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Abstract

Service-oriented architectures and microservices define two ways of designing software with the aim of
dividing an application into loosely-coupled services that communicate among each other. This translates
into rapid development, where each service is developed and deployed by small teams, enabling continuous
shipping of new features and fast-evolving applications. However, the underlying complexity of this type
of architecture can hinder observability and maintenance by the user. In particular, identifying the root
cause of an anomaly detected in the application can be a difficult and time-consuming task, considering
the numerous services and connections to be examined. In this work, we present a root cause analysis
framework, based on graph representations of these architectures. The graphs can be used to compare
any anomalous situation that happens in the system with a library of anomalous graphs that serves as a
knowledge base for the user troubleshooting those anomalies. We use the Grid’5000 testbed to deploy three
different architectures and inject a set of anomalies. The results show how our graph-based approach is
19.41% more effective than a machine learning method that does not take into account the relationship
between elements.
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1. Introduction

As many industries increasingly rely on information systems to operate efficiently, software development
and architectures have evolved in different directions. Virtualisation has gained momentum in the last decade
thanks to the ability of cloud providers to offer Infrastructure as a Service (IaaS) to their clients. This enables
customers to use processing power on demand through Virtual Machines (VMs) and it eliminates the burden
of maintaining the infrastructure. It also allows the provider to optimize the utilization of the datacenter
by means of VM migration and consolidation. The next step in virtualization has been containerisation. A
container is an executable unit of packaged software that includes all the dependencies needed. It runs on
the host operating system, sharing the kernel and using its own user space, isolating it from other containers.
This eliminates any boot time overhead in comparison with VM’s, empowering the migration and scaling
advantages of virtualisation. A machine can also host dozens of containers at the same time1 thanks to their
lightweight nature. Finally, from a software development point of view, they eliminate the “it works on my
machine” problem, since the whole running environment is included inside the container.

Industry has acknowledged all the containers benefits [1], specially thanks to the adoption of technolo-
gies like Docker [2], with DevOps [3] and microservice architectures becoming growing trends and common
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practices. The philosophy behind microservices follows the same principles used in service-oriented archi-
tectures [4]. It consists of breaking the system logic into different, small units where each one has a single
task or responsibility. The different units or microservices communicate and cooperate with each other to
provide the system functionality as a whole. Any of the aforementioned units of logic is executed inside a
container. In comparison with a monolithic architecture, it allows the user to scale specific components of
the application by increasing the number of containers responsible for that part. Besides, it also enables
new paradigms like serverless computing, where certain events trigger the allocation of new containers, ab-
stracting the infrastructure needed by the user [5]. Finally, it also facilitates the development process and
software reuse [6].

Coordinating and scaling these containers require an orchestrating unit, specially if we want to deploy
them in a distributed infrastructure with several machines. Tools like Kubernetes2 or DC/OS3 have filled
this gap. These platforms have self-healing features, where unhealthy or faulty containers can be relaunched,
or containers migrated to a different machine in case one of their hosts dies. But establishing the root cause
of these failures can be really complex, specially when we have a network of different services that depend on
each other. The troubleshooting process normally involves a tedious search through logs across the different
containers, trying to find the faulty piece in the chain.

In this paper, we present a graph-based method to perform root cause analysis (RCA) in service-oriented
architectures, such as microservices. We argue that a graph representation of the system is able to capture
important information for RCA, like the topology of the architecture or the different connections, both
logical and physical, between elements in the system. Based on this observation, we build a framework with
two goals: allowing the user to better understand what is the current behaviour of the system (anomalous
situations, metrics, communication between elements, etc...) and matching an anomalous situation in the
system with a previously diagnosed situation. Our contributions are:
• After reviewing the related work (Section 2), we present a graph-based root cause analysis framework

(Section 3) for service-oriented architectures.
• We describe a graph comparison engine (Section 4) that allows us to match an anomalous graph

representation of the system with one that happened previously, in order to establish its root cause.
• By using a set of monitoring tools, we prototype a framework able to build a graph representation of

the architecture state (Section 5).
• We evaluate the RCA pipeline with a series of real experiments in a testbed where we deploy, using

containers, three service-based architectures widely adopted in Industry. We then inject anomalies
into the hosts and containers (Section 6). The results show how our approach is able to capture more
information about the elements that could influence or could be influenced by the anomaly than other
methods that disregard them.

• We wrap up with threats to validity (Section 7) and a discussion about the advantages and limitations
of our root cause analysis method on service-oriented architectures (Section 8).

We finish the paper with a section on future work and open challenges that we have identified during
our research.

2. Related work

There are three important research topics we studied to design our system. First, root cause analysis
and the different approaches to it. We also surveyed graph similarity and matching techniques, which will
be our core techniques for the RCA process. Finally, we reviewed recent work on microservices performance
and their tolerance to failures.

2.1. Root Cause Analysis

There is a large body of work related to Root Cause Analysis (RCA) (see [7, 8] for extensive surveys). All
RCA techniques can be classified according to different characteristics. One relevant classification to frame

2https://kubernetes.io/
3https://dcos.io/
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our technique is on whether the diagnostic model knows the causality structure of the diagnosed system.
They are sometimes referred as model-based approaches [9, 10]. For example, Wolfgan et. al [11] present a
model-based debugging framework that is able to detect programming errors in software by means of the
use of a set of models built through the analysis of source code. Similar techniques are applied by the same
authors in the field of web services [12], which is even more relevant for our work. In contrast to these
approaches, we do not focus on failure only, but also on performance degradation or other type of problems
that might not involve a failed execution.

On the other side of the spectrum, classification-based approaches, e.g., [13, 14] (sometimes called model-
free), typically generate some internal model using Machine Learning (ML) techniques, trading the need of
explicit domain knowledge by having lots of a lighter-weight type of knowledge (i.e., classification labels).

Graphs have been connected to RCA in many ways. Most of the previous attempts are based on the
use of Probabilistic Graphical Models (PGMs) [15] as (causal) models for diagnosis [16, 17] or as underlying
descriptive model of the system to diagnose. This latter view is the approach taken here, as we consider
graphs as entities describing the state of the system in a classification-based approach. To limit the necessity
of labeled data typical from classification-based techniques, a nearest neighbors approach has been taken,
in which domain knowledge is added in the form of weights altering the metric space. Other uses of graphs
in RCA have been rather limited to anomaly detection [18] and building alternative (non-standard PGMs)
graph models [19]. The most relevant and similar work to our approach is the proposal of Liu et al. [20],
in which frequent subgraphs are extracted from graphs representing a flow of function calls inside a piece
of software. The frequent subgraphs can be used to infer the backtrace that was followed before the bug.
However the programmer still has to infer the root cause. Additionally, Dot2Dot [21] is a system that is able
to group anomalous nodes inside a graph and provide an explanation on why they were grouped. Similar
to our approach, they assume that a set of nodes are already labelled as anomalous and then a root cause
needs to be found. However, it only considers the connection between nodes and not their attributes.

2.2. Graph Similarity and Matching

Graph similarity and matching are the core techniques used by our RCA approach to find similar graphs in
our library of anomalous graph patterns. These two fields have been widely studied in the pattern recognition
field through the years. Both disciplines intersect in the sense that the optimal matching between the nodes
of two graphs is used to calculate similarity. In our case, we focus on the inexact graph matching problem
with multi-attributed graphs. This section is not meant to be an exhaustive study of the state of the art,
since this is a very broad field, but rather a general overview of the different methods available to compare
two graphs.

The matching problem has been addressed in different ways, as shown in an extensive survey on the
topic by P.Foggia et al. [22]. Some techniques are based on a tree search, like Hidovic et al. [23], whose
computation time can be improved through heuristics [24]. Another approach is to consider the problem as
a continuous optimization instead of a discrete one, using one of the many available optimization algorithms
to find the matching [25]. Additionally, spectral methods are based on the idea that the eigenvalues of a
matrix are the same, irrespective of the order of rows and columns. Therefore, the matrix representation
of the two graphs can be used to compare the eigenvalues and establish a similarity [26]. There are also
methods for large graph matching [27], but we focus more on smaller graphs since the comparison will be
made with smaller anomalous subgraphs, extracted from the general and larger system graph.

Finally, some approaches are not strictly graph matching techniques, but provide ways of measuring how
close two graphs are in a vector space. The first one is graph embeddings, which map either the nodes of a
graph or the graph itself onto points in a vector space [28, 29]. The second one is graph kernels, which is
a function that maps two graphs into a real number. This technique is used in Kashima et al. [30], where
sequences of random walks on the graphs are used to compute the kernel function.

2.3. Microservices

Microservices are catching the attention of both researchers and Industry and are being used extensively
in cloud infrastructures [3]. They also have synergies with new types of distributed infrastructures, such as
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edge computing and internet of things [31]. Additionally, they have opened new lines of business for cloud
providers, such as serverless computing [32].

Ensuring the performance and resilience of microservices has been addressed in recent work. Dullman et
al. [33] study the effects related to the high dynamicity of microservice architectures where containers are
added or removed regularly. These same authors propose a framework to define topologies for microservices,
deploying them and benchmarking their performance and resilience through problem injection [34]. This
setup can be monitored afterwards in order to extract insights of the operation of the system. Following
the same line of work, Gremlin [35] presents a framework for testing the resilience of microservices, allowing
the user to design test scenarios that are translated into anomalies injected in the network. François et al.
[36] model an Internet of Things infrastructure as a graph representation and focus on detecting anomalies
that happen in the intercommunication between services. However, all of these solutions deal more with the
anomaly detection and resilience testing part of microservices than with RCA.

Some other research efforts are the work of Mayer et. al. Namely, a dashboard showing information
about running microservice architectures [37] and a model that can be used to choose the right microservice
monitoring tool depending on different criteria such as requirements, stakeholders needs or performance [38].
Although monitoring is an important part of our approach, we focus more on giving an explanation of an
anomaly extracted from the monitored information.

More related to RCA, we find Sieve [39], which provides a platform that gathers metrics from the elements
of the microservice, filters them and finds dependencies between components in the system. They use RCA
as one case-study to show the benefits of Sieve, using an Openstack deployment as a scenario and two known
bugs of it as the anomaly. In comparison, we do not perform any filtering and use all the available metrics
to build a topology of the microservices communication.

As companies are adopting microservices, some industrial tools have been designed to ensure the per-
formance and resilience of these architectures. Netflix uses the Simian Army, [40] a set of processes that
inject failures in the microservice architecture to validate its resilience. In any case, this is more a tool to
ensure resilience than a RCA approach. Some industrial tools such as Instana4 or Dynatrace5 have recently
included AI powered root cause analysis. However, the details on how they work are not given and the user
cannot provide feedback as with our weights system.

3. Graph based RCA

To motivate why graphs are a good fit to represent microservices and service-oriented architectures, we
use a common web serving scenario. In this architecture, we have a number of clients that perform HTTP
requests to a load balancer, such as HAproxy6, which redirects these requests to a set of stateless web servers,
for example WordPress7. The web servers also store any state information on a backend database such as
a traditional MySQL8 server. Each of these elements is a container running on a machine of the cluster.
Every container or host has its own metrics and communicates with other containers or hosts in the system.
For example, the load balancer will communicate with all the web server instances in the architecture,
but there will be no interaction between the web servers. Graphs allow us to formalize the logical and
physical connections between the different elements of the system through edges. In addition, all of the
metrics information can be included as attributes on the nodes, as seen in Figure 1. These attributes can
be numerical values such as metrics, categories such as a label specifying if the node represents a container
or a physical machine or even ontological classes that could help to model the domain, like knowing that
WordPress and HAProxy are both frontends. Some other attributes, like vectors or information from logs,
can be easily added in order to improve the system.

4https://www.instana.com
5https://www.dynatrace.com
6http://www.haproxy.org/
7https://wordpress.com/
8https://www.mysql.com/
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Figure 1: Simplified example of a multi-attributed graph model for an example architecture. An anomaly is generated in the
HA Proxy instance due to the unbalanced number of requests that the WordPress instances are receiving

Figure 2: Architecture of the proposed system

It seems logical, and experience tell us so [35], that any anomaly or drop in performance can have a
cascading effect. In the case of the load balancer, it might propagate to the webservers as they will see
less incoming requests than usual. Similarly, in a container environment, any anomaly in the functioning of
the host might be propagated to the containers it hosts. The graph representation allows to identify this
propagation effect, since we are able to determine which nodes or elements are connected to an anomalous
one.

Based on this graph representation, which we will call system graph from now on, we propose a RCA
system that is able to match an anomalous region in the system, represented as a subgraph, with a similar
anomalous graph from the past that has already been troubleshooted by an expert. There are several pieces
involved in this process represented as a general architecture in Figure 2. In the following subsections we will
describe the architecture in more detail. Note that this approach can be applied to other systems, such as
local processes that are not containerised. However, and as previously mentioned, the approach excels with
microservice and service-oriented architectures, since the different parts of an application are decomposed
into units that interact between each other.

3.1. The system graph module

The responsibility of this module is to embed into a graph representation all the collected metrics,
network activity, logs and anomalies generated in the system for a given time window (e.g. 15 secs). We can
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Figure 3: An example of a taxonomy explaining a hierarchy of concepts. When comparing graphs, the taxonomy will allow
us to reason those concepts situated close to each other in the tree, concluding that they are more similar. For example a DB
master is very similar to a load balancer, since they both are coordinators that distribute some load to their slaves.

think about this graph as a snapshot of the current state of the architecture. The size of the window can be
adjusted by the user based on criteria such as the architecture change rate or the monitoring frequency of the
agents. There is a trade-off between a large or a too narrow time window. Larger time windows will result
in some anomalies not being detected, due to the coarse-grained information of the metrics. Too narrow
ones will result in noisy information and a lot of overhead when collecting metrics, logs and anomalies.

The process involved in the graph creation for our particular system graph will be further explained in
Section 5. Here, we provide a general overview of the graph elements, which can be applied to any other
context besides containers.

Nodes: Nodes represent either containers, hosts or any other element outside the cluster that interacts
with our system e.g. an external client accessing a frontend. Nodes may have multiple attributes of different
types. We explain the different types further in this section.

Edges: Edges represent any network communication between elements in the system, such as TCP
connections or HTTP requests. They also represent a logical connection, such as the relation between a
container and the machine hosting it. Same as with nodes, edges may have multiple attributes of different
types.

Attributes: Attributes are used to capture the information collected from metrics, logs and anomalies.
We provide a list of the types considered in our framework:
• Numerical: Here we include metrics that can take any value over a discrete or continuous range.

One obvious example will be the cpu usage of a container, but it can also be found in the edges. For
instance, the number of bytes sent from one container to another.

• Categorical: They take values that are names or labels. One example would be the Docker image
for a particular container (e.g. Haproxy v1.8, WordPress v4.9, etc...)

• Ontological: This attribute type corresponds to an ontology class and it is used by the system to
represent a hierarchy of concepts. A simple example of an ontology in the form of a taxonomy is
depicted in Figure 3. These kinds of attributes are useful to generalise problems that are semantically
the same but involve different elements. For example in the loadbalancer scenario, it would have
been equivalent to have Nginx instances instead of WordPress instances, since they are both Frontend
Servers.

Anomaly level: This can be considered as a special type of attribute, indicating that a given node or
edge is experiencing an anomaly. As we will see later, any anomaly detection mechanism can be used to
identify problems and tag the relevant elements of the graph. It will be used afterwards by the anomalous
region extractor to build an anomalous subgraph out of the system graph.

3.2. The anomalous region module

The output graph of the previously described system graph module will be analyzed by the anomalous
region module to extract the different anomalous elements of the graph. The anomalous region module
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Figure 4: An example function that can be used for the anomalous region extractor. The anomalous node with the cross shape
generates an anomalous region including neighbours that are located at 1 or 2 hops from anomalous nodes, representing a
cascading effect where the performance of one element depends on the others

consists of two submodules: (i) an anomalous detection system that is able to detect and tag anomalous
nodes inside the system graph and (ii) an anomalous region extractor. For the former, any of the state-of-the-
art techniques for anomaly detection can be used [41]. Note that we assume the existence of this submodule,
as we focus on the problem of finding a root cause for the detected anomaly and not the detection of the
anomaly per se.

The anomalous regions extractor is a function that generates an anomalous subgraph for each of the
nodes that have been tagged as anomalous. We assume that an anomaly is normally caused by an element
that is somehow related or connected with the aforementioned anomaly. This is based on the intuition that
a malfunctioning service in the chain of interactions will affect the services depending on it. The objective
of the function is to limit the number of nodes and edges that are going to be included in the similarity
calculation for scalability purposes. If the system has few computational resources, we can use a function
such as the one depicted in Figure 4, where a function creates an anomalous region by taking the neighbours
up to a distance of 2-hops for each anomalous node. One obvious drawback of this approach is that the
root cause could be left out of the scope of this subgraph. However, if the whole architecture wants to be
considered and we have the computational resources, we can use a function that takes all the neighbours
without any distance limit. Again, this is customisable since we can insert here any kind of function that is
able to extract anomalous subgraphs from nodes or edges that have an anomaly level other than zero.

As this function extracts a subgraph from the general system graph, it will also keep its nodes, edges
and attributes.

Nodes, edges and attributes in the anomalous region can additionally have weights assigned, representing
the importance of a given element in that anomalous region. For instance, an anomaly involving a malicious
process consuming a lot of cpu in one machine, could have its cpu usage attribute weight increased for that
node with respect to other attributes of the graph. These weights will be taken into account by the graph
similarity module, as we will see in later sections.

The extracted anomalous regions are sent to the similarity module, in order to match them with already
troubleshooted anomalies stored in the library.

3.3. The pattern library module

A pattern is an anomalous region that has already been revised and labeled by an expert. These patterns
will act as reference templates with which anomalous situations currently happening in the system can be
matched. As we will see later in Section 3.4, patterns are added to the library if a new anomalous region
is not similar enough (up to a given threshold) to any of the graphs currently present in the library. In
addition to this, it can initially be filled manually or as a result of importing the pattern library from a
different deployment. The objective is to have an initial set of the most common errors that can affect the
system, in order to avoid the cold-start issue. The more patterns, the more complete this library will be,
although it will also increase the search time. The user can access the library and visualize the different
anomalous graph patterns, browsing their metrics, logs and connections. This visualisation will help the
user to enrich the existing patterns by adding metadata through the following actions:

Changing weights: Same as with the anomalous regions, the user can change the aforementioned
weights and give more importance to certain nodes, edges or attributes. This will help in the RCA process
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Figure 5: A representation of the mapping between nodes and the similarity score given by the graph similarity function

since the important elements are pinpointed. Consequently, matching the pattern with any new incoming
anomaly of the same type will be easier.

Cause label: It is a label that represents the main reason or root cause for the anomalous pattern.
Same as with weights, it is normally assigned by an expert in the domain that analyses the graph structure
and establishes a root cause. It can also come with a series of steps needed to fix the anomalous situation by
the system administrator or with automatic prescriptive actions that can be triggered if the pattern occurs.

Note that we have not implemented this visualisation and interaction with the user part as we wanted
to focus more on the effectiveness of the RCA graph comparison method.

3.4. The similarity module

The similarity module relies on an inexact matching function that considers the similarity distance
between two multi-attributed weighted graphs. The module receives two inputs: an anomalous region
generated by the anomalous region module and a potentially tagged pattern from the pattern library module.
The output consists of two elements: a similarity score and a mapping of nodes from graph A to graph B.
The former goes from 0 to 1, with a score of 1 meaning that the two graphs are identical and 0 that they
are completely different. The latter describes which graph elements from the first graph are matched with
the elements from the second graph to achieve this similarity score. A visual example of this function is
depicted in Figure 5. Note that the details of the function can be implemented in different ways, applying
any state-of-the-art graph matching techniques. We give the details of our function in Section 4.

Every time a new anomalous region arrives, the module tries to match it with one or more graph patterns
of the library. We consider that there is a match between two graphs, when the similarity value between
them is above a user-specified threshold. If there is no match, the anomalous region is added as a pattern,
waiting for an expert to troubleshoot and tag it. If there is one or more, the list of matched patterns can
be handled in different ways. We can show it to the user as a ranked list with their root causes (labels).
Then the user can validate or reject the different matchings. While the validation means that the matching
is aligned with the ground truth, rejection indicates that the comparison did not capture the underlying
information in the graphs. Another option is ordering the list by similarity and applying an automatic
healing procedure based on the top-similar root cause. We leave this criteria open as it depends on the
domain and the criticality of the situation.

The threshold element creates a trade-off between correctly classified anomalies and search time inside
the library. Decreasing the threshold will result in having several pattern to explain the same root cause,
more options to compare with and higher accuracy in the classification, as we will see later in the evaluation
section. However, more patterns will obviously mean longer search times. Some heuristics that can be used
are setting a relatively high threshold and verifying if the classification error is acceptable or the threshold
should be decreased. We empirically found that a threshold between 0.80 and 0.90 is able to define well
the difference between two different anomalous situations. Finally, we would like to point out that correctly
tuning the weights will allow the user to set higher thresholds, since the similarity scores will be higher
between having their most important elements pinpointed.
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4. Graph similarity engine

One of the central pieces of the framework described in the previous section is a function able to find
a similarity score between two graphs. In this section, we give the details of our graph similarity function
implementation and the particularities that allow introducing expert knowledge from system administrators.

4.1. Problem definition

Definition 1. A graph G is represented by a 5-tuple:

G = (V,E, att, C,w) (1)

V is a set of vertices. E ⊆ V ×V is a set of edges. att is a function such that att(V ∨E) = A, where A is
a list of attributes a represented by tuples a = {val, weight, c ⊂ C}, with val being its value, weight being
the weight or importance of the attribute inside that vertex or edge and c being the context of the attribute.
C represents the graph context and is used to explain the attributes that are included in the graph and to
give a context in which to compare its values, as we will see later on the section. w will be a function such
that w(x) returns either the weight of an edge or node within its graph, or the weight of an attribute within
its node or edge.

Definition 2. Given two graphs:

G1 = (V1, E1, att, C,w), G2 = (V2, E2, att, C,w)

And two injective functions mn : V1 → V2 and me : E1 → E2, the former returning the matched node of
G1 into G2 and the latter returning the same for edges, we have an optimisation problem where we want to
find the mapping that maximises the similarity between the two graphs, given by the formula:

∑
v∈V1

(w(v)+w(mn(v)))·sim(v,mn(v))+
∑

e∈E1
(w(e)+w(me(e)))·sim(e,me(e))∑

v∈V1
w(v)+

∑
v∈V2

w(v)+
∑

e∈E1
w(e)+

∑
e∈E2

w(e)

arg max
mn,me

(2)

where sim(x1, x2) is a function that represents with a score from 0 to 1 the similarity between two nodes
or two edges.

The above formula formalizes that the similarity score is the weighted average of the similarities between
the optimally mapped elements of the graph through the functions mn and me. We also have to emphasize
the importance of the weights of the nodes (w(v)+w(mn(v))) and edges (w(e)+w(me(e))) in the calculation.
Elements that have a larger weight or importance in the graph will contribute more to the global similarity
score. This can be used to pinpoint the nodes that are more important within the context of the problem.

The minimization problem can be solved with any of the state-of-the-art techniques available like A*
[42]. In our case we use hill climbing [43], which in comparison to A*, is a continuous optimization problem,
reducing execution time at the expense of finding a local maximum instead of a global one.

At this point, we have to explain two elements present in the Equation 2: sim(v,mn(v)) and sim(e,me(e)).
In other words, the similarity between one node and its mapped node, and the similarity between one edge
and its mapped edge. We detail the implementation of these comparisons in the following subsection. For
quick reference, we also include the notation used in Table 1.

4.2. Similarity between nodes and edges

The solution for the optimal mapping found in Equation 2 depends on the similarity between nodes and
edges. The similarity between two graph elements (edges or nodes) x1 and x2 is given by the following
equation:
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Table 1: Notation table

Notation Description
G a graph represented by a tuple

{V,E, att, C,w}
V the vertex of a graph
E the edges of a graph
att A function that returns a list of

attributes a for a given v ∈ V or
e ∈E

a an attribute of a given v
or e, represented by a tuple
{val, weight, c ∈ C}

val The value of an attribute
weight The weight of an attribute inside

the vertex or edge it belongs to
c The context of an attribute. It

is used to calculate the similarity
between two attributes provided
they have the same context

C The context of the graph. It
is used to explain the attributes
that can be found in the graph
and their different contexts c

w A function that returns the
weight of any given v or e within
its graph, or the weight of an at-
tribute inside its v or e

mn An injective function that
matches the vertex of a graph
G1 to a vertex of a graph G2

me An injective function that
matches the edge of a graph G1

to an edge of a graph G2

sim(x1, x2) Function that calculates the sim-
ilarity score between two vertex,
edges or attributes

∑
a∈att(v)∪att(u)(w(a1) + w(a2)) · sim(a1, a2)∑

a∈att(v)∪att(u)(w(a1) + w(a2))
(3)

Where sim(a1, a2) is the similarity between the attributes of the elements, which we will explain in the
next Subsection 4.3. Similarly to Equation 2, this formula expresses the idea that the similarity between
two elements is a weighted average between all of their shared attributes.

Analogously to Equation 2, the importance of the weights w(a1) + w(a2) given to each attribute is used
to modify the comparison calculation. Increasing the weight of an attribute means that the similarity of
two nodes or two edges will increase even more if they have similar values for that attribute. An example of
this effect can be seen in Figure 6, where giving a larger weight to an attribute, like the shape of the nodes,
prioritizes shape similarity over structure similarity, since the matching node on the right neither has two
edges nor is connected to a circle. This is an useful feature that enables including domain knowledge into
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Figure 6: Effect of weights in the matching algorithm. Giving a bigger weight to the shape attribute of the nodes changes the
matching in comparison to Figure 5. In this case the structure of the graph is not as important as matching nodes with the
same shape.

the graph. An anomalous region where it is clear that the problem is the disk, may have the weights of
all the disk-related attributes increased. When searching for patterns in the library, similar values for this
metric will be prioritized.

4.3. Similarity between attributes

In this subsection, we explain in detail how we calculate sim(a1, a2), in other words, how we compare
the multi-type attributes of the elements in the graph. Here, the contexts that we defined in the graph
structure (Equation 1) come into play.

When comparing elements, the context helps us to measure the similarity between their different at-
tributes, like ontological concepts (e.g. comparing a backend to a frontend) or metrics that are bounded
(e.g. cpu usage going from 0 to 100). The contexts are assigned by the user for each of the metrics or
attributes that are used to build the graphs depending on their nature. The representation of this context
C will be used in the different similarity calculations. If an attribute does not have a valid context, it will
be ignored in the similarity calculation. In this paper, we consider three different types of contexts in our
graphs:

Categorical Context: An attribute a1 with a categorical context will have a label as its value (e.g.
kafka representing the Docker image used by that container). When comparing two attributes with a
categorical context, and since they normally represent labels or names, we use an exact equality function.

sim(a1, a2) =

{
1 if a1 = a2

0 otherwise

Numerical Context: A numerical context is represented as a tuple cnumerical = {min,max} where
min and max represent the minimum and maximum value that an attribute with that context can take (e.g.
% of cpu usage, which can range from 0 to 100). When comparing two attributes with a numerical context
we use the function:

sim(a1, a2) = 1− |a1 − a2|
max−min

(4)

Ontological Context: An ontological context is represented as a tree data structure, where each node
represents a concept in the architecture. The goal of this type of context is to enable the comparison
between two elements that are similar in nature (e.g. a loadbalancer and a distributed database master
perform similar tasks: redirecting requests to a pool of backends) When comparing two attributes with an
ontological context, we use a variation of the Wu and Palmer similarity metric [44]: let c1 and c2 be two

concepts in the ontology, and C be its closest common ancestor, then sim(C1, C2) = 2·d(C)
d(C1)+d(C2) , where

d(x) is the number of nodes to traverse from the root of the taxonomy to concept x (we include always x in
that number, thus d(x) ≥ 1).
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The advantage of this approach is that we can design new contexts for our attributes. This is also where
the usefulness of contexts in the graph comparison engine resides. So far we included these three ones, but
we could also create a new context for metrics with different comparison criteria. This is specially useful in
the root cause analysis domain. For instance, a stressed system with a value of cpu of 100% compared to
a value of 80%, can mean a lot more than just a 20% difference. We can also develop distribution-aware
contexts, where attributes with values that fall outside a given distribution (e.g. outliers) will have more
weight in the comparison result.

5. Monitoring and building the graphs

In Section 3, we described the architecture of the RCA framework and its different parts. So far, we
have explained our own implementation of the anomalous region module in Section 3.2, the design of the
pattern library module in Section 3.3 and the graph similarity function in Section 4. In this section, we
explain the implementation details to build the system graph representation of the architecture through the
system graph module. Our objective is to illustrate the extraction of the different attributes of the nodes
and edges and how we define the connections between the different elements of the graph. For this task, we
have used Sysdig9 and Prometheus10, but other monitoring tools can be used, as long as there is a plugin
that transforms the input of metrics into a graph. In the following subsections we explain the technical
details on how we build these graphs. Note that the whole pipeline of building the graphs and comparing
them with the library of patterns can be used either in a batch fashion, using historical metrics of a system,
or in a real-time fashion, ingesting incoming metrics from a continuous stream. As we will see later, we use
the batch approach in our evaluation.

5.1. Adding the nodes

We start off by adding the nodes that will form part of the graph, i.e the elements that are alive in
the system (containers and hosts). The size of the graphs depends mainly on the number of components
involved in the architecture, as we will see later in the evaluation section.

We need to extract metrics at two different levels here: container level and host level. To extract these
metrics, we run two containers in each machine: node exporter11 and cadvisor12. The former will take care
of monitoring the host and the latter the containers running on the different hosts.

As a back-end for the metrics collected we choose Prometheus. Prometheus is a monitoring and alerting
system where metrics are pulled through HTTP from the monitoring agents, cadvisor and node exporter in
our case. The metrics are stored following a multi-dimensional time series data model. This means that
for each metric we will have a series of tuples like (ts, id, value, labels), where ts is a millisecond-precision
timestamp, id represents which container or host the metric belongs to, value is the metric value (e.g. 100%
for cpu usage) and labels are a set of optional key-value pairs representing particular dimensions for that
metric.

As an illustration, for the node cpu metric we could have a data point like (ts = 1518537794351, id =
10.136.1.9, value = 98.1, cpu = cpu3,mode = user), representing that the metric node cpu at timestamp
1518537794351, for the node 10.136.1.9 had a value of 98.1 in the core cpu3 in user mode. This allows
us to slice the data by different dimensions. Since our goal is to build a snapshot of the system for a given
time window, we just have to use the time dimension ts to extract the metrics over one period. In our case,
we want to extract all the available metrics for the container and hosts alive at every second. We chose this
time window since the monitor agents that we use publish their metrics every second and it also gives us
enough granularity to classify the different anomalies. Each distinct id is going to be added as a node in
the graph and its information contained in the pairs of (value, labels) inserted as attributes for that id.

9https://www.sysdig.org/
10https://prometheus.io/
11https://github.com/prometheus/node exporter
12https://github.com/google/cadvisor
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Figure 7: An example on how we group the different TCP requests traced by sysdig. Each group is going to have four entries
for each client ip → server ip TCP pipe that will be added as attributes of the edges

5.2. Adding the edges

Once we have the nodes, we can start connecting them through their edges. To achieve that, we need to
monitor the network communication inside the architecture. This is specially challenging since containers,
unless told otherwise, use the IP of the host and its TCP port space, hindering the process of capturing traffic
per container. Luckily, container orchestration tools facilitate the creation of overlay networks [45]. These
networks create a separate network namespace, where each container will have its own IP and hostname.
We use this feature together with Sysdig in each machine to capture any TCP communication between
elements. Sysdig is an open source tool that instruments the Linux kernel and captures every system call
and OS event. This trace of events can also be dumped into trace files in a very similar way to tools like
tcpdump13. Sysdig is also able to differentiate these events per container out-of-the-box.

Ultimately, we will obtain some of the same dimensions from sysdig as those used to slice the Prometheus
data in the previous subsection. In fact, and summarizing, for each TCP request we will have a tuple
(ts, id, cip, sip, io dir, bytes), where ts is the timestamp for that request, id is the container or host in which
that communication happened, cip is the client IP, sip is the server IP, io dir is whether it is reading or
writing into the TCP socket and bytes is the amount of information sent or read in bytes. Remember that
sip and cip are unique among containers, thanks to the overlay network. Analogously to the Prometheus
data processing, we use the ts value to extract all the TCP communications between containers for a given
time window. Then we group all of the entries within that window by (cip, sip) and count the number of
entries in each group and the sum of its bytes, representing the number of TCPrequests and the size of
the information sent respectively. As a result, each group is going to have the information sent through the
TCP pipe cip → sip in the direction io dir for two different id1 and id2 elements involved in that pipe.
Remember that the ids for the elements were added as nodes in the previous step. Therefore, we just need
to add an attributed edge from id1 to id2 and vice versa, where the attributes are going to be the previously
mentioned count of TCPrequests and the sum of bytes in each io dir. We depict an example of this process
in Figure 7.

6. Evaluation

In this section, we evaluate the accuracy of the RCA framework and the effect of its different features,
like its weights and thresholds. To do that, we create an experimental environment where we introduce
anomalies in three different service-oriented scenarios common in industrial environments. We first explain
the scenarios (Section 6.1), followed by the anomalies triggered in them (Section 6.2). Afterwards, we
describe the set-up used to run these architectures in a real environment such as the Grid’5000 testbed [46]
(Section 6.3). We conclude with an evaluation of the different features of the RCA method.

6.1. Service-oriented scenarios used

To test our RCA graph approach, we have chosen a set of architectures with several connected services.
We chose to implement all these service-oriented architectures as Marathon application groups14. Marathon

13https://www.tcpdump.org/tcpdump man.html
14https://mesosphere.github.io/marathon/docs/application-groups.html
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Figure 8: A simple representation of the loadbalancer scenario

Figure 9: A simple representation of the Kafka scenario

is one of the central pieces of DC/OS15, a container orchestration tool responsible for starting the containers
in the different machines of our distributed infrastructure. Although they do not meet all the requirements of
a microservice architecture, like fine grained responsibilities for each service or the large number of containers,
the approach could be easily applied on them, as they also form a graph of connected components. We list
here the different architectures designed:

Loadbalancer scenario: This is a common scenario used in production where a system receives a high
number of HTTP requests that need to be balanced [47]. A loadbalancer (HAProxy) acts as a frontend, re-
ceiving HTTP requests from a series of clients represented as Apache Benchmark Docker images16. HAProxy
balances these requests to a set of 16 WordPress instances that will return a simple blog website. WordPress
needs a MySQL database, which is also going to sit behind the loadbalancer. A graphical representation of
this setup is shown in Figure 8.

Kafka cluster scenario: Kafka is a distributed messaging system used to collect or send high amounts
of data. It is commonly used in many Big Data stacks [48] and its architecture consists of a set of brokers that
store the messages, producers sending those messages and consumers that pull the data from the brokers.
There are no master nodes as the brokers are coordinated by means of a Zookeeper instance. We implement
this architecture with 1 Zookeper instance, 4 Kafka broker containers, 12 producers, which are monitoring
agents sending to the brokers system metrics of the host they are running in, and 12 consumers pulling those
metrics from the Kafka brokers. A simplified depiction of these architecture is shown in Figure 9.

15https://dcos.io/
16https://httpd.apache.org/docs/2.4/programs/ab.html
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Figure 10: A simple representation of the HDFS + Spark scenario

Spark and HDFS scenario: Same as with Kafka, the combination of Spark and HDFS is a widely
deployed architecture in Big Data infrastructures. Apache Spark [49] is an open-source engine for Big Data
analytics, widely used in the community. HDFS [50] stands for Hadoop Distributed File System and is used
to store large amounts of data using commodity hardware. Both of them have a master-slave architecture,
with the master coordinating a series of worker nodes to process and storage data in parallel. In this case,
we will have a highly interconnected graph structure with the Spark workers writing/reading data from the
different HDFS datanodes and reading metadata from the namenode. Figure 10 represents this mesh of
communicating containers. In our case, we will have 4 datanodes, 1 namenode, 4 Spark slaves and 1 Spark
master. Additionally, we will use a container that has the SparkBench [51] benchmark, as a means to send
data analytics jobs to the Spark master. In the experiments, we use a workload inside this benchmark that
generates a dataset in a comma-separated format, writes it to disk and then reads it again to transform it
to the Apache Parquet data format17.

6.2. Anomalies triggered in the scenarios

In order to test the RCA technique, we need to generate different anomalies and evaluate if our system
is able to distinguish their root causes. To accomplish this, we use several tools that allow us to stress and
change the normal behaviour of the system:

Stressing hosts: stress-ng 18 is a tool that can stress several aspects and resources of a machine. Even
if this anomaly is only applied directly in the hosts, containers running on those hosts will be affected if
they use the same stressed resources. In this case, we will use four different types of stress tests:
• cpu: starts 6 workers that are going to exercise the cpu
• disk: starts 6 workers that will constantly write, read and remove temporary files
• network: starts 6 workers that are going to perform several connects, sends and receives on the

localhost, simulating a socket stress
• bigheap: starts 1 worker that is going to grow its heap by constantly reallocating memory.
Connection problems: A drop in the bandwidth available for the machines or delays in communications

are two possible problems in a distributed infrastructure [52]. This has a clear impact on performance,
specially in data intensive applications, where there is a large amount of data exchanged. We also emulate
this kind of conditions through the traffic control utility 19 (tc), a linux tool that allows manipulating the
behaviour of the kernel when sending data through the network. Same as with stress-ng, this anomaly is
only induced in the host, affecting the containers running on top. In our case, outgoing bandwidth is reduced
to 75kbps and a delay of 100ms is introduced to all packets leaving that node.

17https://parquet.apache.org/
18http://kernel.ubuntu.com/ cking/stress-ng/
19https://linux.die.net/man/8/tc
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Wrong loadbalancing: There are several causes that can force a loadbalancer to unevenly spread the
workload [53]. We emulate this condition in the loadbalancer scenario, by login into the container and
altering its HAProxy configuration files. By doing so, we overload all of the WordPress instances running
on a given host, by redirecting 10 times more requests than the others.

Stressing endpoint: Endpoints can be flooded with requests, overloading the system and affecting the
user experience. This can happen because of malicious attacks or just by peak demands [54]. We stress the
endpoint of our loadbalancer scenario, by running a set of Apache Benchmark Docker20 images with several
client threads that perform a large number of HTTP requests.

6.3. Experiments set-up

As previously explained, we implemented our architectures in DC/OS. In order to deploy them, we
configure a cluster in the Grid’5000 testbed. Grid’5000 provides access to a large amount of computing
resources. It is highly customizable and offers a wide range of tools for reproducible experiments. We
provision 8 VM’s in the Rennes site with 16GB of RAM and 4 vcores. These machines will form a DC/OS
cluster with 1 bootstrap node, 1 master node, 1 public node and 5 private nodes. Further information about
DC/OS architecture can be found in their website21.

To build a sequence of system graphs, representing the evolution of the cluster during our experiments,
we do as follows:

1. We monitor six executions for each of the explained scenarios. During those executions, we inject the
following anomalies:
• The stressing hosts and connection problems anomalies for 8 seconds in two random machines of

the cluster.
• The wrong load balancing and stressing endpoint anomalies for 8 seconds in the HAProxy con-

tainer for the loadbalancer scenario. For the former, we increase the load for all the WordPress
instances that are running on a randomly selected host.

2. With the monitored metrics we build a set of system graphs for each second.
3. We tag the anomalous nodes corresponding to the anomalies we injected. This gives us a set of system

graphs with their anomalous nodes.
This process corresponds to the system graph module explained in Figure 2, in which all the metrics and

anomalies are gathered from the system in order to build graphs. The maximum size of the graphs built
for these architectures are 45 nodes for the Spark scenario, 63 for Kafka and 59 for the loadbalancer. We
need to take into account, that the anomaly extractor region’s module will limit the anomalous region from
all these nodes and edges to a smaller graph. This region will be the graph that will be compared with the
ones in the library.

Remember that we assume the existence of an alerting system that is able to raise an anomaly based on
the metrics gathered. This could be easily achieved with any anomaly detection technique since stress-ng
and tc have a significant impact on the metrics at system level. In the wrong loadbalancing and stressing
endpoint cases, the metrics can be extracted via the Unix socket of HAProxy which includes the number of
requests balanced to each backend22. We monitor six different executions to have six folds of data and use
four of them as a training set and the remaining two as an evaluation set. This setup is further explained
in the next subsection. The anomalies are injected into two random nodes to create some variability in the
anomalous graphs generated, since each machine is going to host different containers.

6.4. Precision of the system

The objective of this experiment is to evaluate the accuracy of our system when matching the different
anomalous regions of the evaluation set into the patterns found in the training set. Remember that we
have six folds of data corresponding to six executions in our experimental environment. We perform the
evaluation as follows:

20https://httpd.apache.org/docs/2.4/programs/ab.html (Last accessed Dec 2018)
21https://docs.mesosphere.com/1.10/overview/concepts/ (last accessed Dec 2018)
22https://www.datadoghq.com/blog/how-to-collect-haproxy-metrics/
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Figure 11: Design of the experiments to evaluate the RCA framework precision. There are two main steps. First, we process
the first and second execution of each scenario to build its system graphs, generate its anomalous region and then, for each
anomaly, generate a representative library of patterns for that problem. All of these representative libraries will be combined
into one that will be used to establish the RCA of the anomalies induced in the third execution, based on the previously
generated patterns.

1. For the first four executions, we take their system graphs, and group them by scenario and type of
anomaly (e.g. spark cpu stress, kafka disk stress, load balancer stressing endpoint, etc...).

2. We process each of these groups with the RCA framework. In the process, the anomalous regions will
be extracted. Remember that the anomalies are induced for 8 seconds in two random nodes for each
scenario. That means 16 anomalous regions for each scenario/anomaly group, except for the wrong
load balancing and stressing endpoint anomalies, with 8 anomalous regions, as they are induced in the
single HAProxy container. We start with an empty library. The matching threshold is set to 0.9. This
means that any anomalous region that is not similar up to 90% with a pattern, will be added to the
library as a new pattern. This will generate a set of patterns for that scenario/anomaly group. Once
the whole group is processed, we save the library, empty it and process the next group. The idea is
to merge afterwards all of these saved libraries into a big library of patterns that will represent the
training set, where each pattern is going to use the scenario/anomaly from where it originated as the
classification label.

3. The graphs of the remaining two executions will constitute the evaluation set and are processed with
the library populated during training. The threshold is lowered to 0 in order to avoid the addition
of new patterns and forcing the system to always choose from the ones in the library. The RCA
framework will match the different anomalous regions of these two executions with the patterns that
were generated through points 1 and 2. From all the possible matched patterns we take the one with
the highest similarity and assume the same root cause for the new situation.

We depict the whole process in Figure 11. Since we also want to test the previously explained weight
system, we will run this experiment twice. In the first run, we do not tune the weights, while in the second
run we tune the weights of certain attributes as an expert system admin would do.

Results are shown in Table 2 in a similar way to a normalised confusion matrix, where each anomalous
region is classified with its corresponding scenario/anomaly label (the root cause). For the sake of space, we
just use the first letter of the anomaly on the left column. In each cell there are two values, which represent
the percentage of correctly classified anomalous regions: the one on the left is the result without tuning
weights and the one on the right by tuning them. The sum of the values in each column for both the weights
and no weights cells will be 100%. We consider that the distinction between the different scenarios (Kafka,
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KAFKA SPARK LB
CPU DISK BAND HEAP CPU DISK BAND HEAP CPU DISK BAND HEAP CONF STRESS

C 0.43/0.87 0.12/- 0.03/- 0.18/- -/0.125 - - - - - - - - -
D 0.18/- 0.71/0.81 - 0.15/- - -/0.03 - - - - - - - -
B 0.03/- - 0.90/1 0.15/0.06 - - - - - - - - - -

K
A

F
K

A

H 0.34/- 0.12/- 0.06/- 0.5/0.71 - - - -/0.06 - - - - - -
C -/0.12 - - - 0.59/0.84 - 0.21/- 0.15/- - - - - - -
D - -/0.09 - - 0.12/- 0.25/0.87 - 0.18/- - - - - - -
B - - - - - 0.18/- 0.34/0.78 0.06/- - - - - - -

S
P

A
R

K

H - - - -/0.03 0.28/- 0.56/- 0.21/0.31 0.59/0.59 - - - - - -
C - - - - -/0.03 - - - 0.28/1 0.28/- - 0.21/- - -
D - 0.03/0.09 - - - -/0.09 - - 0.09/- 0.12/1 - 0.09/- - -
B - - - - - - 0.18/0.124 - 0.06/- - 0.96/0.96 0.31/0.28 - -
H - - - -/0.18 - - 0.03/0.06 -/0.343 0.52/- 0.59/- 0.03/0.03 0.37/0.71 - -
C - - - - - - - - - - - - 1/1 -

L
B

S - - - - - - - - - - - - - 1/1

Table 2: Normalised confusion matrix for the graph based RCA method

Spark and loadbalancer) must be taken into account when performing root cause analysis, even when the
cause of the anomaly is the same (cpu, disk, bandwidth or heap). We do so because the different elements
involved in the anomaly could change the way to deal with the problem. For instance, even if our cpu stress
anomaly is caused for the purpose of this experiment by stress-ng in all the scenarios, in a real set-up it
could have different causes depending on the architecture and the containers running on that host (e.g. a
Spark worker or a Kafka broker). Likewise, the prescriptive action can change, such as stopping non-critical
containers, which also depends on the architecture. Therefore, this distinction between scenarios is needed.

There are several observations we can drawn from these results. The diagonal that crosses the table
and that is highlighted in grey identifies the correct cells in which the classified anomalous regions should
fall into. Any values not in the diagonal represent misclassified anomalous regions. For instance, without
tuning weights 56% of Spark Disk anomalies are misclassified as Big Heap anomalies because in both of
them there is a high number of bytes written to disk. We can observe that our RCA method is really
effective with anomalies that have a significant effect on the elements around the anomalous node. For the
BAND (connection problems), CONF (wrong load balancing) and STRESS (stressing endpoint) anomalies,
the precision is near 100% without tuning any weights with the exception of the Spark scenario. In the
BAND case, limiting the bandwidth of one machine has an effect on the performance of not only the
containers running on that host, but also in all the containers in other machines that have to interact with
them, creating a propagation effect that is easier to detect with a graph representation. For example, if one
of the Kafka brokers has to send data to a consumer and its host has the upload bandwidth limited, the
metrics for the whole application are going to be greatly affected. The STRESS and CONF anomalies show
the same behaviour. Stressing an endpoint increases significantly the values in the HAProxy container for
both the incoming/outgoing traffic attribute in the edges and the cpu usage of all the WordPress servers.
Therefore the graph of the system is going to look very different to those of the other anomalies. A wrong
load balancing problem means that some servers behind the frontend are going to receive a more significant
part of the workload, resulting also in a distinctive graph pattern that the system is able to easily identify.

Another observation is that anomalies affecting a couple of host metrics, like DISK or CPU from the
stressing hosts group, are difficult to match when weights are not properly tuned. We have to consider
that from the whole anomalous region, only the attributes of one host in the graph change with respect to
other anomalies. This is a very small part in the whole picture and makes it difficult to establish differences
between a big heap problem (HEAP) and a CPU one affecting the same node, since they both intensively
use the cpu. Here is where the expert knowledge comes into play in the form of weights. By increasing the
weight of the anomalous host respect to other elements in the graph and pinpointing the important metrics
of each anomaly in that host, the precision is 100% for some cases, like DISK and CPU for the load balancer
scenario. In fact, from the 416 anomalous region generated, 349 are matched with the right pattern resulting
in a precision of 83.89% overall when tuning the weights.
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Figure 12: Number of patterns generated for the first, second, third and fourth execution of the training process

6.5. Number of patterns generated

With this experiment we want to measure the amount of different patterns that each anomaly generates.
In Figure 12, we show the number of patterns that were generated for the first, second, third and fourth
execution of the training phase with the 0.9 matching threshold. For space reasons, we show the results only
for the run in which we tuned the weights, although we add a discussion of the results without weights at
the end of this section. The number of patterns generated stays low specially for the load balancer scenario
and most of the cpu anomalies. This means that the system is able to capture most of the information
in the first executions. The connection problems and big heap anomalies are the ones generating the most
number of patterns. The reason behind this is that both anomalies cause intermittent loss of connection
between containers, which translates into missing edges from one timestamp to the next. This will create
a lot of structural dissimilarity between graphs, hindering the matching with any of the patterns of the
library. In fact, this effect can be seen on the bandwidth anomaly for Kafka, in which for the second and
fourth execution a large number of patterns were generated since there were no matchings. In addition, for
the big heap case, a lot of variability can be seen in different metrics as the anomaly evolves, accentuating
this situation even more. The total number of patterns generated are 237 out of 832 anomalous regions that
were processed. If we compare this with the execution without weights, 84 patterns are generated for Kafka,
150 for Spark and 70 for the load balancer scenarios. This is a total of 304 patterns and a difference of 67
patterns between the two approaches meaning that tuning the weights not only increases the precision of
the classification method, but also reduces the size of the library.

6.6. The effect of thresholds

In the previous experiments we considered that a match between an anomalous region and a pattern in
the library happens if the similarity is greater than 0.9. It seems logical that decreasing that threshold will
translate into a smaller library of patterns, since the matching requirement is relaxed. However, precision
could decrease, since we will have less variety of patterns in the library to match with. The advantage is
that a smaller library will mean less patterns to label. To explore this tradeoff between precision and space,
we try two different values for the matching threshold: 0.8 and 0.9. In Figure 13, we show the results for
the precision as bars and the patterns generated as a line plot. In many cases, like in the CONF, DISK
and some BAND anomalies, the higher threshold increases the precision, since we have more information
captured in the library thanks to a wider set of patterns. On the other hand, having more patterns decreases
the precision of BAND for the load balancer scenario. A finer tuning of the weights would be needed in
this case, since some of these anomalous regions are matched with the numerous patterns for the Spark
and Kafka scenarios. The maximum number of patterns generated is 43 for the connection problems in the
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Figure 13: The effect of changing the matching threshold in the system. Precision is depicted as bars and the number of
patterns generated as a line.

Kafka scenario. This may seem like an excessive number of cases to troubleshoot by an administrator, but
we have to take into account that many of them are generated from graphs representing consecutive time
windows. Therefore, the administrator could label the whole sequence of patterns with the same root cause
without labeling them one by one.

6.7. Graph approach vs machine learning

We also want to evaluate the benefits of the graph approach, where the topology of the system and
the elements around the anomaly are considered, versus a machine learning approach, in which a model
is automatically learned to classify the state of an anomalous node into its root cause [14]. To achieve
that, we train a boosted classification trees model with a dataset in which each row contains as features,
the monitored metrics of a node when an anomaly was injected (cpu usage, bytes written to disk, bytes
sent, etc...) and as classification label, the anomaly that was induced in that node. The machine learning
algorithm will automatically find which metrics are correlated with each type of anomaly. Note that the
difference between the two methods is that in the machine learning approach, we only focus on the metrics
of the anomalous node in order to learn the anomaly type, while with our graph-based approach, we also
consider the metrics and connections of the surrounding elements. Boosted classification trees were chosen
because of their ability to work well with few data and their good accuracy [55]. The comparison between the
graph approach and the machine learning one is shown in Figure 14. We also detail its results in a confusion
matrix in Table 3. The precision of the graph approach is higher in most of the cases thanks to the weight
system, where the expert knowledge embedded in the graphs and the extra information provided by the
elements surrounding the anomaly are specially useful in anomalies like CONF or BAND. Classification trees
outperform its graph counterpart only in the cpu stress cases, since the problem is well differentiated by the
peak experienced in the cpu usage metric. The overall precision of the machine learning approach is 70.25%,
while our graph-based approach has a precision of 83.89%, a difference of 13.64%. We can conclude that
the graph approach, together with the input of the user in the form of weights, enables a more precise and
fine-grained root cause analysis, specially in such diverse and interconnected systems such as service-oriented
and microservice architectures.

6.8. Graph comparison latency

Latency is an important factor in providing a quick response to fix the anomaly and stabilize the system.
In this section, we show the time needed to compare an anomalous region to a pattern in the library. In
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Figure 14: Precision of the graph-based approach compared to a machine learning based approach

KAFKA SPARK LB
CPU DISK BAND HEAP CPU DISK BAND HEAP CPU DISK BAND HEAP CONF STRESS

C 0.93 - - - - - - 0.18 0.125 - - - - -
D - 0.68 - - - - - - - - - - - -
B - - 1 0.06 - - 0.40 - - - 0.5 0.28 - -

K
A

F
K

A

H - - - 0.65 - - - - - - - - - -
C 0.06 - - - 0.93 - - - - - - 0.06 - -
D - 0.25 - - - 0.68 - - - 0.18 - - - -
B - - - - - - 0.37 - - - 0.06 0.03 - -

S
P

A
R

K

H - - - - - - - 0.43 - - - - - -
C - - - - 0.06 0.31 - - 0.875 - - - - -
D - 0.06 - - - - 0.06 - - 0.81 - - - -
B - - - - - - 0.15 - - - 0.43 - - -
H - - - 0.28 - - - 0.37 - - - 0.62 - -
C - - - - - - - - - - - - 0.5 0.06

L
B

S - - - - - - - - - - - - 0.5 0.93

Table 3: Normalised confusion matrix for the boosted decision trees RCA method

our experiment, we compare two randomly selected graphs with sizes ranging from 10, 15, 20, 25 and 30
nodes. The experiment is repeated 30 times for each size combination to calculate the mean and variance
of the execution time. The results are shown in Figure 15. As expected, the comparison time depends on
the number of elements that form part of the graph. The maximum execution time is 0.64 seconds for two
graphs with 30 nodes each. Also the variance increases slightly as more nodes are involved in the process.
Remember that the framework compares any incoming anomalous region with all the labeled patterns in the
library, searching for the most similar one. This results in a sequential search, where a comparison needs to
be done ntimes, where ntimes is the number of graphs in the library. As the library grows, establishing the
root cause for that anomaly becomes more expensive. There are techniques that allow to index this search
space [56] and we leave as future work their implementation to reduce the total search time in the library.
In addition, the number of nodes and edges to be included as part of an anomalous region can be configured
depending on the computational resources available, as explained in Section 3.2.

7. Threats to validity

In this section we cover the threats to validity that may arise from our experiments design. We analyse
both internal and external threats regarding the accuracy results of our graph-based RCA approach. We
focus on the experiment where we compared two different methods: our graph-based method and a different
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Figure 15: Execution time of the comparison between two
graphs with different number of nodes.

one that does not take into account the connections between components and the elements surrounding the
anomaly, like the machine learning approach.

7.1. Internal validity

In the context of our experiments, the internal validity refers to how confident we are regarding our
graph-based approach being the true cause of the change in the accuracy with respect to other methods [57].
We observed how taking into account the metrics and connections of the surrounding elements, as our
graph-approach does, improved the accuracy from 70,25% to 83,89%, in comparison to the machine learning
one.

The metrics and events used for both the graph and machine learning approach come from the same
experiment in Grid’5000, our chosen testbed. This eliminates many of the threats related to internal validity
like:
• History: There were no events that happened in one group and not in the other or viceversa, since the

two datasets were identical.
• Extraneous variables: There are no third variables involved, except for the approach to RCA itself.
• Selection biases: The train and test sets were both the same for the machine learning and graph-based

approaches.
• Instrumentation: The metrics come from the same monitoring tool.
We can conclude then, that we have strong confidence in our experiments, from the internal validity

point of view. The only difference between the machine learning-based results and the graph-based results
is that the former do not have the metrics about the edges, but an average of them instead. However, this
is the final goal of the experiment: proving that the inclusion of the full detail surrounding the anomaly
improves the results of the root cause classification.

7.2. External validity

External validity refers to the degree to which the results can be extrapolated to another group of
individuals. It can be divided into two:
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• Population validity: It measures how representative is the sample of the population drawn for the
experiment. We have included five service based architectures. The number seems good enough to
prove that, in architectures where there are multiple connected components, the information about
the surrounding elements is key. We would like to prove our approach in microservice architectures
composed of a larger number of elements and we leave it as future work. The different anomalies used
can also be considered another type of population that could have been enlarged in order to reassure
our conclusions.

• Ecological validity: It measures how well these results would have been generalised in a different
setting. This is probably the biggest threat to the validity of our experiments, since there are some
factors that need to be considered in an environment other than the Grid’5000 testbed. First of all,
our experiments were performed in an isolated environment, where all the processes running on the
servers are included in the metrics we extracted. In a different environment there could be other factors
affecting the resource usage of the hosts, like non monitored processes or occasional spikes that could
distort the metric values over time. Regarding the first one, we assume that we have a monitoring
system that is able to register the different processes running on the cluster, such as operating system
processes, containers or non-container applications to name a few. For the second one, the immediate
effect would be a larger library of patterns, as noise in the metrics means a wider range of possible
values and more chances of inserting the anomalous region as a new pattern in the library.

8. Discussion

In this section, we discuss some of the advantages and weaknesses of the graph RCA method we presented
throughout the paper. In particular, we focus on the advantages of a graph representation, the trade-off
between methods that use expert knowledge and those which do not and the additional possibilities that
our proposed framework can offer.

Advantages of a graph-based representation of microservice and service-based architec-
tures: Graphs have been widely used to encode knowledge in a way computers understand and that is
easily interpretable by humans [58]. Regarding the latter, these types of architectures often involve a great
number of interconnected elements and searching for representations that facilitate the exploration of these
systems is of vital importance. Many applications for container-observability are using this approach, like
Netsil23 or Sysdig24, but only focus on the monitoring part. Incorporating a root cause analysis method as
the one we presented on top of this graph representation can facilitate the decision making process when
supporting complex architectures and ensuring their service level objectives. In addition, we have shown
its potential in anomalies like a wrong load balancing configuration or under network bandwidth problems,
where the problem is propagated to other elements of the system. As a limitation, we can say that the
technique is maybe too complex for any anomaly in which the symptoms are isolated (e.g. a single node
failure), while other RCA methods could find it in an easier way.

Incorporating expert knowledge in a RCA system: The current explosion of available data in many
areas has brought machine learning techniques to the forefront. These techniques extract the knowledge
from the data and do not need any external experts to make decisions, such as establishing a root cause.
On the other hand, in expert systems or rule based systems, the knowledge comes from humans that have
been exposed to some domain and have acquired expertise in the field. Decisions based on machine learning
techniques can be hard to explain or not explainable at all. This is specially important in root cause analysis
for critical production systems, where a wrong decision by an automatic system, can go unnoticed and result
in great loses. Users need to understand the reasons behind a wrong prediction of the model, in order to
prevent and avoid the same mistake in the future. Also machine learning systems need a considerable
amount of data to discover the correlations in the metrics behind a given anomaly. This might not be
possible in microservice architectures, where applications are developed at a rapid pace and new features

23https://netsil.com/
24https://www.sysdig.com/
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continuously added. A system that is based on the input of an expert, who determines the important factors
in an anomalous pattern and assigns labels to it, allows another user to understand the root cause and give
valuable context when interpreting the prediction of the model. In our proposed system, this is present in
the form of weights.

The potential of semantic graphs in RCA: Modelling the system and its elements as a graph opens
several possibilities. One of them is using semantic graphs, which facilitate the incorporation of expert
knowledge in the form of an ontology. This can be extended to the edges, with different relations between
elements, like a machine hosting a container or a master coordinating several slaves. New contexts can be
defined to specify the way these semantic concepts should be compared. It also enables new user-friendly
methods to access the state of the system through natural language processing supported by those ontologies
and the graph structure [59]. Questions like “Which containers connected to the HAProxy instance have a
cpu utilisation greater than 90%?” can be used by the system administrator to troubleshoot an anomaly.
We can also use it to define alerts with some semantic meaning and that are not only based on thresholds
for certain metrics e.g. raise an alert when the number of requests balanced by HAProxy are not spread
evenly. Current state-of-the-art monitoring solutions do not provide these set of tools that a graph based
method could.

Using and tuning weights and threshold: Systems where many parameters have to be fine-tuned
can be time-consuming. In our case, we have both weights and thresholds that need to be set by the user.
However, there are several advantages for both. We have already talked about the weights and how they can
be used to capture expert knowledge for a given anomaly, making the graph patterns more understandable.
Thresholds can also be used to trigger decisions, based on the similarity score between graphs. For instance,
in the scenario where the HAProxy balances the load unequally, we can trigger an action like resetting
the configuration file to a default setting if the similarity between the anomalous behaviour and the wrong
loadbalancing pattern is above 0.95. This triggering threshold will indicate that we must have a strong
confidence in order to activate such an automatic action. Lower thresholds can be used for less intrusive
actions, such as killing and resetting a container when its garbage collection time increases. From this
point of view, our system can be seen as a decision support system that helps the user to troubleshoot and
diagnose problems in microservice and service-oriented architectures.

9. Conclusion and future work

Throughout this paper, we have explained why a graph representation is a good fit to represent the state
of microservice and service-based architectures and we have proposed a method based on graph similarity
to perform root cause analysis on their anomalies. The evaluation shows how, through the incorporation of
expert knowledge, we are able to accurately match past anomalous situation with current ones, facilitating
decision making when maintaining the system.

We have also detected a set of challenges that we need to undertake in the future. Firstly, we need to
consider the time dimension, where the evolution of the system during a time window can be compared,
instead of single snapshots. This is specially important in a serverless environment, where containers come
and go, depending on specific events. We have also noticed that the similarity between values of one type of
metric must be calculated differently, depending on the distribution of historical data for that metric. Range
of values that have been rarely seen before can be given different importance in the comparison function.
Another concern is the computation time needed to compare two graphs. Several solutions have been
proposed in the graph indexing field to reduce query times. Even though the comparison between graphs
can be parallelised through a load balancer, we intend to implement one of these solutions to reduce the
search space and consequently the response time of the system. Another option is to use graph embedding
methods to transform the graph into a vector that can be fed into a machine learning model. However,
this alternative eliminates the option of using user expert knowledge in the system such as the ontological
context or the weigths. This reduction of the computation time is also related to the challenges of comparing
large microservices architectures, as the responsibilities of the application are decomposed into even smaller
units than the ones used in our evaluation. We would like to adapt our system to scale properly and also
include this use case. Another line of work is to automatically tune the weights of the graph patterns. If
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needed, these weights can be learned or fine-tuned with a properly labeled dataset of anomalous patterns
through statistical techniques like machine learning. As in any other type of machine learning process that
uses weights, we can use the ground truth (labels) to tune the weights and maximise the amount of correctly
classified anomalies. We would also like to try out new scenarios and anomalies that are seen in Industry,
in order to test the advantages of our model, specially for anomalies with a propagating effect such as the
load balancing problem. Finally, we also need to consider the multi-user aspect of the system in terms of
users assigning conflicting labels or being able to edit graphs concurrently.
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