
Consistency Management in Cloud Storage Systems

Houssem-Eddine Chihoub♦, Shadi Ibrahim♦, Gabriel Antoniu♦, Marı́a S. Pérez‡

♦INRIA Rennes - Bretagne Atlantique

Rennes, 35000, France

{houssem-eddine.chihoub, shadi.ibrahim, gabriel.antoniu}@inria.fr

‡Universidad Politécnica de Madrid

Madrid, Spain

mperez@fi.upm.es

March 1, 2013

ii

Contents

1 Consistency Management in Cloud Storage Systems 1

1.1 Introduction . 2

1.2 The CAP Theorem and Beyond . 4

1.2.1 The CAP theorem . 4

1.2.2 Beyond the CAP Theorem . 6

1.3 Consistency Models . 7

1.3.1 Strong consistency . 8

1.3.2 Weak Consistency . 9

1.3.3 Causal Consistency . 11

1.3.4 Eventual Consistency . 11

1.3.5 Timeline Consistency . 13

1.4 Cloud Storage Systems . 14

1.4.1 Amazon Dynamo . 14

1.4.2 Cassandra . 16

i

ii CONTENTS

1.4.3 Yahoo! PNUTS . 18

1.4.4 Google Spanner . 19

1.4.5 Discussion . 21

1.5 Adaptive Consistency . 22

1.5.1 RedBlue Consistency . 22

1.5.2 Consistency Rationing . 23

1.5.3 Harmony: Automated Self-Adaptive Consistency 24

1.6 Conclusion . 28

Chapter 1

Consistency Management in Cloud

Storage Systems

Abstract: With the emergence of cloud computing, many organizations have moved

their data to the cloud in order to provide scalable, reliable and high available services.

As these services mainly rely on geographically-distributed data replication to guaran-

tee good performance and high availability, consistency comes into question. The CAP
theorem discusses tradeoffs between consistency, availability, and partition tolerance,

and concludes that only two of these three properties can be guaranteed simultane-

ously in replicated storage systems. With data growing in size and systems growing in

scale, new tradeoffs have been introduced and new models are emerging for maintain-

ing data consistency. In this chapter, we discuss the consistency issue and describe the

CAP theorem as well as its limitations and impacts on big data management in large

scale systems. We then briefly introduce several models of consistency in cloud storage

systems. Then, we study some state-of-the-art cloud storage systems from both enter-

prise and academia, and discuss their contribution to maintaining data consistency.

To complete our chapter, we introduce the current trend toward adaptive consistency

in big data systems and introduce our dynamic adaptive consistency solution (Har-
mony). We conclude by discussing the open issues and challenges raised regarding

consistency in the cloud.

1

2CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

1.1 Introduction

Cloud computing has recently emerged as a popular paradigm for harnessing a large

number of commodity machines. In this paradigm, users acquire computational and

storage resources based on a pricing scheme similar to the economic exchanges in

the utility market place: users can lease the resources they need in a Pay-As-You-Go

manner [1]. For example, the Amazon Elastic Compute Cloud (EC2) is using a pricing

scheme based on virtual machine (VM) hours: Amazon currently charges $0.065 per

small instance hour at [2].

With data growing rapidly and applications becoming more data-intensive, many

organizations have moved their data to the cloud, aiming to provide scalable, reliable

and highly available services. Cloud providers allow service providers to deploy and

customize their environment in multiple physically separate data centers to meet the

ever-growing user needs. Services therefore can replicate their state across geograph-

ically diverse sites and direct users to the closest or least loaded site. Replication has

become an essential feature in storage systems and is extensively leveraged in cloud

environments [3][4][5]. It is the main reason behind several features such as fast

accesses, enhanced performance, and high availability (as shown in Figure 1.1).

• For fast access, user requests can be directed to the closest data center in or-

der to avoid communications’ delays and thus insure fast response time and low

latency.

• For enhanced performance, user requests can be re-directed to other replicas

within the same data center (but different racks) in order to avoid overloading

one single copy of the data and thus improve the performance under heavy load.

• For high availability, failure and network partitions are common in large-scale

distributed systems; by replicating we can avoid single points of failure.

A particularly challenging issue that arises in the context of storage systems with

geographically-distributed data replication is how to ensure a consistent state of all

1.1. INTRODUCTION 3

DC(A1)

R2R1

...

Region(A)

DC(B1)

R3

User(m+1) User(k)

..

Region(B)

DC(C1)

R5

User(k+1) User(n)

...

Region(C)

DC(Bx)

R4

(2)User(1) User(m)

Figure 1.1: Leveraging Geographically-distributed data Replication in the
Cloud: Spreading replicas over different datacenters allows faster access by directing
requests to close replicas (User(K+1) accesses R5 in DC(C1) instead of a remote replica);
Under heavy load, replicas can serve users requests in parallel and therefore enhance
performance (eg. R1 and R2 in Region (A)); When a replica is down, requests can
failover to closer replicas (The requests of replicas within DC(B1) and DC(C1) failover
to DC(Bx))

the replicas. Insuring strong consistency by means of synchronous replication in-

troduces an important performance overhead due to the high latencies of networks

across data centers (the average round trip latency in Amazon sites varies from 0.3ms

in the same site to 380ms in different sites [6]). Consequently, several weaker consis-

tency models have been implemented (e.g., casual consistency, eventual consistency,

timeline consistency). Such relaxed consistency models allow the system to return

some stale data at some points in time.

Many cloud storage services opt for weaker consistency models in order to achieve

better availability and performance. For example, Facebook uses the eventually con-

sistent storage system Cassandra to scale up to host data for more than 800 million

active users [7]. This comes at the cost of a high probability of stale data being read

(i.e., the replicas involved in the reads may not always have the most recent write).

As shown in [8], under heavy reads and writes some of these systems may return up

to 66.61% stale reads, although this may be tolerable for users in the case of social

network. With the ever-growing diversity in the access patterns of cloud applica-

tions along with the unpredictable diurnal/monthly changes in services loads and the

variation in network latency (intra and inter-sites), static and traditional consistency

solutions are not adequate for the cloud. With this in mind, several adaptive con-

sistency solutions have been introduced to adaptively tune the consistency level at

4CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

run-time in order to improve the performance or to reduce the monetary cost while

simultaneously maintaining a low fraction of stale reads.

In summary, it is useful to take a step back, consider the variety of consistency

solutions offered by different cloud storage systems, and describe them in an unified

way, putting the different use and types of consistency in perspective; this is the

main purpose of this book chapter. The rest of this chapter is organized as follows:

In Section 1.2 we briefly introduce the CAP theorem and its implications in cloud

systems. Then we present the different types of consistency in Section 1.3. Then

we briefly introduce the four main cloud storage systems used by big cloud vendors

in Section 1.4. To complete our survey, we present different adaptive consistency

approaches and detail our approach Harmony in Section 1.5. A conclusion is provided

in Section 1.6.

1.2 The CAP Theorem and Beyond

1.2.1 The CAP theorem

In his keynote speech [9], Brewer introduced what is know since as The CAP Theorem.

This theorem states that at most only two out of the three following properties can

be achieved simultaneously within a distributed system: Consistency, Availability

and Partition Tolerance. The theorem was later proved by Gilbert and Lynch [10].

The three properties are important for most distributed applications such as web

applications. However, within the CAP theorem, one property needs to be forfeited,

thus introducing several tradeoffs. In order to better understand these tradeoffs, we

will first highlight the three properties and their importance in distributed systems.

Consistency: The consistency property guarantees that an operation or a transac-

tion is performed atomically and leaves the systems in a consistent state, or fails in-

stead. This is equivalent to the atomicity and consistency properties (AC) of the ACID
(Atomicity, Consistency, Isolation and Durability) semantics in relational database

management systems (RDBMs), where a common way to guarantee (strong) consis-

1.2. THE CAP THEOREM AND BEYOND 5

User2
User1

Propagate

update
D1

D1

D1

N
et

w
ork

 P
ar

tit
io

n

Update D1

If user2 request to read Data D1 after

User1 update: either he will read stale

data, thus violating consistency, or wait

until the update is successfully propagated

to R3 thus violating availability.

Datacenter 1
Datacenter 2

R1

R2

R3

Figure 1.2: Consistency vs Availability in Geo-replicated Systems

tency is linearizability.

Availability: In their CAP theorem proof [10], the authors define a distributed stor-

age system as continuously available if every request received by a non-failing node

must result in a response. On the other hand, when introducing the original CAP
theorem, Brewer qualified a system to be available if almost all requests receive a

response. However, in these definitions, no time bounds on when the requests would

receive a response were specified, which left the definition somewhat vague.

Partition Tolerance: In a system that is partition tolerant, the network is allowed to

loose messages between nodes from different components (datacenters for instance).

When a network partition appears, the network communication between two compo-

nents (partitions, datacenters etc.) is off and all the messages are lost. Since replicas

may be spread over different partitions in such a case, this property has a direct

impact on both consistency and availability.

The implications of the CAP theorem introduced challenging and fundamental

tradeoffs for distributed systems and services designers. Systems that are designed

to be deployed on single entities such as an RDBM aim to provide both availability

and consistency properties with partitions were not an issue. However for distributed

systems that rely on networking, such as geo-replicated systems, partition tolerance

is a must for a big majority of them. This in turn introduces, among other tradeoffs

mperez
Resaltado

6CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

derived from the CAP theorem, the Consistency vs. Availability as a major tradeoff

in geo-replicated systems. As shown in Figure 1.2, user requests can be served from

different replicas in the system. If partitions occur, an update on one replica can

not be propagated to other replicas on different partitions. Therefore, those replicas

could be made either available to the clients, thus violating consistency, or otherwise,

made unavailable until they converge to a consistent state, which can happen after

recovering from the network partition.

1.2.2 Beyond the CAP Theorem

The proposal of the CAP theorem a few years ago had a huge impact on the design

of distributed systems and services. Moreover, the ever-growing volume of data along

with the huge expansion of distributed systems scales makes the implications of the

CAP theorem of even more importance. Twelve years after the introduction of his

CAP theorem, Brewer still ponders its implications [11]. He estimates that the theo-

rem achieved its purpose in the past in the way it brought the community’s attention

to the related design challenges. On the other hand, he judges some interpretations of

the implications as misleading, in particular, the 2 out of 3 tradeoff property. The gen-

eral belief is that the partition tolerance property P is insurmountable for wide-area

systems. This often leads designers to completely forfeit consistency C or availability

A for each other. However, partitions are rare. Brewer states that the modern goal of

the CAP theorem should be to maximize combinations of C and A. In addition, sys-

tem designers should develop mechanisms that detect the start of partitions, enter

an explicit partition mode with potential limitations of some operations, and finally

initiate partition recovery when communication is restored.

Abadi [12] states as well that the CAP theorem was misunderstood. CAP trade-

offs should be considered under network failures. In particular, the Consistency-

Availability tradeoff in CAP is for when partitions appear. The theorem property

P implies that a system is partition-tolerant and more importantly, is enduring parti-

tions. Therefore, and since partitions are rare, designers should consider other trade-

offs that are arguably, more important. A tradeoff that is more influential, is the

1.3. CONSISTENCY MODELS 7

latency-consistency tradeoff. Insuring strong consistency in distributed systems re-

quires a synchronized replication process where replicas belong to remote nodes that

communicate through a network connection. Subsequently, reads and updates may be

costly in terms of latency. This tradeoff is CAP-Independent and exists permanently.

Moreover, Abadi makes a connection between latency and availability. When latency

is higher than some timeout the system becomes unavailable. Similarly, the system

is available if the latency is smaller than the timeout. However, the system can be

available and exhibit high latency nonetheless. For these reasons, system designers

should consider this additional tradeoff along with CAP. Abadi propose to unify the

two in a unified formulation called PACELC where PAC are CAP tradeoffs during

partitions and ELC is the latency consistency tradeoff.

After they proved the CAP theorem, Gilbert et Lynch reexamined the theorem prop-

erties and its implications [13]. The tradeoff within CAP is another example of the

more general tradeoff between safety and liveness in unreliable systems. Consistency

can be seen as a safety property for which every response to client requests is correct.

In contrast, availability is a liveness property that implies that every client request

would eventually receive a response. Hence, viewing CAP in the broader context of

safety-liveness tradeoffs provide insight into the feasible design space for distributed

systems [13]. Therefore, they reformulate the CAP theorem as follows: “CAP states

that any protocol implementing an atomic read/write register cannot guarantee both

safety and liveness in a system prone to partitions”. As a result, the practical impli-

cations dictate that designers opt for best-effort availability, thus guaranteeing con-

sistency, and best-effort consistency for systems that must guarantee availability. A

pragmatic way to handle the tradeoff is by balancing consistency-availability tradeoff

in an adaptive manner. We will further explore this idea in Section 1.5.

1.3 Consistency Models

In this section we introduce the main consistency models adopted in earlier single-

site storage systems and in current geo-replicated systems and then we summarize

them in Table 1.1.

mperez
Resaltado

8CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

1.3.1 Strong consistency

In traditional distributed storage and database systems, the instinctive and correct

way to handle replicas consistency was to insure a strong consistency state of all

replicas in the system all the time. For example, the RDBMs were based on ACID

semantics. These semantics are well defined and insure a strong consistency behav-

ior of the RDBM based on the atomicity and consistency properties. Similarly, the

POSIX standard for file systems imply that data replicated in the system should al-

ways be consistent. Strong consistency guarantees that all replicas are in a consistent

state immediately after an update, before it returns a success. Moreover, all replicas

perceive the same order of data accesses performed by different client processes.

In a perfect world, such semantics and the strong consistency model are the prop-

erties that every storage system should adopt. However, insuring strong consistency

requires mechanisms that are very costly in terms of performance and availability

and limit systems scalability. Intuitively, this can be understood as a consequence of

the necessity to exchange messages with all replicas in order to keep them synchro-

nized. This was not an issue in the early years of distributed storage systems as the

scale and the performance needed at the time were not as important. However, in

the era of big data and cloud computing, this consistency model can be penalizing, in

particular if such a strong consistency is actually not required by the applications!.

Several mechanisms and correctness conditions to insure strong data consistency

were proposed over the years. Two of the most popular approaches are serializability

[14] and linearizability [15].

Serializability: A set of concurrent actions execution on a set of objects is serializ-

able if it is equivalent to a serial execution. Every action is considered as a serializa-

tion unit and consists of one or more operations. Each operation may be performed

concurrently with other operations from different serialization units. Serialization

units are equivalent to transactions in RDBMs and a single file system call in the

case of file systems.

1.3. CONSISTENCY MODELS 9

A concurrent execution on a set of replicated objects is one-copy equivalent if it

is equal to an execution on the same set of objects without replication. As a result,

concurrent actions execution is said to be one-copy serializable if it is serializable and

one-copy equivalent. Moreover, a one-copy serializable execution is considered global

one-copy serializable if the partial orderings of serialization units, which perceived by

each process, are preserved.

Linearizability: The linearizability or the atomicity of a set of operations on a

shared data object is considered as a correctness condition for concurrent shared data

objects [15]. Linearizibility is achieved if every operation performed by a concurrent

process appears instantaneously to the other concurrent processes at some moment

between its invocation and response. Linearizability can be viewed as a special case of

global one-copy serializability where a serialization unit (a transaction) is restricted

to consist of a single operation [15]. Subsequently, linearizability provides locality

and non-blocking properties.

1.3.2 Weak Consistency

The implementation of strong consistency models imposes serious limitations to de-

signers and clients requirements. Moreover, insuring strong global total ordering has

a heavy performance overhead. As to overcome these limitations, Dubois et al. [16]

first introduced the weak ordering model. Data accesses (read and write operations)

are considered as weakly ordered if they satisfy the following three conditions:

• All accesses to a shared synchronization variables are strongly (sequential) or-

dered. All processes perceive the same order of operations.

• Data accesses to a synchronization variable are not issued by processors before

all previous global accesses have been globally performed.

• A global data access is not allowed by processors until a previous access to syn-

chronization variable is globally performed.

10CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

From these three conditions, the order of read and write operations, outside critical

sections (synchronization variables), can be seen in different orders by different pro-

cesses as long as they don’t violate the aforementioned conditions. However, in [17]

[18], it has been argued that not all the three conditions are necessary to reach the in-

tuitive goals of weak ordering. Numerous variation models have been proposed since.

Bisiani et al. [19] proposed an implementation of weak consistency on distributed

memory system. Timestamps are used to achieve a weak ordering of the operations.

A synchronization operation is completed only after all previous operations in the

systems reach a completion state. Various weaker consistency models derived from

the weak ordering. The following client-side models are weak consistency models, but

provide some guarantees to the client.

Read-your-writes : This model guarantees that a process that commits an update

will always be able to see the updated value with the read operation but not an older

one. This might be an important consistency property to provide with weakly ordered

systems for a large class of applications. As will be seen further in this section, this

is a special case of causal consistency.

Session consistency : Read-your-writes consistency is guaranteed in the context

of a session (which is a a sequence of accesses to data, usually with an explicit begin-

ning and ending). As long as the users access data -during the same session, they are

guaranteed to access their latest updates. However, the read-your-writes property is

not guaranteed to be spanned over different sessions.

Monotonic reads : A process should never read a data item value older than

what it has read before. This consistency guarantees that a process’s successive reads

returns always the same value or a more recent one than the previous read.

Monotonic writes : This property guarantees the serialization of the writes by

one process. A write operation on a data object or item must be completed before any

successive writes by the same process. Systems that do not guarantee this property

are notoriously hard to program [20].

1.3. CONSISTENCY MODELS 11

1.3.3 Causal Consistency

Causal consistency is a consistency model where a sequential ordering is always pre-

served only between operations that have causal relation. Operations that execute

concurrently do not share a causality relation. Therefore, causal consistency does

not order concurrent operations. In [21][22], two operations a and b have a potential

causality if one of the two following conditions are met: a and b are executed in a

single thread and one operation execution precedes the other in time; or if b reads a

value that is written by a. Moreover, a causality relation is transitive. If a and b have

a causal relation, b and c have a causal relation as well, then a and c have a causal

relation.

In [22], a model that combines causal consistency and convergent conflict han-

dling is presented and called causal+. Since concurrent operations are not ordered by

causal consistency, two writes to the same key or data object would lead to a conflict.

Convergent conflict handling aims at handling all the replicas in the same manner us-

ing a handler function. To reach handling convergence, all conflicting replicas should

consent to an agreement. Various conflict handling methods were proposed such as

last-writer-wins rule, through user intervention, or versioning mechanism as in Ama-

zon’s Dynamo storage system.

1.3.4 Eventual Consistency

In a replicated storage system, the consistency level defines the behavior of diver-

gence of replicas of logical objects in the presence of updates [23]. Eventual consis-

tency [24] [23] [20], is the weakest consistency level that guarantees convergence.

In the absence of updates, data in all replicas will gradually and eventually become

consistent.

Eventual consistency ensures the convergence of all replicas in systems that im-

plement lazy, update-anywhere or optimistic replication strategies [25]. For such sys-

12CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

tems, updates can be performed on any replica hosted on different nodes. The update

propagation is done in a lazy fashion. Moreover, this update propagation process may

encounter even more delays considering cases where network latency is of a high or-

der such as for geo-replication. Eventual consistency is ensured through mechanisms

that will guarantee the propagation process which will successfully end at a future

(maybe unknown) time. Furthermore, Vogels [20] judges that, if no failures occur, the

size of the inconsistency window can be determined based on factors such as commu-

nication delays, the load on the system, and the number of replicas in the system.

Eventual consistency by the mean of lazy asynchronous replication may allow bet-

ter performance and faster accesses to data. Every client can read data from local

replicas located in a geographically close data center. However, if an update is per-

formed on one of the replicas and is yet to be propagated to others because of the

asynchronous replication mechanism, a client reading from a distant replica may read

stale data.

In [24], two examples that illustrate the typical use case and show the necessity for

this consistency model were presented. The worldwide domain name system (DNS)

is a perfect example of system for which eventual consistency is the best fit. The DNS

namespace is partitioned into domains where each domain is assigned to a naming

authority. This is an entity that will be responsible for this domain and is the only

one that can update it. This scheme eliminates the update-update conflict. Therefore,

only the read-update conflict needs to be handled. As updates are less frequent, in

order to maintain system availability and fast accesses for users read operations,

lazy replication is the best fit solution. Another example is the World Wide Web. In

general, each web page is updated by a single authority, the webmaster. This also

avoids any update-update conflict. However, in order to improve performance and

lower read access latency, browsers and Web proxies are often configured to keep a

fetched page in a local cache for future requests. As a result, a stale out-of-date page

maybe read. However, many users find this inconsistency acceptable (to a certain

degree) [24].

1.3. CONSISTENCY MODELS 13

Table 1.1: Consistency Models
Consistency Model Brief Description

Strong Consistency serializability Serial order of concurrent executions of a set of serialization
units (set of operations).

linearizability Global total order of operations (single operations), every
operation is perceived instantaneously.

Weak Consistency Read-your-
writes

A process always see his last update with read operations.

Session con-
sistency

Read-your-writes consistency is guaranteed only within a
session.

Monotonic
reads

Successive reads must always return the same or more re-
cent value than a previous read.

Monotonic
writes

A write operation must always complete before any succes-
sive writes.

Causal Consistency Total ordering between operations that have causal relation.
Eventual Consistency In the absence of updates, all replicas will gradually and

eventually become consistent.
Timeline Consistency All replicas perform operations on one record in the same

“correct order”.

1.3.5 Timeline Consistency

The timeline consistency model was proposed specifically for the design of Yahoo!

PNUTS [26], the storage system designed for Yahoo web applications. This consis-

tency model was proposed to overcome the inefficiency of serializability of transac-

tions at massive scales and geo-replication. Moreover, it aims to limit the weakness

of eventual consistency. The authors abandoned transaction serializability as a de-

sign choice after they observed that web applications typically manipulate one record

at a time. Therefore, they proposed a per-record timeline consistency. Unlike eventual

consistency, where operations order can vary from one replica to another, All replicas

of a record perform the operations in the same “correct” order. For instance, if two

concurrent updates are performed, all replicas will execute them in the same order

and thereby avoid inconsistencies. Nevertheless, data propagation to replicas is done

lazily, which makes the consistency of all replicas eventual. This may allow clients

that read data from local replicas to access a stale version of data. In order to pre-

serve the order of operations for a given record, one replica is designated dynamically

as a master replica for the record that handles all the updates.

14CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

1.4 Cloud Storage Systems

In this section we describe some state-of-art cloud storage systems which are adopted

by the big cloud vendors, such as Amazon Dynamo, Apache Cassandra, Yahoo! PNUTS

and Google Spanner. We then give an overview of their real-life applications and use-

cases (summarized in Table 1.2).

1.4.1 Amazon Dynamo

Amazon Dynamo [27], is a storage system designed by Amazon engineers to fit the

requirements of their web services. Dynamo provides the storage backend for the

highly available worldwide Amazon.com e-commerce platform and overcomes the in-

efficiency of RDBMs for this type of applications. Reliability and scaling requirements

within this platform services are high. Moreover, availability is very important, as

the increase of latencies by only minimal fractions can cause financial losses. Dy-

namo provides a flexible design where services may control availability, consistency,

cost-effectiveness and performance tradeoffs.

Since Amazon has been tailored specifically for Amazon services, the SLA (Service

Level Agreement) of those services were carefully considered. A simple SLA con-

straint is for instance to provide a response within 300ms for 99.9% of client requests

under a peak load of 500 requests per second. Dynamo has been designed in a com-

pletely decentralized, massively scalable way, with flexible usage in terms of avail-

ability, consistency and performance (latency and throughput). Aggregated services

within Amazon can access data in a manner that does not violate SLA constraints,

with 99.9 percentile guaranteed quality of service, whereas other services settle for

median (average) percentile quality.

Dynamo’s partitioning scheme relies on a variation of consistent hashing [28]. In

their scheme, the resulting range or space of a hash function is considered as a ring.

Every member of the ring is a virtual node (host) where a physical node may be

1.4. CLOUD STORAGE SYSTEMS 15

responsible for one or more virtual nodes. The introduction of virtual nodes, instead

of using fixed physical nodes on the ring, is a choice that provides better availability

and load balancing under failures. Each data item can be assigned to a node on the

ring based on its key. The hashed value of the key determines its position on the ring.

Data then, is assigned to the closest node on the ring clockwise. Moreover, data is

replicated on the successive K − 1 nodes for a given replication factor K, avoiding

virtual nodes that belong to the same physical nodes. All the nodes on Dynamo are

considered equal and are able to compute the reference list for any given key. The

reference list is the list of nodes that store a copy of data referenced by the key.

Dynamo is an eventually-consistent system. Updates are asynchronously propa-

gated to replicas. As data is usually available while updates are being propagated,

clients may perform updates on older versions of data for which the last updates had

not been committed yet. As a result, the system may suffer from update conflicts. To

deal with these situations, Dynamo relies on data versioning. Every updated replica

is assigned a new immutable version. The conflicting versions of data resulting from

concurrent updates may be solved at a latter time. This allows the system to be al-

ways available and fast to respond to client requests. Versions that share a causal

relation are easy to solve by the system based on syntactic reconciliation. However,

a difficulty arises with versions branching. This often happens in the presence of

failures combined with concurrent updates and results in conflicting versions of data.

The reconciliation in this case is left to the client rather than the system because the

latter lacks the semantic context. The reconciliation is performed by collapsing the

multiple data versions into one (semantic reconciliation). A simple example is the

case of the shopping cart application. This application chooses to merge the diverging

versions as a reconciliation strategy. Dynamo uses vector clocks to implement this

mechanism. Vector clocks allow the system to capture causality between different

versions if any or detect version conflicts otherwise. A vector clock for a given version

of a given key consists of (node, counter) pairs. Moreover, timestamps are used to in-

dicate the last time the node updated the data item. In order to detect inconsistencies

between replicas and repair them in the event of failures and other threats to data

durability, Dynamo implements an anti-entropy replicas synchronization protocol.

16CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

Replica consistency is handled by a quorum-like system. In a system that main-

tains N replicas, R is the minimum number of nodes (replicas) that must participate

in the read operation, and W is the minimum number of nodes that must partic-

ipate in a write operation are configured on a per operation basis and are of high

importance. By setting these two parameters, one can define the tradeoff between

consistency and latency. A configuration that provides R + W > N is a quorum-like

setting. This configuration insures that the last up-to-date replica is included in the

quorum and thus the response. However, the operation latencies are as small as the

longest replica response time. In a configuration where R + W < N , clients may be

exposed to stale versions of data.

1.4.2 Cassandra

The Facebook social networking platform is the largest networking platform serving

hundred millions of users at peak times and having no less than 900 million active

users [7]. Therefore, and in order to keep users satisfied, an efficient Big Data man-

agement that guarantees high availability, performance, and reliability is required.

Moreover, a storage system that fulfills these needs must be able to elastically scale

out to meet the continuous growth of the data-intensive platform. Cassandra [29] is a

highly available, highly scalable distributed storage system that was first built within

Facebook. It was designed for managing large objects of structured data spread over

a large amount of commodity hardware located in different datacenters worldwide.

The design of Cassandra was highly inspired by that of two other distributed stor-

age systems. Implementation choices and consistency management are very similar

to the ones of Amazon Dynamo (except for in-memory management) while its data

model is derived from the Google BigTable [4] model. The Cassandra partitioning

scheme is based on consistent hashing. Unlike Dynamo, which uses virtual nodes to

overcome the non-uniformity of load distribution, every node on the ring is a physical

host. Therefore, and in order to guarantee uniform load distribution, Cassandra uses

the same technique as in [30], where lightly loaded nodes move on the ring.

1.4. CLOUD STORAGE SYSTEMS 17

Cassandra stores data in tables. A table is a distributed multidimensional map

where every row is indexed by a key. Every operation on a single row key is atomic

per a replica without considering which columns are accessed. In this model, as in

Google BigTable, columns are dynamic and grouped into column families. Such a data

model provides great abilities for structured large data, as it offers a more flexible yet

efficient data access. Moreover, it enables a better dynamic memory management.

Like BigTable, Cassandra keeps data in-memory in small tables called memtables.

When a memtable size grows over a given threshold, it is considered as full and data

is flushed into an sstable that will be dumped to the disk.

Replication in Cassandra is performed in the same manner as in Dynamo. How-

ever, Cassandra implements few replication strategies that consider the system topol-

ogy. Therefore, strategies that are Rack UnAware, Rack Aware, and Datacenter Aware

are provided. For the two latter strategies, Cassandra implements algorithms in

Zookeeper [31] in order to compute the reference list for a given key. This list is cached

locally at the level of every node as to preserve the zero-hop property of the system.

In the Cassandra storage system, several consistency levels [32] are proposed per

operation. A write of consistency level One implies that data has to be written to

the commit log and memory table of at least one replica before returning a success.

Moreover, as shown in Figure 1.3, a read operation with consistency level All (strong

consistency) implies that the read operation must wait for all the replicas to reply

and insures that all replicas are consistent in order to return the data to the client.

In contrast, in a read consistency of level of Quorum, 2 of the 3 replicas are contacted

to fulfill the read request and the replica with the most recent version would return

the requested data. In the background, a read repair will be issued to the third

replica and will check for consistency with the first two. If inconsistency occurs, an

asynchronous process will be launched to repair the stale nodes at a latter time.

18CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

Issue

read request

6

5

4

3

2

1
R1

Client

R3

R2

3. Check requested data

1.
2.

Send direct

read request to quorum

replicas (1, 2) and wait

their response

2.

Background read

repair request

Upon arrival of R 1 and R2, if they are consistent then 4

If they are not consistent and R 1 has the most recent data then 4 and 4a

Upon arrival of R 3, if it is not consistent with the most recent data then another 4.a

4. Response

with R1

4a. Issue a write to

the out-of-date

replicas

2a.

Issue

read request

6

5

4

3

2

1
R1

Client

R3

R2

3. Check requested data

1.
2.

Send the request

to all replicas and

wait their response

2

2

If (R1, R2 and R3 are consistent) then 6,

while if R3 is out of data then
4 5 6

5. Ack

6. Response

with R1

4. Issue

a write to the

out-of-date

replicas

Strong Consistency in Cassandra Eventual Consistency in Cassandra

Figure 1.3: Synchronous replication vs Quorum replication in Cassandra [33]

1.4.3 Yahoo! PNUTS

Yahoo!’s requirements for a data management platform that provides scalability, fast

response, reliability, and high availability in different geographical areas, led them

to the design and implementation of PNUTS [26]. PNUTS is a massively parallel

geographically distributed storage system. Its main purpose is to host and serve data

for Yahoo! web applications. PNUTS relies on a novel relaxed consistency model to

cope with availability and fault-tolerance requirements at large scale.

PNUTS provides the user with a simplified relational model. Data is stored in a

set of tables of records with multiple attributes. An additional data type provided

to the users is the ”blob” type. A blob encapsulates arbitrary data structures (not

necessarily large objects) inside records. PNUTS divides the systems into a set of

regions. Regions are typically, but not necessarily, geographically distributed. Every

region consists of a set of storage units, a tablet controller and a set of routers. Data

tables are decomposed horizontally into smaller data structures called tablets that

are stored across storage units (servers) within multiple regions. On the other hand,

the routers functionality is to locate data within tablets and storage units based on

a mapping computed and provided by the tablet controller. PNUTS introduces the

novel consistency model of per-record timeline consistency described in section 1.3.

Therefore, it uses an asynchronous replication scheme. In order to provide reliability

1.4. CLOUD STORAGE SYSTEMS 19

and replication, PNUTS relies on a pub/sub mechanism, called Yahoo! Message Bro-

ker (YMB). With YMB, PNUTS avoids other asynchronous replication protocols such

as Gossip, and optimizes geographical replication. Moreover, a replica does not need

to acquire the location of other replicas. Instead, it needs just to subscribe to the data

updates within YMB.

In order for applications and users to deal with timeline consistency, API calls

which provide varying consistency guarantees were proposed. The read-any call may

return stale data to the users favoring performance and fast response to consistency.

In common cases, a class of applications require the read data to be more recent

than a given version. The API call read-critical (required version) is proposed to deal

with these requirements. In contrast, the read-latest call always the most recent

version of data. This call however may be costly in terms of latency. Moreover, the

API provides two calls for writing data. The write call gives ACID guarantees for

the write (a write is a transaction with a single operation). In contrast, test-and-

set-write(required version) checks the version of the actual data in the system. If, and

only if, the version matches required version, the write is performed. This flexible API

calls give a degree of freedom to applications and users to choose their consistency

guarantees and control their availability, consistency, and performance tradeoffs.

1.4.4 Google Spanner

Spanner [42] is a scalable, globally distributed database that provides synchronous

replication and ensures strong consistency. While many applications within Google

require geo-replication for global availability and geographical locality reasons, a

large class of these applications still needs a strong consistency and an SQL-like

query model. Google BigTable[4] still serves and manages data efficiently for many

applications, but it only guarantees eventual consistency at global scale and provides

a noSQL API. Therefore, Spanner is designed to overcome BigTable insufficiencies for

a class of applications and provides globe scale external consistency (linearizability)

and SQL-like query language similar to Google Megastore query language [38].

20CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

Table 1.2: Cloud Storage Systems
Storage System Consistency Model License Cloud Applications/Services
Amazon Dynamo Eventual Consistency Internal Amazon.com e-commerce platform, Few AWS (Ama-

zon Web Services) (eg. DynamoDB)
Cassandra Eventual Consistency Open Source Facebook inbox search, Twitter, Netflix, eBay,

SOUNDCLOUD, RackSpace Cloud
Riak [34] Eventual Consistency Open Source Yammer private social network, Clipboard, GitHub,

enStratus Cloud
Voldemort [35] Eventual Consistency Open Source LinkedIn, eHarmony, GiltGroup, Nokia
CouchDB [36] Eventual Consistency Open Source Ubuntu One cloud, BBC (Dynamic Content Platform),

Credit Suisse (Market Place Framework)
MongoDB [37] Eventual Consistency Open Source SAP AG Software Entreprise, MTV, and Sourceforge
Yahoo PNUTS! Timeline Consistency Internal Yahoo web applicastions
Google BigTable [4] Strong Consistency Internal Google analytics, Google earth, Google personalized

search
Google Megastore [38] Strong Consistency Internal Google applications: Gmail, Picasa, Google Calendar,

Android Market, and AppEngine
Google Spanner Strong Consistency Internal Google F1
Redis [39] Strong Consistency Open Source Instagram, Flickr, The guardian news paper
Microsoft Azure Stor-
age [40]

Strong Consistency Internal Microsoft internal applications: networking search,
serving video, music and game content, Blob storage
cloud service

Apache HBase [41] Strong Consistency Open Source Facebook messaging system, traditionally used with
Hadoop for large set of applications

The Spanner architecture consists of a universe that may contain several zones

where zones are the unit of administrative deployment. A zone additionally presents

a location where data may be replicated. Each zone encapsulates a set of spanservers

that host data tables split into data structures called tablet. Spanner timestamps

data in order to provide multi-versioning features. A zonemaster is responsible for as-

signing data to spanservers whereas, the location proxies components provide clients

with information to locate the spanserver responsible for its data. Moreover, Span-

ner introduces an additional data abstraction called directories, which are a kind of

buckets to gather data that have the same access properties. The directory abstrac-

tion is the unit used to perform and optimize data movement and location. Data is

stored into semi-relational tables to support an SQL-like query language and general-

purpose transactions.

Replication is supported by implementing a Paxos protocol. Each spanserver as-

sociates a Paxos state machine with a tablet. The set of replicas for a given tablet is

called a Paxos group. For each tablet and its replicas, a long-lived Paxos leader is des-

ignated with a time-based leader lease. The Paxos state machines are used to keep a

consistent state of replicas. Therefore, writes must all initiate the Paxos protocol at

1.4. CLOUD STORAGE SYSTEMS 21

the level of the Paxos leader while reads can access Paxos states at any replica that is

sufficiently up-to-date. At the level of the leader replica, a lock table is used to man-

age concurrency control based on a two-phase locking (2PL) protocol. Consequently,

all operations that require synchronization should acquire locks at the lock table. In

order to manage the global ordering and an external consistency, Spanner relies on a

time API called TrueTime. This API exposes clock uncertainty and allows Spanner to

assign globally meaningful commit timestamps. The clock uncertainty is kept small

within the TrueTime API relying on atomic clocks and GPS based clocks at the level

of every data center. Moreover, when uncertainty grows to a large value, Spanner

slows down to wait out that uncertainty. The TrueTime API is then used to guar-

antee spanner desired correctness properties for concurrent executions. Therefore,

providing external consistency (linearizability) while enabling lock-free for read-only

transactions and non-blocking reads in the past.

Spanner presents a novel globally-distributed architecture that implements the

first globally ordered system with external consistency guarantees. While such guar-

antees were estimated to be fundamental for many applications within Google, it is

unclear how such an implementation affects latency, performance, and availability.

In particular, the write throughput might suffer from the two-phase locking mecha-

nism, which is known to be very expensive at wide scale. Moreover, it is not obvious

how Spanner deals with availability during network failures.

1.4.5 Discussion

As cloud computing technology emerges, more and more cloud storage systems have

been developed. Table 1.2 gives an overview of the four aforementioned cloud storage

systems along with several other storage system examples. They all serve as back-

end storage system for several services. These services cover many fields in addition

to social applications and business platforms. We can observe that for all these sys-

tems the designers had to opt for a unique consistency model, typically either strong

consistency or eventual consistency.

22CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

1.5 Adaptive Consistency

To cope with the cloud dynamicity and scale as well as the ever-growing users’ re-

quirements, many adaptive and dynamic consistency approaches were introduced.

Their goal is to use strong consistency only when it is necessary. Hereafter, we discuss

three adaptive approaches differ in the way they define the consistency requirements

as summarized in Table 1.3.

1.5.1 RedBlue Consistency

RedBlue consistency [6] is introduced in order to provide as fast responses as possible

and consistency when necessary. It provides two types of operations: Red and Blue.

Blue operations are executed locally and replicated lazily. Therefore, their ordering

can vary from site to site. In contrast, Red operations require a stronger consistency.

They must satisfy serializable ordering with each other and as a result generate com-

munication across sites for coordination. Subsequently, the RedBlue order is defined

as a partial ordering for which all Red operations are totally ordered. Moreover, every

site has a local causal serialization that provides a total ordering of operations which

are applied locally. This definition of the RedBlue consistency does not guarantee the

replicas state convergence. Convergence is reached if all causal serializations of op-

erations at the level of each site reach the same state. However, with the RedBlue

consistency, blue operations might have different orders in different sites. Therefore,

non-commutative operations executed in a different order won’t allow the replicas

convergence. As a result, non-commutative operations should not be tagged as blue if

the convergence is to be insured. An extension of the RedBlue consistency consists in

splitting original application operations into two components. A generator operation

that has no side-effect and is executed only at the primary site and shadow operation,

which is executed at every site. Shadow operations that are non-commutative or vi-

olate the application variant (e.g. negative values for a positive variable) are labeled

Red while all other shadow operations are labeled blue.

1.5. ADAPTIVE CONSISTENCY 23

The RedBlue consistency is implemented in a system called Gemini storage system.

Gemini uses MySQL as its storage backend. Its deployment consists of several sites

where each site is composed of four components: a storage engine, a proxy server,

concurrency coordinator, and data writer. The proxy server is the component that

processes client requests for data hosted on the storage engine (a relational database).

Generator operations are performed on a temporary private scratchpad, resulting in a

virtual private copy of the service state. Upon the completion of a generator operation,

the proxy server sends the shadow operation to the concurrency coordinator. The

latter notifies the proxy server whether the operation is accepted or rejected according

to the RedBlue consistency. If accepted, the operation is then delegated to the local

data writer in order to be executed in the storage engine.

1.5.2 Consistency Rationing

The consistency rationing model [43] allows designers to define consistency require-

ments on data instead of transactions. It divides data into three categories: A, B,

and C. Category A data requires strong consistency guarantees. Therefore, all trans-

actions on this data are serializable. However, serializability requires protocols and

implementation techniques as well as coordination, which are expensive in terms of

monetary cost and performance. Data within C category is data for which tempo-

rary inconsistency is acceptable. Subsequently, only weaker consistency guarantees,

in the form of session consistency, are implemented for this category. This comes at

a cheaper cost per transaction and allows better availability. The B category on the

other hand presents data for which consistency requirements change in time as in

the case for many applications. These data endure adaptive consistency that switch

between serializability and session consistency at runtime whenever necessary. The

goal of the adaptive consistency strategies is to minimize the overall cost of the pro-

vided service in the cloud. The general policy is an adaptive consistency model that

relies on an updates conflict probability. It observes the data access frequency to data

items in order to compute the probability of access conflicts. When this probability

grows over an adaptive threshold, serializability is selected. The computation of the

24CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

adaptive threshold is based on the monetary cost of weak and strong consistency, and

the expected cost of violating consistency.

Consistency rationing is implemented in a system that provides storage on top

of Amazon Simple Storage Service (S3) [44], which provides only eventual consis-

tency. Clients Requests are directed to application servers. These servers are hosts

on Amazon EC2 [2]. Therefore, application servers interact with the persistent stor-

age on Amazon S3. In order to provide consistency guarantees, the update requests

are buffered in queues called pending updates queues that are implemented on the

Amazon Simple Queue Service (SQS) [45]. Session consistency is provided by always

routing requests from the same client to the same server within a session. In contrast,

and in order to provide serializability, a two-phase locking protocol is used.

1.5.3 Harmony: Automated Self-Adaptive Consistency

While most of the existing adaptive consistency approaches require a global knowl-

edge of the application access pattern (e.g., consistency rationing requires the data to

be categorized in advance). However, with the tremendous increase in data size along

with the significant variation in services load, this task is hard to accomplish and

will add an extra overhead to the system. Moreover, these approaches cover a small

set of applications where operation orderings is strictly required. In this context, we

introduce our approach Harmony [33], an automated self-adaptive approach that con-

siders applications tolerance rate for stale reads (i.e., Harmony complements other

adaptive approaches as it targets applications with stale reads consideration rather

than operation orderings). Harmony tunes the consistency level at run-time accord-

ing to the application requirements. To cope with the ever-growing diversity in the

access patterns of cloud applications, Harmony embraces an intelligent estimation

model of stale reads, allowing to elastically scale up or down the number of replicas

involved in read operations to maintain a low tolerable fraction of stale reads.

Why use the stale reads rate to define the consistency requirements of an

1.5. ADAPTIVE CONSISTENCY 25

Table 1.3: Adaptive consistency approaches
The level at which
the consistency is
specified

Cloud Storage system: im-
plemented within

Testbed for evaluating the
solution

RedBlue Consistency Operations Gemini Amazon EC2 in different avail-
ability zones

Consistency Rationing Data Amazon S3 Amazon S3
Harmony Operations Apache Cassandra Grid’5000 and Amazon EC2

application? We consider two applications that may at some point have the same

access pattern. One is a web-shop application that can have heavy reads and writes

during the busy holiday periods, and a social network application that can also have

heavy access during important events or in the evening of a working day. These two

applications may have the same behavior at some point and are the same from the

point of view of the system when monitoring data accesses and network state, thus

they may be given the same consistency level. However, the cost for stale reads is

not the same for both applications. A social network application can tolerate a higher

number of stale reads than a web-shop application: a stale read has no effects on the

former, whereas it could result in anomalies for the latter. Consequently, defining

the consistency level in accordance to the stale reads rate can precisely reflect the

application requirement.

Harmony Implementation Harmony can be applied to different cloud storage

systems that are featured with flexible consistency rules. The current implementa-

tion of Harmony operates on top of Apache Cassandra storage [46] and consists of

two modules. The monitoring module collects relevant metrics about data access in

the storage system: read rates and write rates, as well as network latencies. These

data are further fed to the adaptive consistency module. This module is the heart

of the Harmony implementation where the estimation and the resulting consistency

level computations are performed: the Harmony estimation model, which is based

on probabilistic computations, predicts the stale read rate in accordance to the stat-

ics fed by the monitoring module. Accordingly, it chooses whether to select the basic

consistency level ONE (involving only one replica) or else, computes the number of

involved replicas necessary to maintain an acceptable stale reads rate while allowing

a better performance. More details about Harmony can be found in [33].

26CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

99
th

 P
er

ce
nt

ia
l L

at
en

cy
 (

m
s)

Client Threads

 Harmony-60% Tolerable SR
 Harmony-40% Tolerable SR
 Evantual Consistency
 Strong Consisteny

(a) Latency

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

T
hr

ou
gh

pu
t (

op
s/

s)

Client Threads

 Harmony-60% Tolerable SR
 Harmony-40% Tolerable SR
 Evantual Consistency
 Strong Consisteny

(b) Throughput

0 20 40 60 80 100
0

10000

20000

30000

40000

50000

60000

N
o.

 o
f S

ta
le

 R
ea

ds

Client Threads

 Harmony-60% Tolerable SR
 Harmony-40% Tolerable SR
 Evantual Consistency
 Strong Consisteny

(c) Staleness

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
 S

ta
le

 R
ea

ds

Network Latency (ms)

(d) Latency impact

Figure 1.4: Harmony with S% tolerable stale reads (Harmony-S% Tolerable SR)
against strong and eventual consistency on Amazon EC2.

Harmony Evaluation

In order to validate Harmony, a set of experimental evaluations was conducted

on Amazon Elastic Cloud Compute (EC2) [2]. For all experiments we ran Apache

Cassandra-1.0.2 as an underlying storage system, and used the Yahoo Cloud Serving

Benchmark! (YCSB) [47]. We deployed Cassandra on 20 VMs on Amazon EC2. The

goal of these experiments is to evaluate system performance and measure the stale-

ness rate. We used Workload-A: a heavy read-update workload from YCSB! with two

data sets with the size of 23.85 GB for EC2 and a total of 5 million operations.

Throughput & Latency: We compare Harmony with two settings (two different tol-

erable stale read rates of an application) with strong and eventual consistency. The

first tolerable stale read rate is 60% for Amazon EC2 (this rate tolerates more stal-

eness in the system implying lower consistency levels and thus less waiting time),

and the second tolerable stale read rate is 40% for Amazon EC2 (this rate is more

1.5. ADAPTIVE CONSISTENCY 27

restrictive than the first one, meaning that the number of read operations performed

with a higher level of consistency is larger). Network latency is high and varies in

time in Amazon EC2 (we observe it is 5 times higher than in a local cluster). We run

workload-A while varying the number of client threads.

Figure 1.4(a) presents the 99th percentile latency of read operations when the

number of client threads increases on EC2. The strong consistency approach provides

the highest latency having all reads to wait for responses from all replicas that are

spread over different racks and clusters. Eventual consistency is the approach that

provides the smallest latencies since all read operations are performed on one local

replica (possibly at the cost of consistency violation). We can clearly see that Har-

mony with both settings provides almost the same latency as a basic static eventual

consistency. Moreover, the latency increases by decreasing the tolerable stale reads

rate of an application as the probability of stale read can easily get higher than these

rates, which requires higher consistency levels and, as a result, a higher latency.

In Figure 1.4(b), we show the overall throughput for read and write operations

with different numbers of client threads. The throughput increases as the number

of threads increases. However, the throughput decreases with more than 90 threads.

This is because the number of client threads is higher than the number of storage

hosts and threads are served concurrently. We can observe that the throughput is

smaller with strong consistency. This is because of the extra network traffic gener-

ated by the synchronization process as well as the high operation latencies. We can

notice that our approach with a stale reads rate of 60%, provides very good through-

put that can be compared to the one of static eventual consistency approach. While

exhibiting high throughputs, our adaptive policies provide fewer stale reads as higher

consistency levels are chosen only when it matters.

Staleness: In Figure 1.4(c) , we show that Harmony, with both policies with different

application tolerated stale reads rates, provides less stale reads than the eventual

consistency approach. Moreover, we can see that, with a more restrictive tolerated

stale reads rate, we get a smaller number of stale reads. We observe that with rates

28CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

Table 1.4: Consistency in cloud storage system: Taxonomy
Datacenter level Wide-area level

Lock Lock-free Lock Lock-free
Eventual Consistency MongoDB Dynamo, Cas-

sandra, Riak,
Voldemort,
CouchDB, S3

BigTable, HBase Dynamo, Cas-
sandra, Riak,
Voldemort,
CouchDB, S3

Timeline Consistency PNUTS PNUTS
Strong Consistency Bigtable, HBase VoltDB Scatter, Span-

ner, Megastore,
Microsoft Azure
Storage

Adaptive Consistency Gemini, Consistency Rationing, Harmony

of 40%, the number of stale reads decreases when the number of threads grows over

40 threads. This is explained by the fact that with more than 40 threads the estimated

rate grows higher than 40%, for most of the run time due to concurrent accesses, and

higher consistency levels are chosen, thus decreasing the number of stale reads.

In order to see the impact of network latency on the stale reads estimation we ran

workload-A –varying the number of threads starting with 90 threads, then, 70, 40, 15

and finally, one thread– on Amazon EC2 and measure the network latency during the

run-time. Figure 1.4(d) shows that high network latency causes higher stale reads

regardless of the number of the threads (higher latency dominates the probability of

stale reads), while when the latency is small, the access pattern has more influence

on the probability.

1.6 Conclusion

This chapter addresses a major open issue in cloud storage systems: the manage-

ment of consistency for replicated data. Despite a plethora of cloud storage systems

available today, data consistency schemes are still far from satisfactory. We take this

opportunity to ponder the CAP theorem 13 years after it’s formulation and discuss

its implications in the modern context of cloud computing. The tension between Con-

sistency, Availability and Partition Tolerance has been handled in various ways in

existing distributed storage systems (e.g., by relaxing consistency at wide-area level).

1.6. CONCLUSION 29

We provide an overview of the major consistency models and approaches used for pro-

viding scalable yet highly available services on clouds. Cloud storage is foundational

to cloud computing because it provides a backend for hosting not only user data but

also the system-level data needed by cloud services. While discussing state-of-art

cloud storage systems used by the main cloud vendors, we advocate self-adaptivity as

a key means to approach the tradeoffs that must be handled by the user applications.

We review several different approaches to adaptive consistency that provide a flexible

consistency management for users to reduce performance overhead and monetary cost

when data are distributed across geographically distributed sites. Then, we discuss in

details Harmony: an automated approach to adaptive consistency evaluated with the

Cassandra cloud storage on Amazon EC2. The detailed review of the aforementioned

approaches led us to the definition of a taxonomy of different cloud storage systems

and the consistency model they have adopted according to their target environment

(intra- and inter-sites).

30CHAPTER 1. CONSISTENCY MANAGEMENT IN CLOUD STORAGE SYSTEMS

References
[1] H. Jin, S. Ibrahim, T. Bell, L. Qi, H. Cao, S. Wu, and X. Shi, “Tools and technologies for building the clouds,”

Cloud computing: Principles Systems and Applications, pp. 3–20, Aug. 2010.
[2] “Amazon Elastic Compute Cloud (Amazon EC2),” February 2013. [Online]. Available:

http://aws.amazon.com/ec2/
[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” SIGOPS - Operating Systems Review,

vol. 37, no. 5, pp. 29–43, 2003.
[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber, “Bigtable: A distributed storage system for structured data,” in Proceedings of the 7th conference on
usenix symposium on operating systems design and implementation, 2006, pp. 205–218.

[5] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu, “Maestro: Replica-aware map scheduling for mapre-
duce,” in Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid 2012), Ottawa, Canada, 2012, pp. 59–72.

[6] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues, “Making geo-replicated systems fast
as possible, consistent when necessary,” in Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation, ser. OSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 265–278.

[7] “Facebook Statistcs,” February 2013. [Online]. Available:
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22

[8] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data consistency properties and the trade-offs in commercial
cloud storage: the consumers’ perspective,” in CIDR 2011, Fifth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings, 2011, pp. 134–143.

[9] E. A. Brewer, “Towards robust distributed systems (abstract),” in Proceedings of the nineteenth annual ACM
symposium on Principles of distributed computing, ser. PODC ’00. New York, NY, USA: ACM, 2000, pp. 7–.

[10] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent available partition-tolerant
web services,” in ACM SIGACT News, 2002, p. 2002.

[11] E. Brewer, “Cap twelve years later: How the ”rules” have changed,” Computer, vol. 45, no. 2, pp. 23 –29, feb.
2012.

[12] D. J. Abadi, “Consistency tradeoffs in modern distributed database system design: Cap is only part of the
story,” Computer, vol. 45, pp. 37–42, 2012.

[13] S. Gilbert and N. Lynch, “Perspectives on the cap theorem,” Computer, vol. 45, no. 2, pp. 30 –36, feb. 2012.
[14] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery in database systems.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1987.
[15] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition for concurrent objects,” ACM Trans.

Program. Lang. Syst., vol. 12, no. 3, pp. 463–492, Jul. 1990.
[16] M. Dubois, C. Scheurich, and F. Briggs, “Memory access buffering in multiprocessors,” in 25 years of the

international symposia on Computer architecture (selected papers), ser. ISCA ’98. New York, NY, USA:
ACM, 1998, pp. 320–328.

[17] C. Scheurich and M. Dubois, “Concurrent miss resolution in multiprocessor caches,” in ICPP (1), 1988, pp.
118–125.

[18] S. V. Adve and M. D. Hill, “Weak ordering - a new definition,” SIGARCH Comput. Archit. News, vol. 18, no. 3a,
pp. 2–14, May 1990.

[19] R. Bisiani, A. Nowatzyk, and M. Ravishankar, “Coherent shared memory on a distributed memory machine,”
in ICPP (1), 1989, pp. 133–141.

[20] W. Vogels, “Eventually consistent,” Commun. ACM, pp. 40–44, 2009.
[21] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal memory: Definitions, implementation,

and programming,” Distributed Computing, vol. 9, no. 1, pp. 37–49, 1995.
[22] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t settle for eventual: scalable causal con-

sistency for wide-area storage with cops,” in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp. 401–416.

[23] M. Shapiro and B. Kemme, “Eventual Consistency,” in Encyclopedia of Database Systems (online and print),
M. T. Ózsu and L. Liu, Eds. springer, 2009.

[24] A. S. Tanenbaum and M. v. Steen, Distributed Systems: Principles and Paradigms (2nd Edition). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[25] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Comput. Surv., vol. 37, no. 1, pp. 42–81, Mar. 2005.
[26] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,

1.6. CONCLUSION 31

and R. Yerneni, “Pnuts: Yahoo!’s hosted data serving platform,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1277–
1288, Aug. 2008.

[27] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available key-value store,” in Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles, ser. SOSP ’07. New York, NY, USA: ACM,
2007, pp. 205–220.

[28] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Consistent hashing and random
trees: distributed caching protocols for relieving hot spots on the world wide web,” in Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, ser. STOC ’97. New York, NY, USA: ACM,
1997, pp. 654–663.

[29] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” SIGOPS Oper. Syst.
Rev., vol. 44, pp. 35–40, April 2010.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” in Proceedings of the 2001 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, ser. SIGCOMM ’01. New York, NY, USA: ACM, 2001,
pp. 149–160.

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free coordination for internet-scale sys-
tems,” in Proceedings of the 2010 USENIX conference on USENIX annual technical conference, ser. USENIX-
ATC’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 11–11.

[32] “About Data Consistency in Cassandra,” February 2012. [Online]. Available:
http://www.datastax.com/docs/1.0/dml/data consistency

[33] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Pérez-Hernández, “Harmony: Towards automated self-
adaptive consistency in cloud storage,” in 2012 IEEE International Conference on Cluster Computing (CLUS-
TER’12), Beijing, China, 2012, pp. 293–301.

[34] “Riak,” February 2013. [Online]. Available: http://basho.com/riak/
[35] “Voldemort,” February 2013. [Online]. Available: http://www.project-voldemort.com/voldemort/
[36] “Apache CouchDB,” February 2013. [Online]. Available: http://couchdb.apache.org/
[37] “mongoDB,” February 2013. [Online]. Available: http://www.mongodb.org/
[38] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yush-

prakh, “Megastore: Providing scalable, highly available storage for interactive services,” in Proceedings of
the Conference on Innovative Data system Research (CIDR), 2011, pp. 223–234.

[39] “Redis,” February 2013. [Online]. Available: http://redis.io/
[40] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci,

J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u.
Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan,
and L. Rigas, “Windows azure storage: a highly available cloud storage service with strong consistency,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, ser. SOSP ’11. New
York, NY, USA: ACM, 2011, pp. 143–157.

[41] “Apache HBase,” February 2013. [Online]. Available: http://hbase.apache.org/
[42] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s
globally-distributed database,” in Proceedings of the 10th USENIX conference on Operating Systems Design
and Implementation, ser. OSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 251–264.

[43] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency rationing in the cloud: pay only when it
matters,” Proc. VLDB Endow., vol. 2, pp. 253–264, August 2009.

[44] “Amazon Simple Storage Service (Amazon S3),” February 2013. [Online]. Available:
http://aws.amazon.com/s3/

[45] “Amazon Simple Queue Service (Amazon SQS),” February 2013. [Online]. Available:
http://aws.amazon.com/sqs/

[46] “Apache Cassandra,” February 2012. [Online]. Available: http://cassandra.apache.org/
[47] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud serving systems

with ycsb,” in Proceedings of the 1st ACM symposium on Cloud computing, ser. SoCC ’10. New York, NY,
USA: ACM, 2010, pp. 143–154.

