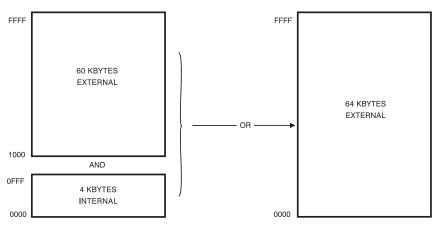

The information presented in this chapter is collected from the Microcontroller Architectural Overview, AT89C51, AT89LV51, AT89C52, AT89LV52, AT89C2051, and AT89C1051 data sheets of this book. The material has been selected and rearranged to form a quick and convenient reference for the programmers of Atmel's microcontroller family of devices. This guide pertains specifically to the AT89C51, AT89LV51, AT89C52, and AT89LV52.


Memory Organization


Program Memory

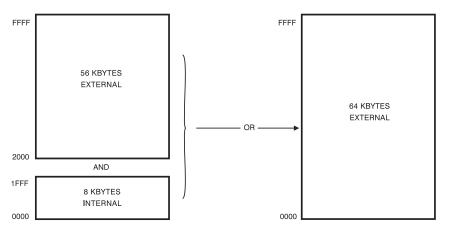
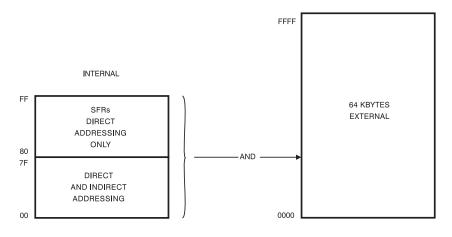

The AT89C Microcontroller has separate address spaces for program memory and data memory. The program memory can be up to 64K bytes long. The lower addresses may reside on-chip.

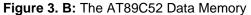
Figure 1 shows a map of the AT89C51 program memory, and Figure 2 shows a map of the AT89C52 program memory. The AT89C1051/2051 do not have off-board memory expansion.

Flash Microcontroller

Memory Organization

0498B-B-12/97




Data Memory

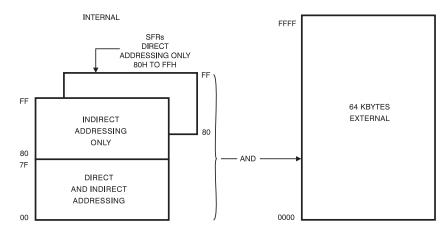

The AT89C can directly address up to 64K bytes of data memory external to the chip. The MOVX instruction accesses the external data memory. (Refer to the Instruction Set section in this chapter for a detailed description of instructions).

Figure 3. A: The AT89C51 Data Memory

The AT89C51 has 128 bytes of on-chip RAM (256 bytes in the AT89C52) plus a number of Special Function Registers (SFRs). The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing (MOV @Ri). Figure 3 shows the AT89C51 and the AT89C52 data memory organization.

Memory Organization

Indirect Address Area

In Figure 3b, the SFRs and the indirect address RAM have the same addresses (80H through 0FFH). Nevertheless, they are two separate areas and are accessed in two different ways.

For example, the following instruction writes 0AAH to Port 0, which is one of the SFRs.

MOV 80H, # 0AAH

The following instruction writes 0BBH in location 80H of the data RAM.

MOVR0, # 80H

MOV@ R0, # 0BBH

Thus, after executing both of these instructions, Port 0 contains 0AAH, and location 80H of the RAM contains 0BBH.

The stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space in devices that implement 256 bytes of internal RAM.

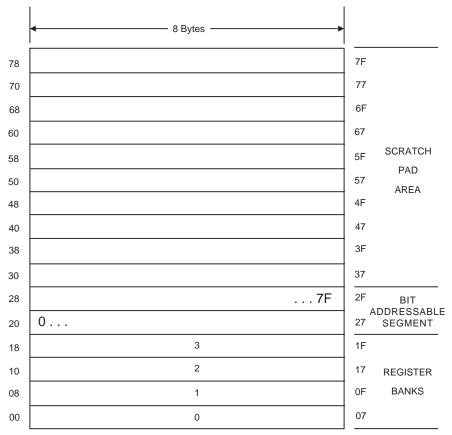
Direct and Indirect Address Area

The 128 bytes of RAM that can be accessed by both direct and indirect addressing can be divided into 3 segments as described in this section and as shown in Figure 4.

1. Register Banks 0-3: Locations 0 through 1FH (32 bytes). Reset default is to register bank 0. To use the other

Figure 4. 128 Bytes of Directly and Indirectly Addressable RAM

register banks, the user must select them in the software. Each register bank contains eight 1-byte registers, 0 through 7.


Reset initializes the Stack Pointer to location 07H. The Stack Pointer is then incremented once to start from location 08H, which is the first register (R0) of the second register bank. Thus, in order to use more than one register bank, the SP should be initialized to a different location of the RAM that is not used for data storage (that is, a higher part of the RAM).

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H through 2FH. Each of the 128 bits of this segment can be directly addressed (0 through 7FH).

These bits can be referred to in two ways. One way is to refer to their addresses, that is, 0 to 7FH. The other way is with reference to bytes 20H to 2FH. Thus, bits 0 through 7 can also be referred to as bits 20.0 through 20.7, and bits 8 through FH are the same as 21.0 through 21.7, and so on.

Each of the 16 bytes in this segment can also be addressed as a byte.

3. Scratch Pad Area: Bytes 30H through 7FH are available to the user as data RAM. However, if the stack pointer has been initialized to this area, enough bytes should be left aside to prevent SP data destruction.

Special Function Registers

Table 1 contains a list of all the SFRs and their addresses. All of the SFRs that are byte- and bit-addressable are located on the first column of the diagram in Figure 5.

Symbol	Name	Address	
ACC ⁽¹⁾	Accumulator	0E0H	
B ⁽¹⁾	B Register	0F0H	
PSW ⁽¹⁾	Program Status Word	0D0H	
SP	Stack Pointer	81H	
DPTR	Data Pointer 2 Bytes		
DPL	Low Byte	82H	
DPH	High Byte	83H	
P0 ⁽¹⁾	Port 0	80H	
P1 ⁽¹⁾	Port 1	90H	
P2 ⁽¹⁾	Port 2	0A0H	
P3 ⁽¹⁾	Port 3	ОВОН	
IP ⁽¹⁾	Interrupt Priority Control	0B8H	
IE ⁽¹⁾	Interrupt Enable Control	0A8H	
TMOD	Timer/Counter Mode Control	89H	
TCON ⁽¹⁾	Timer/Counter Control	88H	
T2CON ⁽¹⁾⁽²⁾	Timer/Counter 2 Control	0C8H	
T2MOD ⁽²⁾	Timer/Counter 2 Mode Control	0C9H	
TH0	Timer/Counter 0 High Byte	8CH	
TL0	Timer/Counter 0 Low Byte	8AH	
TH1	Timer/Counter 1 High Byte	8DH	
TL1	Timer/Counter 1 Low Byte	8BH	
TH2 ⁽²⁾	Timer/Counter 2 High Byte	0CDH	
TL2 ⁽²⁾	Timer/Counter 2 Low Byte	ОССН	
RCAP2H ⁽²⁾	T/C 2 Capture Reg. High Byte	ОСВН	
RCAP2L ⁽²⁾	T/C 2 Capture Reg. Low Byte	OCAH	
SCON ⁽¹⁾	Serial Control	98H	
SBUF	Serial Data Buffer	99H	
PCON	Power Control	87H	

Notes: 1. Bit addressable

2. AT89C52 only

Contents of the SFRs Just After Power-On or a Reset

Table 2. Contents of the SFRs after power-on or a hardware reset

Register	Value in Binary
ACC ⁽²⁾	0000000
B ⁽²⁾	0000000
PSW ⁽²⁾	0000000
SP	00000111
DPTR	
DPH	0000000
DPL	0000000
PO ⁽²⁾	1111111
P1 ⁽²⁾	1111111
P2 ⁽²⁾	1111111
P3 ⁽²⁾	1111111
IP ⁽²⁾	80C51 XXX00000, 80C52 XX00000
IE ⁽²⁾	80C51 0XX00000, 80C52 0X000000
TMOD	0000000
T2MOD ⁽³⁾	XXXXXX00
TCON ⁽²⁾	0000000
T2CON ⁽²⁾⁽³⁾	0000000
TH0	0000000
TLO	0000000
TH1	0000000
TL1	0000000
TH2 ⁽³⁾	0000000
TL2 ⁽³⁾	0000000
RCAP2H ⁽³⁾	0000000
RRAP2L ⁽³⁾	0000000
SCON ⁽²⁾	0000000
SBUF	Indeterminate
PCON	CMOS 0XXX0000

Notes: 1. X = Undefined

2. Bit Addressable

3. AT89C52 only

Special Function Register Map

Figure 5. SFR Memory Map

				8 By	/tes		
F8							
F0	В						
E8							
E0	ACC						
D8							
D0	PSW ⁽¹⁾						
C8	T2CON ⁽¹⁾⁽²⁾	T2MOD ⁽²⁾	RCAP2L ⁽²⁾	RCAP2H ⁽²⁾	TL2 ⁽²⁾	TH2 ⁽²⁾	
C0							
B8	IP ⁽¹⁾						
B0	P3						
A8	IE ⁽¹⁾						
A0	P2						
98	SCON ⁽¹⁾	SBUF					
90	P1						
88	TCON ⁽¹⁾	TMOD ⁽¹⁾	TL0	TL1	TH0	TH1	
80	P0	SP	DPL	DPH			PCON ⁽¹⁾

↑ Bit Addressable

```
Notes: 1. SFRs converting mode or control bits
```

2. AT89C52 only

SFRs whose bits are assigned for various functions are listed in this section. For more detailed information, refer to the Microcontroller Architectural Overview chapter of this book.

PSW: Program Status Word (Bit Addressable)

CY	AC	F0	RS1	RS0	OV	_	Р			
CY	PSW.7	Carry flag.								
AC	PSW.6	Auxiliary carry f	Auxiliary carry flag.							
F0	PSW.5	Flag 0 available	Flag 0 available to the user for general purpose.							
RS1	PSW.4	Register Bank	Register Bank selector bit 1. ⁽¹⁾							
RS0	PSW.3	Register Bank	selector bit 0. ⁽¹⁾							
OV	PSW.2	Overflow flag.								
—	PSW.1	User definable f	flag.							
Ρ	PSW.0	Parity flag. Set/ in the accumula	•	are each instruct	ion cycle to indica	ate an odd/even n	number of 1 bits			

Note:	1	The values of RS0 and RS1 select the corresponding register bank.
110101		

RS1	RS0	Register Bank	Address
0	0 0 0		00H-07H
0	1	1	08H-0FH
1	0	2	10H-17H
1	1	3	18H-1FH

PCON: Power Control Register (Not Bit Addressable)

SMOD	 	 GF1	GF0	PD	IDL

SMOD Double baud rate bit. If Timer 1 is used to generate baud rate and SMOD = 1, the baud rate is doubled when the Serial Port is used in modes 1, 2, or 3.

- Not implemented, reserved for future use.⁽¹⁾
- Not implemented, reserved for future use.⁽¹⁾
- Not implemented, reserved for future use. ⁽¹⁾
- GF1 General purpose flag bit.
- GF0 General purpose flag bit.
- PD Power Down bit. Setting this bit activates Power Down operation in the AT89C51.
- IDL Idle Mode bit. Setting this bit activates Idle Mode operation in the AT89C51.

If 1s are written to PD and IDL at the same time, PD takes precedence.

Note: 1. User software should not write 1s to reserved bits. These bits may be used in future microcontrollers to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

Interrupts

In order to use any of the interrupts in the Flash microcontroller, take the following three steps.

- 1. Set the EA (enable all) bit in the IE register to 1.
- 2. Set the corresponding individual interrupt enable bit in the IE register to 1.
- Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See the following table.

Interrupt Source	Vector Address		
IE0	0003H		
TF0	000BH		
IE1	0013H		
TF1	001BH		
R1 & T1	0023H		
TF2 & EXF2 ⁽¹⁾	002BH		

Note: 1. AT89C52 only.

In addition, for external interrupts, pins $\overline{INT0}$ and $\overline{INT1}$ (P3.2 and P3.3) must be set to 1, and depending on whether the interrupt is to be level or transition activated, bits IT0 or IT1 in the TCON register may need to be set to 1.

|Tx = 0| level activated

ITx = 1 transition activated

IE: Interrupt Enable Register (Bit Addressable)

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

EA	_	ET2	ES	ET1	EX1	ET0	EX0				
EA	IE.7		Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.								
—	IE.6	Not implemente	Not implemented, reserved for future use. ⁽¹⁾								
ET2	IE.5	Enables or disa	Enables or disables the Timer 2 overflow or capture interrupt (AT89C52 only).								
ES	IE.4	Enables or disa	bles the serial po	ort interrupt.							
ET1	IE.3	Enables or disa	bles the Timer 1	overflow interrupt	t.						
EX1	IE.2	Enables or disa	bles External Inte	errupt 1.							
ET0	IE. 1	Enables or disa	Enables or disables the Timer 0 overflow interrupt.								
EX0	IE.0	Enables or disables External Interrupt 0.									

Note: 1. User software should not write 1s to reserved bits. These bits may be used in future Flash microcontrollers to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

Assigning Higher Priority to

One or More Interrupts

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1.

While an interrupt service is in progress, it cannot be interrupted by an interrupt of the same or lower priority.

Priority Within Level

The only purpose of priority within a level is to resolve simultaneous requests of the same priority level.

From high to low, interrupt sources are listed below.

IE0 TF0 IE1 TF1 RI or TI TF2 or EXF2

IP: Interrupt Priority Register (Bit Addressable)

If the bit is 0, the corresponding interrupt has a lower priority. If the bit is 1, the corresponding interrupt has a higher priority

_	—	PT2	PS	PT1	PX1	PT0	PX0				
_	IP. 7	Not implemente	Not implemented, reserved for future use. ⁽¹⁾								
—	IP. 6	Not implemente	Not implemented, reserved for future use. ⁽¹⁾								
PT2	IP. 5	Defines the Tim	Defines the Timer 2 interrupt priority level (AT89C52 only).								
PS	IP. 4	Defines the Ser	Defines the Serial Port interrupt priority level.								
PT1	IP. 3	Defines the Tim	er 1 interrupt pri	ority level.							
PX1	IP. 2	Defines Externa	al Interrupt 1 prio	rity level.							
PT0	IP. 1	Defines the Tim	er 0 interrupt pri	ority level.							
PX0	IP. 0	Defines the Ext	Defines the External Interrupt 0 priority level.								
Note: 1.	User software should	I not write 1s to re	served bits. The	se bits may be us	ed in future Flash	microcontrollers	to invoke new				

Note: 1. User software should not write 1s to reserved bits. These bits may be used in future Flash microcontrollers to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

TCON: Timer/Counter Control Register (Bit Addressable)

TF1	TR1	TF0	TR0	IE1	IT1	IEO	IT0			
 TF1	TCON. 7	Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hardware as the processor vectors to the interrupt service routine.								
TR1	TCON. 6	Timer 1 run cor	ntrol bit. Set/clear	ed by software to	turn Timer/Coun	ter 1 ON/OFF.				
TF0	TCON. 5		Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hardware as the processor vectors to the service routine.							
TR0	TCON. 4	Timer 0 run cor	ntrol bit. Set/clear	ed by software to	turn Timer/Coun	ter 0 ON/OFF.				
IE1	TCON. 3			et by hardware wl nterrupt is proces		Interrupt edge is	detected.			
IT1	TCON. 2	Interrupt 1 type External Interru		leared by software	e to specify falling	g edge/low level tr	riggered			
IE0	TCON. 1		pt 0 edge flag. So interrupt is proce	et by hardware wl essed.	hen External Inte	rrupt edge detect	ed. Cleared by			
ITO	TCON. 0	Interrupt 0 type External Interru		leared by softwar	e to specify falling	g edge/low level t	riggered			

TMOD: Timer/Counter Mode Control Register (Not Bit Addressable)

	Tim	er 1		Timer 0			
GATE	C/T	M1	MO	GATE	C/T	M1	MO
GATE				R/COUNTERx ru Il run only while T			(hardware
C/T	Timer or Counter (input from Tx in		ed for Timer oper	ation (input from	internal system c	lock). Set for Cou	unter operation

M1 Mode selector bit.⁽¹⁾

M0 Mode selector bit.⁽¹⁾

Note: 1.

M1	MO	Operating	Operating Mode				
0	0	0	13-bit Timer				
0	1	1	16-bit Timer/Counter				
1	0	2	8-bit Auto-Reload Timer/Counter				
1	1	3	Split Timer Mode: (Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits, TH0 is an 8-bit Timer and is controlled by Timer 1 control bits.				
1	1	3	(Timer 1) Timer/Counter 1 stopped.				

Timer Set-Up

Tables 3 through 6 give TMOD values that can be used to set up Timer 0 in different modes.

It is assumed that only one timer is used at a time. If Timers 0 and 1 must run simultaneously in any mode, the value in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 5 and 6).

For example, if Timer 0 must run in mode 1 GATE (external control), and Timer 1 must run in mode 2 COUNTER, then the value that must be loaded into TMOD is 69H (09H from Table 3 ORed with 60H from Table 6).

Moreover, it is assumed that the user is not ready at this point to turn the timers on and will do so at another point in the program by setting bit TRx (in TCON) to 1.

Timer/Counter 0

Table 3. Timer/Counter 0 Used as a Timer MODE TIMER 0 TMOD **FUNCTION** INTERNAL **EXTERNAL** CONTROL⁽¹⁾ **CONTROL**⁽²⁾ 0 13-bit Timer 00H 08H 1 16-bit Timer 01H 09H 2 8-bit Auto-Reload 02H 0AH 3 0BH two 8-bit Timers 03H

 Table 4.
 Timer/Counter 0 Used as a Counter

MODE	TIMER 0	TMOD		
	FUNCTION	INTERNAL CONTROL ⁽¹⁾	EXTERNAL CONTROL ⁽²⁾	
0	13-bit Timer	04H	0CH	
1	16-bit Timer	05H	0DH	
2	8-bit Auto-Reload	06H	0EH	
3	one 8-bit Counter	07H	0FH	

Notes: 1. The Timer is turned ON/OFF by setting/clearing bit TR0 in the software.

 The Timer is turned ON/OFF by the 1 to 0 transition on INT0 (P3.2) when TR0 = 1 (hardware control).

Timer/Counter 1

Table 5. Timer/Counter 1 Used as a Timer

MODE	TIMER 1	TMOD		
	FUNCTION	INTERNAL CONTROL ⁽¹⁾	EXTERNAL CONTROL ⁽²⁾	
0	13-bit Timer	00H	80H	
1	16-bit Timer	10H	90H	
2	8-bit Auto-Reload	20H	A0H	
3	does not run	30H	B0H	

Table 6. Timer/Counter 1 Used as a Counter

MODE	COUNTER 1	TMOD		
	FUNCTION	INTERNAL CONTROL ⁽¹⁾	EXTERNAL CONTROL ⁽²⁾	
0	13-bit Timer	40H	СОН	
1	16-bit Timer	50H	D0H	
2	8-bit Auto-Reload	60H	E0H	
3	not available	_	—	

Notes: 1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.

2. The Timer is turned ON/OFF by the 1 to 0 transition on INT1 (P3.3) wen TR1 = 1 (hardware control).

T2CON: Timer/Counter 2 Control Register (Bit Addressable)

AT89C52 Only

TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
TF2	T2CON. 7	Timer 2 overflov RCLK = 1 or CL	• •	lware and cleared	by software. TF	2 cannot be set w	hen either
EXF2	T2CON. 6	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX, and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 causes the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.					
RCLK	T2CON. 5	Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.					
TLCK	T2CON. 4	Transmit clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.					
EXEN2	T2CON. 3	Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of negative transition on T2EX if Timer 2 is not being used to clock the Serial Port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.					
TR2	T2CON. 2	Software START/STOP control for Timer 2. A logic 1 starts the Timer.					
C/T2	T2CON. 1	Timer or Counter select. 0 = Internal Timer. 1 = External Event Counter (triggered by falling edge).					
CP/RL2	T2CON. 0	Capture/Reload flag. When set, captures occur on negative transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the Timer is forced to auto-reload on Timer 2 overflow.					

T2MOD: Timer 2 Mode Control Register

T2MOD Address = 0C9H

Reset Value = XXXX XX00B

Not Bit Addressable

-	-	-	-	-	-	T2OE	DCEN
Bit 7	6	5	4	3	2	1	0

Symbol	Function
-	Not implemented, reserved for future use
T2OE	Timer 2 Output Enable bit
DCEN	When set, this bit allows Timer 2 to be configured as an up/down counter.

Timer/Counter 2 Set-Up

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set separately to turn the Timer on.

MODE	T2CON			
	INTERNAL CONTROL ⁽¹⁾	EXTERNAL CONTROL ⁽²⁾		
16-bit Auto-Reload	00H	08H		
16-bit Capture	01H	09H		
Baud rate generator receive and transmit same baud rate	34H	36H		
receive only	24H	26H		
transmit only	14H	16H		

Table 8. Timer/Counter 2 Used as a Counter

MODE	TMOD			
	INTERNAL CONTROL ⁽¹⁾	EXTERNAL CONTROL ⁽²⁾		
16-bit Auto Reload	02H	0AH		
16-bit Capture	03H	0BH		

Notes: 1. Capture/Reload occurs only on Timer/Counter overflow.

> 2. Capture/Reload occurs on Timer/Counter overflow and a 1 to 0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generating mode.

SCON: Serial Port Control Register (Bit Addressable)

SM0	SM1	SM2	REN	TB8	RB8	TI	RI
SM0	SCON. 7	Serial Port mod	le specifier. ⁽¹⁾				
SM1	SCON. 6	Serial Port mod	le specifier. ⁽¹⁾				
SM2	SCON. 5	Enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3, if SM2 is set to 1, then RI is not activated if the received 9th data bit (RB8) is 0. In mode 1, if $SM2 = 1$, then RI is not activated if a valid stop bit was not received. In mode 0, SM2 should be 0. (See Table 9).					
REN	SCON. 4	Set/Cleared by	Set/Cleared by software to Enable/Disable reception.				
TB8	SCON. 3	The 9th bit that is transmitted in modes 2 and 3. Set/Cleared by software.					
RB8	SCON. 2	In modes 2 and 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit that was received. In mode 0, RB8 is not used.					
ТІ	SCON. 1	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes. Must be cleared by software.					
RI	SCON. 0	Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0 or halfway through the stop bit time in the other modes (except see SM2). Must be cleared by software.					

Note: 1.

SM0	SM1	Mode	Description	Baud Rate
0	0	0	SHIFT REGISTER	Fosc./12
0	1	1	8-Bit UART	Variable
1	0	2	9-Bit UART	Fosc./64 OR Fosc./32
1	1	3	9-Bit UART	Variable

Table 9. Serial Port Set-Up

MODE	SCON	SM2 VARIATION		
0	10H	Single Processor		
1	50H	Environment		
2	90H	(SM2 = 0)		
3	D0H			
0	NA	Multiprocessor		
1	70H	Environment		
2	B0H	(SM2 = 1)		
3	F0H			

Generating Baud Rates

Serial Port in Mode 0

Mode 0 has a fixed baud rate, which is 1/12 of the oscillator frequency. To run the serial port in this mode, none of the Timer/Counters need to be set up. Only the SCON register needs to be defined.

Serial Port in Mode 1

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (AT89C52 only).

Using Timer/Counter 1 to Generate Baud Rates

For this purpose, Timer I is used in mode 2 (Auto-Reload). Refer to the Timer Setup section of this chapter.

Baud Rate =
$$\frac{K \times Oscillator Frequency}{32 \times 12 \times [256 - (TH1)]}$$

If SMOD = 0, then K = 1.

If SMOD = 1, then K = 2. (SMOD is the PCON register).

The user usually knows the baud rate but needs to know the reload value for TH1. Therefore, the equation to calculate TH1 can be written as follows.

 $TH1 = 256 - \frac{K \times Oscillator Frequency}{384 \times Baud Rate}$

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In this case, the user may have to choose another crystal frequency. See Baud Rate table.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register (that is, ORL PCON, # 80H). The address of PCON is 87H.

Using Timer/Counter 2 to Generate Baud Rates

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this chapter. If Timer 2 is clocked through pin T2 (P1.0) the baud rate given by the following equation.

Baud Rate =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

If it is being clocked internally the baud rate is given by the following equation.

Baud Rate =
$$\frac{\text{Oscillator Frequency}}{32 \times [65536 - (\text{RCAP2H}, \text{RCAP2L})]}$$

To obtain the reload value for RCAP2H and RCAP2L the previous equation can be rewritten as follows.

$$RCAP2H, RCAP2L = 65536 - \frac{Oscillator Frequency}{32 \times Baud Rate}$$

Serial Port in Mode 2

The baud rate is fixed in this mode and is 1/32 or 1/64 of the oscillator frequency, depending on the value of the SMOD bit in the PCON register.

In this mode, none of the Timers is used, and the clock comes from the internal phase 2 clock.

SMOD = 1, Baud Rate = 1/32 Osc Freq.

SMOD = O, Baud Rate = 1/64 Osc Freq.

To set the SMOD bit, use ORL PCON, # 80H. The address of PCON is 87H.

Serial Port in Mode 3

The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

Baud Rate Table

Crystal Frequency	7.3728 MHz	8.00 MHz	11.0592 MHz	12.00 MHz	14.75156 MHz	16.00 MHz
TH1						
E0	600	651	900	976	1,200	1,302
F0	1,200	1,302	1,800	1,953	2,400	2,604
F8	2,400	2,604	3,600	3,906	4,800	5,208
F9	2,743	2,976	8,299	4,464	5,486	5,952
FA	3,200	3,472	9,600	5,208	6,400	6,944
FF	19,200	20,833	57,600	62,500		41,666

Table 10. Baud Rate Summary

Baud Rate	Crystal Frequency	SMOD	TH1 Reload Value	Actual Baud Rate	Error
9600	12.000 MHz	1	-7 (F9H)	8923	7%
2400	12.000 MHz	0	-13 (F3H)	2404	0.16%
1200	12.000 MHz	0	-26 (E6H)	1202	0.16%
9200	11.059 MHz	1	-3 (FDH)	19200	0
9600	11.059 MHz	0	-3 (FDH)	9600	0
2400	11.059 MHz	0	-12 (F4H)	2400	0
1200	11.059 MHz	0	-24 (E8H)	1200	0

Note: Due to rounding, there is a slight error in the resulting baud rate. Generally, a 5% error is tolerable using asynchronous (start/stop) communications. Exact baud rates are possible using an 11.059 MHz crystal. The table above summarizes the TH1 reload values for the most common baud rates, using a 12.000 MHz or 11.059 MHz crystal.