTEM EVALUATION

In order to evaluate the benefits of the FIRE framework,
a set of experiments has been performed using the grid
computing simulator GridSim [12]. GridSim is a widely
accepted, powerful simulation tool for this kind of systems.
It offers the possibility of realistically simulate hundreds
of machines and clients interconnected through a complex

3This is a standard software design technique where communication
between modules is carried out by a central event manager. A set of events
are specified and the different modules can act as event publishers and/or
event subscribers. This structure strongly simplifies the introduction of new
modules on the system.

network. In a work like this one, where new manage-
ment techniques are being tested, it is almost impossible
to experiment on real grid systems (such as the EGEE
project [13]) due to the high level administrative capabilities
required. Therefore, a simulation seems to be proper first
step, specially if it is done with the adequate tools.

A. Experiment objectives

It has been said that FIRE can address many different
problems, depending on the management system or systems
it is working with and the set of policies provided. One of
the most common uses of large scale distributed systems
in general and grid computing in particular is the execution
of CPU-intensive distributed applications (large distributed
computations, high-performance computing, etc.). The sys-
tem’s distributed nature allows to run multiple jobs in
different resources, but to efficiently do it, an adequate
job scheduler is required. The capabilities of this scheduler
can almost entirely establish the system’s dependability, and
therefore they are of maximum importance.

For these tests, a grid job execution service was simulated.
Since FIRE addresses service-level fault tolerance, the basic
parameters of the experiment must be service oriented. In
this sense, job failure rate can be used to measure the QoS
provided by this service from a fault tolerance point of
view. Thus, randomly generated jobs were submitted to the
simulated grid through a job scheduler and their failure rate
was measured. To determine a job failure, a time deadline
was established for each of them, based on its time of
submission and job size. A job failure, in consequence,
could be originated by a resource crash, a network overload,
etc. The objective of these experiment was to show how
FIRE, with the appropriate policies, can increase system’s
dependability by lowering the job failure rate.

B. Simulated scenarios

In order to produce a as much realistic as possible simula-
tion of a real grid, performance statistics and job accounting
information from the EGEE project was used [14]–[16]. The
EGEE connects more than 70 institutions in 27 European
countries to construct a multi-science grid infrastructure for
the European Research Area. Three scenarios were designed,
each of them with certain defined characteristics:

• Randomized resources: Computing resources were
slightly randomize to obtain certain heterogeneity. The
number of resources was fixed for each scenario, but the
computing power of each of them was randomly gen-
erated. Each resource may have one or two machines,
each of them with one or two processing elements
(CPUs). The power of each processing element was
randomized between 1000 and 5000 MIPS.

• Randomized clients: Each scenario had a different
number of clients. These clients function was to ran-
domly generate different types of load, generating

Scenario name 20R 50R 100R
Num. resources 20 50 100
Num. CPU load clients 10 25 50
Num. Net load clients 10 20 20

Table I
TEST SCENARIOS

continous (but not constant) network traffic and CPU
load. Different levels of random CPU load and random
network traffic were injected in order to simulate the
uncontrollable changes in the system.

• Resource failures: Each resource had a random chance
of failure. These were isolated failures that temporarily
disconnected the resource from the system randomly
affecting its composition. The failure parameters (prob-
ability of failure and duration of failure) were adjusted
to fit real job failure rates observed on the EGEE (this
is explained in more detail below).

• Job dispatcher: In each scenario there was a job
dispatcher that represented the grid service, with a
queue of randomly generated jobs. Each job had three
randomly generated parameters: the job computing size
(between 100 and 100000 millions of instructions) data
input size (between 0 and 50 MB) and data output
size (also between 0 and 50 MB). These are the three
basic job parameters used by GridSim.

Table I shows the different parameters established for each
one of the tree simulation scenarios (called 20R, 50R and
100R). All tests simulated 30 days of execution of these
systems.

Since FIRE aims at improving fault tolerance, one of the
main aspects that must be considered in order to perform
a realistic simulation of this grid is the job failure rate. As
EGEE was used as a reference for the simulated scenarios, it
was important o reproduce the same failure rates observed in
the real system. The above mentioned references show that
this parameter oscillates due to many factors, but it is usually
around 16%. For the simulated scenarios, it was decided
to generate a basis job failure rate of 16%, and then show
how the use of FIRE lowers this rate. This value includes
any kind of job failure, both generated by resource failures
and/or network problems.

C. Behavior model

Prior to performing the FIRE tests, an initial configuration
was designed for comparative purposes. This configuration
used FCFS (First-come, first-served) as the only job sched-
uler policy, so jobs were always strictly dispatched in the
order they arrived. It was executed on all three test scenarios
and a behavior model was generated using the methodology
previously mentioned. The resulting finite state machine can
be seen in Figure 2. It is important to remind that this is an
automatically generated model, and the state analysis took

State 1

State 2 State 3
Avg NetBW > 81 MB/s

Avg NetBW < 44 MB/s

Avg NetBW > 44 MB/s

Avg NetBW > 81 MB/s

Avg NetBW < 81 MB/s

 Avg NetBW < 44 MB/s

Figure 2. Global behavior model of the test scenario

place after its construction. This ensures that the resulting
states are based only on the behavior information monitored
and not on any system administrator’s personal assumptions.

The three observed states are:
• State 1: It is characterized by a low average network

bandwidth (below 44 MB/s), mostly due to network
overload.

• State 2: It is characterized by a medium average
network bandwidth (between 44 and 81 MB/s). It seems
to represent the medium load state of the grid.

• State 3: It is characterized by a high average network
bandwidth (over 81 MB/s). This represents a barely
loaded grid, where the network can be used at full
capacity.

From a service point of view, state 1 seems to be the most
problematic, as low network bandwidth can make the data
input and output transfer times longer and therefore increase
the job’s failure probability. State 3, on the other hand, seems
like the best one, as the high network bandwidth guarantees
fast data transfers. State 2 certainly is in an intermediate
point.

In order to increase dependability, FIRE needs a set
of policies adapted to each state. In this case, a set of
job scheduling policies was configured, aimed to improve
system’s dependability. To make the example easier to
understand, the chosen policies were very simple but still
effective:

• Policy A gave a higher priority to jobs that had small
input and output data. This reduces the chances of
job failure when the network is slow. This policy was
configured for state 1.

• Policy B gave a higher priority to jobs that had large
input and output data. This was specifically designed
to take advantage of times when network bandwidth is
very high. The idea is to execute the heavier jobs when
their success chance was higher. Obviously this policy
was configured for state 3.

• Policy C dispatched jobs in strict arrival order (FCFS).

20 Machines 50 Machines 100 Machines
0

0,04

0,08

0,12

0,16

0,2

FCFS
FIRE

Scenario

F
a

ilu
re

 r
a

te

Figure 3. Job failure rate for each scenario and policy configuration

It was configured for state 2.

D. Simulation results

Each scenario (20R, 50R and 100R) was simulated using
the basic FCFS scheduling policy and the special multi-
policy scheduler controlled by FIRE. 16 simulations (each
of them using different random seeds) were performed for
each scenario and scheduler system, giving a total number
of 480 days of simulated time for each experiment (every
execution simulated 30 days).

The average job failure rate results for each experiment
can be seen in Figure 3, grouped by scenario. As it has
been said, the job failure rate for the FCFS configuration
was fixed to 0.16, in order to produce a value observed on
a real grid (EGEE, in this case). The FIRE configuration, as
it can be seen, clearly reduces the job failure rate in every
experiment.

A more detailed analysis is displayed in Figure 4. In this
case, every scenario configuration is displayed separately
but, in each of them, separated failures rates are displayed
for each state. It is clear now that the state where most of
job failures occur is state 1. The multi-policy based FIRE
configuration succeeded in lowering this state failure rate.

As a curious detail, it can also be seen in Figure 4
that the use of the multi-policy FIRE configuration very
slightly increases the state 2 failure rate. Although this does
not affect the overall result, it is interesting to provide
an explanation for this phenomenom. It is important to
remember that the associated policy to state 1 (policy A)
increases the small jobs priority, making them more likely
to be executed. In consequence, this makes that most small
jobs are executed while this policy is active, and when the
system returns to state 2, the average job size in the queue
is certainly higher. Therefore the jobs executed during state
2 are generally bigger than in the FCFS configuration and

FCFS-20 FIRE-20 FCFS-50 FIRE-50 FCFS-100 FIRE-100
0

0,1

0,2

0,3

0,4

0,5
State 1
State 2
State 3

Experiment

F
a

ilu
re

 r
a

te

Figure 4. Job failure rate for each state in each experiment

their chance of failure is higher. This slightly increases state
2 failure rate. Even though, this increase has little effect in
the global failure rate.

V. RELATED WORK

Our proposal aims at providing adaptive fault tolerance,
based on the grid behavior. Several approaches have arisen
with the idea of modelling and characterizing the behavior
of a grid or large distributed system.

One first step in the characterization of any computer
system is the use of benchmarking [17], which allows
for the analysis of the performance behavior of a system
when different workloads representing the whole spectrum
of possible loads are applied. These workloads are the
result of running a benchmark program with specific inputs
and configuration parameters. Once the benchmark program
has been run, a performance model of the system is ob-
tained. Unlike grid benchmarking, our approach models the
behavior of a grid according to data obtained from the
monitoring of the system in real scenarios and with real
users, applications and resources.

Other different works have appeared for modelling a grid.
Bratosin et al. in [18] provide a formal description of grids
by using Colored Petri Nets (CPN). This model is used for
simulation of grids. Unlike this model, our proposal does
not simulate a grid but it models the grid with the aim of
simplifying the knowledge about its behavior and helping to
make decisions at run-time.

In the same line than the previous work, Nemeth et al.
[19] present a formal definition of a grid by means of the
use of Abstract State Machines (ASM) [20], a mathematical
framework for analysis and design of systems. The model
obtained in this work enables distinguishing semantically
conventional distributed systems from grids. However, this

definition is based on an idealistic grid and only considering
its qualitative characteristics.

On the other hand, different research works have ad-
dressed the problem of fault tolerance in grids and large
scale systems. The dynamism and lack of centralized control
of these systems make the efficient application of fault toler-
ance techniques very difficult. Moreover, a redefinition of the
fault model in these environments is needed. An enhanced
fault model for grids has been developed within the e-
Demand project at the University of Durham [21]. This work
improves the fault model of a traditional distributed system,
including new type of faults, namely potential life-cycle,
metered access, interaction, timing, and omission faults. An
approach for grid applications combining replication-based
fault tolerance and dynamic prioritization and scheduling is
also provided in this project. Unlike this work, our proposal
changes the perspective from a resource-based model to a
system-based model, redefining completely the fault model.
This redefinition simplifies the application of fault tolerance
techniques in grids.

Other authors present fault tolerant mechanism for grid
applications. A mechanism for divide-and-conquer grid ap-
plications is shown in [22]. This work focuses exclusively
on these applications, limiting its scope. Luckow et al. [23]
describe a more generic fault tolerance approach for grid
applications, although their solution is more oriented to
parallel MPI applications, whose behavior in a grid is clearly
limited by large latencies. Our approach provides a higher
level model for providing fault tolerance in these systems.

VI. CONCLUSIONS AND FUTURE WORK

Grid systems are suitable in high demanding scenarios in
which other computing solutions have traditionally failed.
However, one of the weakest aspects of these systems is its
dependability. The system’s complexity, higher probability
of failure and dynamism make it difficult to achieve a
dependable state, considering the following definition of
dependability: “the dependability of a system is the ability
to avoid service failures that are more frequent and more
severe than is acceptable” [24].

Our approach provides fault tolerance based on a global
behavior model of the grid that simplifies the complex vision
of this kind of systems. This new approach makes it easier
to apply suitable management techniques, which improves
largely the system’s dependability. On the one hand, the
finite state machine used by our proposal simplifies the
making decision tasks over the system. On the other hand,
as Section IV shows, the FIRE framework built within our
work enables the proper application of management poli-
cies. Consequently, this improves significantly the system’s
dependability.

As future work, we are planning to validate our proposal
in a real system (insted of a simulated grid). Although the
simulator GridSim models realistic scenarios, it would be

desirable to further validate the properties of our model and
our framework with data from a real scenario.

Furthermore, we plan to extend this scenario to other
management systems, such as the data manager. Thus, we
intend to apply our model in order to enhance the system’s
dependability regarding to data access services.

Finally, if we could predict the future behavior of the
grid, we would be able to make better decisions oriented to
improve not just current but also future conditions. We are
planning to apply time series analysis techniques in order to
predict the system’s future state and this way improve grid
autonomic management and dependability.

REFERENCES

[1] “BOINC, accessed Feb 2010.” [Online]. Available: http:
//boinc.berkeley.edu/

[2] “PlanetLab: An open platform for developing, deploying,
and accessing planetary scale-services, accessed Feb 2010.”
[Online]. Available: http://www.planet-lab.org/

[3] “TeraGrid, accessed Feb 2010.” [Online]. Available: http:
//www.teragrid.org/

[4] I. Foster, “What is the Grid? A Three Point Checklist,”
Grid Today, vol. 1, no. 6, Jul 2002. [Online]. Available:
http://www.gridtoday.com/02/0722/100136.html

[5] “Twenty-One Experts Define Cloud Computing, accessed Feb
2010.” [Online]. Available: http://cloudcomputing.sys-con.
com/node/612375/print

[6] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: an
architecture for a resource management and scheduling
system in a global computational grid,” vol. 1, 2000, pp.
283–289 vol.1. [Online]. Available: http://dx.doi.org/10.1109/
HPC.2000.846563

[7] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and
survey of grid resource management systems for distributed
computing,” Software Practice and Experience, vol. 32, no. 2,
pp. 135–164, 2002.

[8] M. Siddiqui and T. Fahringer, “GridARM: Askalon’s Grid Re-
source Management System,” in Advances in Grid Computing
- EGC 2005 - Revised Selected Papers, ser. Lecture Notes
in Computer Science, vol. 3470. Amsterdam, Netherlands:
Springer Verlag GmbH, ISBN 3-540-26918-5, June 2005, pp.
122–131.

[9] J. Montes, A. Sánchez, J. J. Valdés, M. S. Pérez, and P. Her-
rero, “The grid as a single entity: Towards a behavior model of
the whole grid,” in OTM Conferences (1), ser. Lecture Notes
in Computer Science, R. Meersman and Z. Tari, Eds., vol.
5331. Springer, 2008, pp. 886–897.

[10] ——, “Finding order in chaos: a behavior model of the
whole grid,” Concurrency and Computation: Practice and
Experience, p. In press., 2010.

[11] J. J. Valdés, “Virtual reality representation of information
systems and decision rules,” Lecture Notes in Artificial In-
telligence, vol. 2639, pp. 615–618, 2003.

[12] R. Buyya and M. M. Murshed, “Gridsim: A toolkit for
the modeling and simulation of distributed resource man-
agement and scheduling for grid computing,” CoRR, vol.
cs.DC/0203019, 2002.

[13] “Enabling Grids for E-sciencE (EGEE) project, accessed Feb
2010.” [Online]. Available: http://www.eu-egee.org/

[14] “EGEE - Alice Job Summary, accessed Feb 2010.”
[Online]. Available: http://dashb-alice.cern.ch/dashboard/
request.py/jobsummary

[15] “EGEE - Atlas Dashboard, accessed Feb 2010.” [Online].
Available: http://dashb-atlas-prodsys-test.cern.ch/dashboard/
request.py/summary

[16] “EGEE - Atlas Job Summary, accessed Feb 2010.”
[Online]. Available: http://dashb-atlas-job.cern.ch/dashboard/
request.py/jobsummary

[17] J. J. Dongarra and W. Gentzsch, Eds., Computer benchmarks.
Amsterdam, The Netherlands, The Netherlands: Elsevier Sci-
ence Publishers B. V., 1993.

[18] C. Bratosin, W. M. P. van der Aalst, N. Sidorova, and
N. Trcka, “A reference model for grid architectures and its
analysis,” in OTM Conferences (1), ser. Lecture Notes in
Computer Science, R. Meersman and Z. Tari, Eds., vol. 5331.
Springer, 2008, pp. 898–913.

[19] Z. N. Németh and V. Sunderam, “A formal framework for
defining grid systems,” in CCGRID ’02: Proceedings of the
2nd IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid. Washington, DC, USA: IEEE Computer
Society, 2002, p. 202.

[20] Y. Gurevich, “Evolving Algebras: An Attempt to Discover
Semantics,” in EATCS Bulletin. European Assoc. for Theor.
Computer Science, Feb. 1991, vol. 43, pp. 264–284.

[21] P. Townend and J. Xu, “Fault tolerance within a grid envi-
ronment,” in In Proceedings of the UK e-Science All Hands
Meeting 2003, 2003, pp. 272–275.

[22] G. Wrzesinska, R. V. van Nieuwpoort, J. Maassen, T. Kiel-
mann, and H. E. Bal, “Fault-tolerant scheduling of fine-
grained tasks in grid environments,” International Journal of
High Performance Computing Applications, vol. 20, pp. 103–
114, 2006.

[23] A. Luckow and B. Schnor, “Migol: A fault-tolerant service
framework for mpi applications in the grid,” Future Genera-
tion Comp. Syst., vol. 24, no. 2, pp. 142–152, 2008.

[24] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” Dependable and Secure Computing, IEEE Trans-
actions on, vol. 1, no. 1, pp. 11–33, Jan.-March 2004.

