
Sistemas Empotrados y Ubicuos
Máster Universitario en Ingenieŕıa Infórmatica

Cross-Development Environment
Work

Version 1.1 — March 6, 2022

1st student assignment

Universidad Politécnica de Madrid
DATSI

Departamento de Arquitectura y Tecnoloǵıa de Sistemas
Informáticos

https://www.datsi.fi.upm.es

https://www.datsi.fi.upm.es

c© 2022 DATSI/UPM.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License. https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Introduction 1
References . 1
Acronyms . 2

Overview 3
Laboratory kit components . 3
Architecture of the laboratory platform . 3
Computer board and connections . 4

Set up 7
Install a native programming environment . 7
Install the cross-compilation tools . 8
Install MATLABTMand SimulinkTM . 11

1 OBDH 13
1.1 Software architecture . 13
1.2 Serial line connections. 14
1.3 Host terminal application. 14
1.4 Download the code and study the implementation. 16
1.5 Compile and run. 17
1.6 Make changes to the program. 17
1.7 Perform a temporal analysis of the system. 17

2 OBDH with ACS 19
2.1 Model In the Loop (MIL) validation . 19
2.2 Code generation. 21
2.3 Software architecture . 21
2.4 Compile and run with the debugger. 23
2.5 Processor In the Loop (PIL) validation. 24
2.6 Make changes to the simulation. 24

3 Student assignment 27

A Temperature sensor 29

i

ii

Introduction

This document provides instructions for laboratory work in the field of embedded systems. The
laboratory is part of the Embedded and Ubiquitous Systems course of the UPM Máster Universi-
tario en Ingenieŕıa Infórmatica (MUII) program. The laboratory is based on a computer kit that
is used to build a simplified version of a satellite on-board software system (OBSW). An instance
of the laboratory kit will be made available to every student registered in the course during the
laboratory session.

Students are required to use their own personal computer, running Windows, MacOS, or
GNU/Linux, to carry out the laboratory assignments. The outline of the laboratory assignments
to be carried out is as follows:

1. Installation of a native programming environment.

2. Installation of the cross-platform programming tools.

3. On-board data handling (OBDH) system.

4. On-board data handling (OBDH) system with Attitude Control System (ACS).

References

The following documents contain additional information about the software and hardware tools
used to develop the work:

Hardware

1. STMicroelectronics. DB1421 Data Brief. STM32F4DISCOVERY - Discovery kit with
STM32F407VG MCU.

2. STMicroelectronics. UM1472 User manual - Discovery kit with STM32F407VG MCU.

3. STMicroelectronics. DS 8626. Data sheet - STM32F405xx, STM32F407xx. ARM Cortex-
M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB OTG HS/FS,
Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera.

4. STMicroelectronics. RM0090 Reference manual - STM32F405/415, STM32F407/417, STM32F427/437
and STM32F429/439 advanced Arm c©-based 32-bit MCUs.

Software

The following manuals are available from the “Help” menu in the GNAT Programming Studio
(GPS):

1. Ada Reference Manual.

2. GPS User’s Guide.

3. GNAT User’s Guide for Native Platforms.

4. GNAT User’s Guide Supplement for Cross Platforms

5. GNAT Reference Manual.

1

https://www.st.com/resource/en/data_brief/stm32f4discovery.pdf
https://www.st.com/resource/en/data_brief/stm32f4discovery.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/70/fe/4a/3f/e7/e1/4f/7d/DM00039084.pdf/files/DM00039084.pdf/jcr:content/translations/en.DM00039084.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.ada-auth.org/standards/rm12i_w_tc1/html/RM-TTL.html

2

Acronyms

ADC Analog to Digital Converter.

ACS Attitude Control System.

DAC Digital to Analog Converter.

FPU Floating Point Unit.

GCC GNU compilation system..

GDB GNU Debugger.

GNAT GNU Ada Translator.

GNU GNU is not Unix.

GPL GNU Public License.

GPS GNAT Programming Studio.

LGPL Lesser GNU Public License (formerly Library GPL).

MCU Microcontroller Unit.

OBC On-Board Computer.

OBDH On-Board Data Handling.

OBSW On-Board Software.

OS Operating System.

PC IBM Personal Computer architecture.

TC Telecommand.

TM Telemetry.

USART Universal Synchronous Asynchronous Receiver Transmitter.

USB Universal Serial Bus.

Overview

Laboratory kit components

The laboratory kit includes:

• An STM32F407 computer board, which emulates an on-board computer system (OBC).

• A USB A / mini USB cable which is used to connect the OBC board to the development
station hosted on the student PC.

• A USB / UART interface cable which is used to provide a serial line link between the OBC
board and the ground station software running on the student PC.

Figure 1 shows the components of the laboratory kit and the connections to the student PC.

Figure 1: Laboratory kit.

Architecture of the laboratory platform

The components of the laboratory kit are used to emulate a simplified version of a satellite on-board
software system. Figure 2 shows the architecture of the laboratory system.

The system consists of a flight segment, implemented on the laboratory computer board, and
a ground system, implemented on the student PC. The communication between both segments
is carried out by means of a serial line, simulating the radio link of a real satellite mission. The
student work is centered on programming the computer board. The ground station software will
be provided by the teachers.

3

4

Figure 2: Architecture of the laboratory system.

Computer board and connections

The STM32F407 board is used as a low-cost replacement for a satellite on-board computer (OBC).
The board features a 32-bit ARM Cortex-M4 microcomputer, 192 KB RAM, 1 MB Flash memory
and a number of other devices.

Figure 3 shows an overall view of the computer board.
The main elements that will be used in the laboratory are:

• USB ST-LINK connector, which is linked to a PC with a mini USB-USB A cable. This
connection is used for the following functions:

– power supply to the board (5 V)

– program loading and debugging from host

• GPIO pins PB6, PB7 and GND. GPIO (General Purpose Input-Output) is a standard
interface for connecting external devices. These GPIO pins are used in the laboratory to
connect a serial line to a USB port on a PC, emulating the connection to the on-board radio
equipment in a satellite.

• Temperature and voltage sensors. These sensors are part of the STM32 microcomputer
chip, and can be read using internal registers in the MCU. They are used in the laboratory
to emulate the housekeeping

5

Figure 3: Computer board.

6

Set up

Install a native programming environment

The aim is to install a native programming environment for the Ada language on the student PC.
This environment will later be extended with cross-compilation tools for the STM32 board to be
used in the laboratory.

The programming environment to be used is GNAT Community, an open-source software
development environment freely available from AdaCore, a company specialised in providing tools
and solutions for developing high-integrity software,

Download and install GNAT

The GNAT Community compilation system can be downloaded from https://www.adacore.com/

download/more. Installation packages for Windows, MacOS and GNU Linux are available at the
download page. The file README.txt provides installation instructions, which are summarised
as follows:

Windows

1. Download the file gnat-2021-20210519-x86 64-windows64-bin.exe

2. Run the file and follow the instructions.

MacOS

1. Download the file gnat-2020-20200818-x86 64-darwin-bin.dmg

2. Open the dmg disk and execute the application inside it. In order to circumvent the system
protection, control-click on the file and then click on “opens” in the emergent window.

Notice that you need to have installed the Xcode application to install GNAT. If you still see the
following error:

ld: library not found for -lSystem
then you might have to execute the following:

xcode-select -s /Applications/Xcode.app/Contents/Developer

GNU Linux

1. Download the file gnat-2021-20210519-x86 64-linux-bin

2. You will need to make the package executable before running it. In a command prompt,
execute the following command:
chmod +x path to the package.bin
and execute the package. The README.txt file contains additional installation and execu-
tion instructions.

Test the installation with a simple program

The GNAT compilation system includes the GPS (GNAT programming studio) programming
environment, which allows users to edit, compile, and run Ada and C programs. Figure4 shows
the main GPS window, which is composed of the following areas:

7

https://www.adacore.com/download/more
https://www.adacore.com/download/more

8

Figure 4: GNAT Programming Studio (GPS).

• a menu bar at the top

• a tool bar under the menu bar

• on the left, a notebook allowing you to switch between Project, Outline and Scenario views

• the working area in the center

• the messages window at the bottom

GPS organises source code in projects. A project is a set of source files which are compiled
together in order to produce a single binary executable. Before starting you will need to cre-
ate a folder to store your software projects. The recommendation is to create a folder named
OBDH LABS in a directory of your choice. The next activity is to write and run a simple Ada
program using GPS:

1. Create a new project by clicking on File → New Project ... in the top menu. Choose the
Simple Ada Project template.

2. Choose a folder to deploy the project, e.g. OBDH LABS/LAB1. Set the project name to
Hello and the main name also to Hello.

3. Double click on the hello.adb file in the project view to open the file in the working area.

4. Edit the file in the working area so that it has the same content as in figure4.

5. Build and run the executable by clicking on the B symbol in the tool bar. You should see
a number of compilation-related messages and, if everything is right, you will see the text
“Hello, world!” in the Run tab of the bottom window.

Install the cross-compilation tools

The aim is to get acquainted with the embedded computer board and to install and test the
cross-compilation tools for GNAT that will be used to develop executable code for it.

9

Cross-compilation tools

The computer board will programmed in Ada. The GNAT cross-platform software development
system will be used (figure 5), where the student PC is the host platform and the SMT32 board
is the target platform.

Figure 5: Cross-compilation and debugging system

In order to compile a program, the compilation chain is run on the host computer to produce
an executable file for the target computer. The executable is then loaded into the target memory,
from where it can be run. A monitor program is preinstalled on the target board that supports
loading and debugging from the host platform.

Download and install GNAT ARM ELF

GNAT ARM ELF is the cross-compilation chain to be used with the STM32F4 board. It can be
downloaded from the same page as the native GNAT system, https://www.adacore.com/download/more,
and there are installation packages for Windows, MacOS and GNU Linux available. The file
README.txt provides installation instructions, which are summarised as follows.

Windows

1. Select ARM ELF (hosted on windows64) and download the file gnat-2021-20210519-arm-
elf-windows64-bin.exe

2. Run the file and follow the instructions.

3. You will also need to install the USB driver for the ST-LINK probe. To do so, go to http://

www.st.com/content/st_com/en/products/embedded-software/development-tool-software/

stsw-link009.html, and click on Get Software. Click on Get Software under the Download
column of the table that shows up to obtain the driver. You will need to accept ST Micro’s
license agreement and enter your contact details. Once downloaded unzip the USB device
driver and run the installer, accepting all the defaults.

http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link009.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link009.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link009.html

10

MacOS

1. Download the file gnat-community-2019-20190517-arm-elf-darwin-bin.dmg

2. Open the dmg disk and execute the application inside it. In order to circumvent the system
protection, control-click on the file and then click on “open” in the emergent window.

3. You will also need the st-util, st-flash, and st-info tools. You can download the bina-
ries from https://github.com/texane/stlink/releases/download/1.3.0/stlink-1.3.

0-macosx-amd64.zip. Unzip and copy the files in the bin directory to a directory in your
PATH. You may need to circumvent MacOS protection by executing the command:

$ xattr -d com.apple.quarantine path-to-executable-file

GNU Linux

1. Download the file gnat-2021-20210519-arm-elf-linux64-bin

2. You will need to make the package executable before running it. In a command prompt,
execute the following command:

chmod +x path to the package.bin

and then execute the package.

3. You will also need to install the stlink tools. In Ubuntu and Debian stlink must be installed
from sources. Follow the instructions on http://docs.adacore.com/live/wave/gnat_

ugx/html/gnat_ugx/gnat_ugx/arm-elf_topics_and_tutorial.html#linux.

The README.txt file contains additional installation and execution instructions.

Test your installation with an embedded program

The next thing is to compile a run a simple embedded program. This program is only intended to
test that the compilation chain and the ST-LINK tools have been properly installed.

Open GPS and do the following:

1. Create a new project by clicking on File → New Project ... in the top menu. Choose the
STM324F compatible → LED demo project template.

2. Choose a folder to deploy the project, e.g. OBDH LABS/LAB2. Set the project name to
led demo and the main name to main. A window with a project including a number of
source files will open.

3. Right-click on the project icon on the left side area, and choose Project→ Properties (figure
6). On the emerging window, select Embedded and change the Connection tool selector to
st-util. Save the settings.

4. Connect the STM32F4 board to the computer by means of a USB A / mini USB cable.

5. Build the executable and load it into the board by clicking on the symbol in the tool
bar (or select Build → Bareboard → Flash to board on the top menu). You should see a
number of compilation-related messages ending with “Flashing complete. You may need to
reset or cycle power”.

6. If everything is all right, you will see the LEDS on the board blinking in a circular pattern.

7. Download and install the Ada Drivers Library The Ada Drivers Library is a set of Ada
packages that make it easier to write software for embedded devices, including the STM32F4
microcontroller family and some demonstration boards. The source code can be found at
https://github.com/AdaCore/Ada_Drivers_Library. To install the library, click on the
green Clone or download button on the upper right side and then on Download Zip in
the emerging window. You will get a zip archive in your downloads folder. Unzip the
archive and move the resulting folder to your OBDH LABS folder. Rename the folder to
Ada Drivers Library, removing any trailing text.

8. Compile and run a test program with the Ada Drivers Library

Open GPS and do the following:

https://github.com/texane/stlink/releases/download/1.3.0/stlink-1.3.0-macosx-amd64.zip
https://github.com/texane/stlink/releases/download/1.3.0/stlink-1.3.0-macosx-amd64.zip
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx/arm-elf_topics_and_tutorial.html#linux
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx/arm-elf_topics_and_tutorial.html#linux
https://github.com/AdaCore/Ada_Drivers_Library

11

1. Select Open project on the welcome window. Navigate to .../OBDH LABS/Ada Drivers Library/examples/STMF4 DISCO
and open the project file: blinky f4disco.gpr.

2. Build the executable and load it into the board by clicking on the symbol in the tool
bar (or select Build → Bareboard → Flash to board on the top menu). When the loading
is complete, you will see the board LEDS blinking all at the same time.

Install MATLABTMand SimulinkTM

MATLAB and Simulink will be used to generate C code from a Simulink model and to validate
the system by Processor In the Loop (PIL).

UPM has a campus license available for students. http://www.upm.es/sfs/Rectorado/

Vicerrectorado%20de%20Tecnologias%20de%20la%20Informacion%20y%20Servicios%20en%20Red/

Servicio%20de%20Planificacion%20Informatica%20y%20Comunicaciones/SW/MATLAB_UPM_Estudiantes.

pdf explains how to install MATLAB and Simulink.
In order to generate C code, the Embedded Coder toolbox and its dependencies must be

installed.

http://www.upm.es/sfs/Rectorado/Vicerrectorado%20de%20Tecnologias%20de%20la%20Informacion%20y%20Servicios%20en%20Red/Servicio%20de%20Planificacion%20Informatica%20y%20Comunicaciones/SW/MATLAB_UPM_Estudiantes.pdf
http://www.upm.es/sfs/Rectorado/Vicerrectorado%20de%20Tecnologias%20de%20la%20Informacion%20y%20Servicios%20en%20Red/Servicio%20de%20Planificacion%20Informatica%20y%20Comunicaciones/SW/MATLAB_UPM_Estudiantes.pdf
http://www.upm.es/sfs/Rectorado/Vicerrectorado%20de%20Tecnologias%20de%20la%20Informacion%20y%20Servicios%20en%20Red/Servicio%20de%20Planificacion%20Informatica%20y%20Comunicaciones/SW/MATLAB_UPM_Estudiantes.pdf
http://www.upm.es/sfs/Rectorado/Vicerrectorado%20de%20Tecnologias%20de%20la%20Informacion%20y%20Servicios%20en%20Red/Servicio%20de%20Planificacion%20Informatica%20y%20Comunicaciones/SW/MATLAB_UPM_Estudiantes.pdf

12

Assignment 1

OBDH

The aim of this assignment is to experiment with a reduced version of an On-Board Software
(OBSW) of a satellite. The OBSW reads the MCU temperature by using a temperature sensor
that is connected to an ADC.

1.1 Software architecture

The software architecture of the OBSW is depicted in 1.1 The software components are:

Figure 1.1: Software architecture of OBSW.

Telemetry and Telecommand (TTC). This module is in charge of the communications with
the ground station. The ground station is simulated by the Host terminal. It must be
activated cyclically with a 10 second period.

Serial. This module provides a high-level interface to a text console where the measured temper-
ature values can be output.

Housekeeping. Main component, which performs the basic functionality of the system, i.e. read-
ing a temperature value and storing the value on the Storage component. It must be acti-
vated cyclically with a 1 second period.

Sensor. This module provides a high-level interface to the temperature sensor and deals with all
the details of reading the ADC to which the sensor is connected.

13

14 ASSIGNMENT 1. OBDH

Storage. This component is a data object storing one temperature value, which is written by
Housekeeping and read by TTC.

Since the OBC board does not have a text output device, temperature values are sent by a
serial line to the ground station. In this way, the radio link between the satellite and the ground
station is simulated.

1.2 Serial line connections.

This scheme makes use of the USB/UART interface cable provided to the students. The USB/
UART cable has a TTL connector that must be connected to the STM32f4 board pins that convey
the serial line (UART) signals (figure 1.2).

Figure 1.2: UART cable connector.

The connections to be made are summarized in the following table (see figure 3 for the location
of the pins on the board):

Connector pin Board pin
1 (black) GND
4 (orange) PB7
5 (yellow) PB6

Table 1.1: Serial line connections on board.

The other end of the interface cable has a USB-A connector that must be plugged to a USB
port on the host computer. The values sent to the host computer are displayed using a terminal
application that can handle a USB serial port. The host terminal application should be set to
taking the USB serial port as input with a transmission rate of 115200 bps and 8N1.

1.3 Host terminal application.

1.3.1 Windows

The recommended application to display messages received on the USB serial port is PuTTY. You
can download an installation package from https://www.putty.org.

In order to configure the application, you need first to identify the COM port corresponding to
the USB serial line. Open the Device Manager and look at the USB Serial Port entry. The COM
port is displayed next to it (e.g. COM 4 in figure 1.3).

Now, to set up PuTTY, open the application and set the configuration parameters as shown
in figure 1.2.

1.3.2 MacOS

The recommended application is screen, which is already installed in MacOS. First you have to
identify the USB serial port. Open a terminal window and type

$ ls /dev — grep -i usb

https://www.putty.org

1.3. HOST TERMINAL APPLICATION. 15

Figure 1.3: Identification of usb serial port.

You will get a list of devices like the following:

cu.usbserial-FTA5I24G

tty.usbserial-FTA5I24G

As you can see, there are two devices for each serial line. You can use any of them, but for
reasons not to be discussed here it is better, in general, to use the one starting with cu.

To use the screen application enter the following command:

$ screen /dev/cu.usbserial-XXXX 115200

where /dev/cu.usbserial-XXXX is the name of your device.

To exit the application, type CTRL-A and then CTRL-K.

1.3.3 GNU Linux

The recommended application is screen,4 which can be installed in Ubuntu Linux with:

$ sudo apt install screen

In order to identify the USB serial port, type the following command on a terminal:

$ ls /dev — grep -i usb

You will get a result like the following:

ttyUSB0

To use the screen application enter the following command:

$ screen /dev/ttyUSB0 115200

To exit the application, type CTRL-A and then SHIFT-K.

16 ASSIGNMENT 1. OBDH

Figure 1.4: PuTTY configuration.

1.4 Download the code and study the implemen-

tation.

The implementation code, as initially provided to the students, can be downloaded from https:

//github.com/STR-UPM/OBDH_LABS. Click on Clone or download, download a zip archive, unzip
and move to your work directory. The code for this assignment is in the LAB6 folder.

The Housekeeping package is the root element of the housekeeping subsystem. Its specification
consists of one procedure, Initialize, that starts the operation of the component. It has four
subpackages:

Housekeeping is the root package of the subsystem and contains a concurrent task, Housekeep-
ing Task that stores Data in Storage and toggles the blue LED every second.

Housekeeping.Data contains the definitions of the data types used in the subsystem. The data
type Analog Data is used to read the ADC, which are integers in the range 0 to 4095 as
directly provided by the ADC. The data type State is a record that contains the ADC read
and the corresponding timestamp.

These ADC values have to be converted to engineering units. i.e. degrees Celsius, by
following the specification of the temperature sensor (se appendix ??). Raw sensor readings
are usually sent to ground station that is in charge of converting them to engineering units.

Housekeeping.Sensor contains the details of the temperature sensor. Its specification includes
the Initialize and Get procedures. This package uses the Ada Drivers Library to interact
with the OBC board hardware.

Housekeeping.Images includes functions which are used to convert to Strings temperature and
timestamp values.

The TTC package is the root of the telecommunications system, which in this version is greatly
simplified with respect to a real application. It contains a concurrent task, HK Task, which takes
measured sensor values from Storage and sends them to the ground station by using Serial every
ten seconds. The task also toggles the orange LED.

The Storage package implements the communication between the Housekeeping and TTC sub-
systems. Since this object is shared by two concurrent tasks, it is implemented as a protected
object, so that its operations are executed in mutual exclusion. There is also conditional synchro-
nization: the TTC task must wait until there is a fresh value in the store. However, Housekeeping
should not wait if the previous value put into Storage has not been consumed, in order not to delay

https://github.com/STR-UPM/OBDH_LABS
https://github.com/STR-UPM/OBDH_LABS

1.5. COMPILE AND RUN. 17

the housekeeping function. In this case, the stored value is overwritten. Notice that this differs
from the classical specification of a bounded buffer.

The Serial component is implemented by the Serial.IO package and other packages in the
serial ports folder. These packages have been adapted from the examples in the Ada Drivers
Library. The blocking kind of serial port has been chosen for this project. This means that the
task calling the Put operation (TM Task) waits on a busy loop until the operation is complete.

The main procedure is OBSW. It calls Housekeeping.Initialize, which initializes the sensor so
that Housekeeping Task can proceed. Additionally, the green LEDs is toggled on and off to provide
a visual check that the program is running.

Notice that Run, and hence Initialize and OBSW, never return. Therefore the program exe-
cutes indefinitely, as is common in embedded systems.

1.5 Compile and run.

Open GPS and do the following:

1. Select Open project on the welcome window. Navigate to the OBSW directory and open
the realtime housekeeping.gpr project file.

2. Build the executable and load it into the board by clicking on the symbol in the tool
bar (or select Build → Bareboard → Flash to board on the top menu).

The program will be compiled, and the executable will be loaded into the board flash
memory. After that, the program starts to run on the board (check the blinking LEDs).

3. Connect the serial cable to a USB port on the host computer, if not already done.

4. Identify the serial port name on the host computer and launch the remote terminal applica-
tion as explained in section 1.3. The sensor measured values together with their respective
timestamps will start being displayed on the host application (figure 1.5).

Figure 1.5: Sample output on host terminal.

1.6 Make changes to the program.

You may make change to the provided program in order to make sure that you understand the
logics behind the source code. Proposed change is:

Include the conversion to Celsius in the TTC.Send procedure. Temperature function of
HK data-converter that can be found in utilities can be used.

1.7 Perform a temporal analysis of the system.

In order to carry out a response-time analysis of the temporal behaviour of the system, you will
need to measure the execution time of the task bodies and the protected procedure bodies. A
simple loop technique using the standard real-time clock will be enough for this assignment.

18 ASSIGNMENT 1. OBDH

An execution time measurement tool is available in the LAB6 directory. In order to use it,
perform the following steps:

1. Open GPS and select Open project on the welcome window. Navigate to the LAB6 directory
and open the wcet meter.gpr project file.

2. Build the executable and load into the board in the same way as for the realtime housekeeping.
gpr project.

3. Make sure that the serial cable is still connected to the board and the USB port in the host
computer. If the remote terminal application is not open, open it.

A measurement test is executed on the board, and repeated every 60 s. The output of the test
is shown on the host terminal application (figure 1.6). The output shows the execution times for
the bodies of the Housekeeping (HK) and TTC (TC) tasks, as well as the bodies of the protected
operations of the Storage object (ST). Notice that a new entry, Get Immediate, has been added
for the latter in order to avoid the measuring task to get blocked. The new entry is exactly the
same as Get but has a True barrier so that it is always open.

Figure 1.6: Output of wcet measurement tool.

In the example shown on figure 1.6, the HK execution time has been measured 106 times,
with a total measurement time of 13.02 s. Therefore, the value to be taken for the response time
analysis is 13.02 · 10−6 s = 13.02 µs, and the same for the other tasks. Take into account that the
values measured on your board will probably be slightly different from the above shown.

Once you have an estimate of worst case execution times, apply the RTA equations for com-
puting the worst-case response time and check if all the deadlines are met. The setup for the
calculations is shown on table 1.2.

Task T C B D R P Storage Operation
Housekeeping 1.0 13 · 10−6 ? 1.0 ? 20 3 · 10−6 CPut
TTC 10.0 26 · 10−6 ? 2.0 ? 10 4 · 10−6 CGet

CP ?

Table 1.2: Data arrangement for RTA of the housekeeping system.

Temporal analysis will be explained later during the course. Therefore, execution times should
be stored and the temporal analysis will be performed later.

Assignment 2

OBDH with ACS

The aim of this assignment is to validate the Attitude Control System (ACS) with Processor In
the Loop (PIL). The reduced version of an On-Board Software (OBSW) is used with the ACS of
the UPMSat-2 satellite. The ACS uses magnetic sensors and actuators, which is commonly known
as magnetic attitude control (figure 2.1).

Figure 2.1: Magnetic attitude control system.

Magnetometers are magnetic sensors that provide a measurement of the strength and direction
of the magnetic field, i.e. the magnetic field vector, at a given point. Magnetorquer are magnetic
coil which produce a magnetic moment that interacts with the Earth’s field, thus enabling the
attitude of the satellite to be changed.

2.1 Model In the Loop (MIL) validation

Software validation usually includes testing the system under real operating conditions. However,
for obvious reasons, on-board space software as well as many other embedded systems cannot be
tested in this way. Simulation models are commonly used in these cases.

The first validation phase uses a model of the ACS, together with models of the space en-
vironment and the spacecraft dynamics, to assess the validity of the control law and the design
parameters (figure 2.2). This is usually carried out by a control engineer using a simulation tool.
Simulink is commonly used for ACS development.

The ACS simulink model can be simulated by running matlab from directory LAB7/ACS and
opening ACS.slx. Three new windows will be pop-up: the simulink window with the ACS model
and two scope windows that show the angular velocity of the satellite in body reference and the
actuation over the three magnetorquers.

The simulink window (figure 2.3) shows the high level blocks, that are the satellite itself, its
dynamic and the models of the Earth’s field and Sun with the perturbations.

The nominal attitude control can be show by selecting Nominal Attitude Control in the Model
Browser menu (left part of simulink window) or by clicking on Satellite → OBC → Nominal
Attitude Control blocks.

Nominal attitude control has three blocks (figure 2.4):

19

20 ASSIGNMENT 2. OBDH WITH ACS

Figure 2.2: UPMSat-2 ACS high level model view.

Sensor samples the analog inputs of the magnetometers. The inputs are converted to engineering
units using calibration data.

Control implements the attitude control law that computes the control action to be output to
the magnetorquers.

Actuator activates the magnetorquers according to the computed control action.

Figure 2.4: Nominal attitude control.

To simulate the model an verify its behaviour, click on Run bottom. The evolution of the
angular velocity of the satellite and the actuation over the three magnetorquers will be shown in
the corresponding scope windows. The commanded angular velocity is [0, 0, 0.1] rad/s and the
result of the simulation (figure 2.5) shows that evolution from the initial angular velocity ([0.1,
-0.1, -0.1] rad/s).

2.2. CODE GENERATION. 21

Figure 2.3: UPMSat-2 simulink model.

2.2 Code generation.

The next step is execute the ADCS on hardware. In this assignment, only the Control block will
be execute on the target board. The corresponding code can be generated by using the Embedded
Coder toolbox but it is needed to isolate Control block from the ACS model. It can be done by
clicking in the Control block, selecting all the block content (except the trigger block) and saving
it in a new model.

This model named control.slx can be found in LAB7/ACS PIL directory. Use matlab to open
it and then select APPS in the top menu, Embedded Coder will appear. If not, it must be installed
by clicking Get Add-Ons and searching it. The Embedded Coder window (figure 2.6) will appear
after clicking on Embedded Coder icon.

The code generation option as well as characteristics of the target hardware can be set by
clicking on the Settings menu. control.slx model has already the proper options, therefore you can
take a look but be carefully and do not modify then.

Now the code can be generated by clicking on the Build menu. Once upon the code is generated,
a code generation report window appear. It is possible to explore the generated code together with
different code metrics. Click on control.h and look for lines 50-79 (figure 2.7) where the generated
code interface is located.

There are two record type definitions (struct) called ExternalInputs and ExternalOutputs
that are used to interchange data with the blocks Sensor and Actuator (figure 2.4). Data are
interchanged with two objects: rtU and rtY. Moreover, function control initialize initializes the
control code and function control step performs the control algorithm.

The generated code will be embedded in the OBSW by taking into account this interface.

2.3 Software architecture

The implementation code, as initially provided to the students, can be downloaded from https:

//github.com/STR-UPM/OBDH_LABS/LAB7.

https://github.com/STR-UPM/OBDH_LABS/LAB7
https://github.com/STR-UPM/OBDH_LABS/LAB7

22 ASSIGNMENT 2. OBDH WITH ACS

Figure 2.5: Angular velocity evolution.

Figure 2.8: Software architecture of OBSW with ACS.

The software architecture of the OBSW with ACS is depicted in figure 2.8 and the differences
with the previous architecture (figure 1.1) are:

The ADCS package is the root element of the ADCS. Its specification consists of one procedure,
Initialize, that starts the operation of the component. It has three subpackages:

ADCS is the root package of the subsystem and contains a concurrent task, ADCS Task that
reads the magnetic field vector, calculates the torque vector and sends it to magnetorquers.
It also toggles the red LED every two second.

The body of this package uses the generated code by setting the inputs, calling the functions
and retrieving the outputs following the interface of figure 2.4. ADCS Task performs the
control algorithm by calling control step. This is shown in figure 2.9. It uses Export and
Import pragmas to interface the generated C code.

2.4. COMPILE AND RUN WITH THE DEBUGGER. 23

Figure 2.6: Embedded Coder toolbox.

ADCS.Parameters contains the definitions of the data types used in the subsystem and pa-
rameters that are used to tune the control algorithm. These parameters can be changed
by telecommand in the UPMSat-2 OBSW. The data type Controller Input is used to read
the magnetic field vector in teslas, which are IEEE single precision float numbers. The
data type Controller Output are used to send the actuation to magnetorquers in newton-
meters, which are IEEE single precision float numbers. These data types correspond to the
generated C structs ExternalInputs and ExternalOutputs (see figure 2.7).

ADCS.HW is in charge of getting the magnetic field vector and putting the torques. It hides
the details of the hardware. Its specification includes the Put and Get subprograms. This
package uses the serial port to interchange magnetic field and torque values with the Software
Validation Facility.

The Software Validation Facility (SVF) is an auxiliary computer, linked to the OBC by a serial
line, to run a simulation model of the Earth’s magnetic field and satellite dynamics. In this way,
engineering values (Nm and T) can be interchanged.

Host computers are also used as SVF by executing a SimulinkTMmodel of the Earth’s magnetic
field and satellite dynamics.

In this assignment, the serial line is used to interchange data between ADCS and SVF. There-
fore, housekeeping telemetry are send to a text console that is simulated on the host computer,
using a mechanism called semihosting. When the target board is connected to the host by means
of the ST-LINK USB cable, and the embedded program is run using the debugger in the host, the
standard output is re-directed to the debugger console. The GPS environment supports semihost-
ing.

2.4 Compile and run with the debugger.

Open GPS and do the following:

1. Select Open project on the welcome window. Navigate to the OBSW directory and open
the realtime housekeeping.gpr project file.

2. Build the executable and load it into the board by clicking on the symbol in the tool
bar (or select Build → Bareboard → Debug on board on the top menu).

The program will be compiled, and the executable will be loaded into the board memory
by the debugger. The debugger console (lowest window in GPS) shows the following lines:

24 ASSIGNMENT 2. OBDH WITH ACS

Figure 2.7: Code generation report.

...

(gdb) monitor reset halt

(gdb)

3. Type continue or just c on the debugger console (or select Debug → Continue on the top
menu).

(gdb) c

Continuing.

[program running]

After that, the program starts to run on the board and temperature reads are displayed on
Messages tab of the debugger window. However, the Red LED does not blink because ACS
is waiting sensor inputs from SVF.

2.5 Processor In the Loop (PIL) validation.

The SVF shall provide sensor inputs and retrieve magnetotorquer outputs. To do that, the remain
part of the original simulink model will be used, i.e. all the blocks except the Sensor block.

This model named ACS PIL.slx can be found in LAB7/ACS PIL directory. Open it and again
three new windows will be pop-up: the simulink window with the ACS PIL model and two scope
windows that show the angular velocity of the satellite in body reference and the actuation over
the three magnetorquers.

The Control block of this model has been substituted by serial link connections as shown in
figure 2.10. Identify the serial port name on the host computer and edit the serial configuration
block by selecting the serial line of your PC.

Additional rate transition blocks has been added for a proper communication and a Real-Time
Pacer block has been also added to set the simulation speed. In a real case, an speedup equal to
1 should be used but it is to slow.

Start the simulation and verify angular velocity stabilization. Now ADC runs and red LED is
toggled.

2.6 Make changes to the simulation.

• Default parameters for control blocks can be changed in Ada source file ACS-parameters.ads.

2.6. MAKE CHANGES TO THE SIMULATION. 25

Figure 2.9: Implementation of ACS package.

– Default omega is the consigned angular velocity.

– Default MT Working contains the operational magneto-torques.

In UPMSat-2 many parameters can be changed by TC.

• The initial angular velocity can be changed in Simulink source file initialization.m.

– omega BI B0 = [0.1;-0.1;-0.1];

26 ASSIGNMENT 2. OBDH WITH ACS

Figure 2.10: Nominal attitude control for PIL.

Assignment 3

Student assignment

Students have to write a brief report of about 2-3 pages about the work done during the session.
This report must include an analysis about cross-development environment for embedded systems
and the main differences with a native environment.

The schedulabilty analysis proposed in section 1.7 must be included. The report can contain
recommendations to improve the assignment and personal opinions.

If you have made the proposed changes or any other, you should write them in the report and
upload the code too.

Moodle is the selected platform for uploading assignment and the dead line is December 10th.

27

28 ASSIGNMENT 3. STUDENT ASSIGNMENT

Appendix A

Temperature sensor

The STM32F407 reference manual (section 13.10) states that the internal temperature sensor of
the MCU is internally cabled to the ADC1 IN16 analog input channel. The steps required to read
the sensor are:

1. Select ADC1 IN16 input channel in the ADC.

2. Select a sampling time greater than the minimum sampling time specified in the datasheet
(see table A.1 below).

3. Set the TSVREFE bit in the ADC CCR register to wake up the temperature sensor from
power down mode.

4. Start the ADC conversion by setting the SWSTART bit (or by external trigger).

5. Read the resulting VSENSE data in the ADC data register.

6. Calculate the temperature using the following formula:

Temperature (in ◦C) = (VSENSE - V25) / Avg Slope + 25

Where:

• V25 = VSENSE value for 25 ◦C (table A.1)

• Avg Slope = average slope of the temperature vs. VSENSE curve (table A.1).

The sensor has a startup time after waking from power down mode before it can output
VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize
the delay, the ADON and TSVREFE bits should be set at the same time.

The sensor has a range of -40 to 125 ◦C, with a precision of ±1.5 ◦C. Its main characteristics
are described in the STM32F407 datasheet (table A.1).

Symbol Parameter Min Typ Max Unit
TL VSENSE linearity with temperature - ±1 ±2 ◦C
Avg Slope Average slope - 2.5 mV/◦C
V25 Voltage at 25 ◦C - 0.76 V
tSTART Startup time - 6 10 µs
TS temp ADC sampling time when reading 10 - - µs

the temperature (1 ◦C accuracy)

Table A.1: STM32F407 temperature sensor characteristic.

The Ada Drivers Library includes the package STM32.ADC, which provides facilities for han-
dling the analog to digital converter.

29

	Introduction
	References
	Acronyms

	Overview
	Laboratory kit components
	Architecture of the laboratory platform
	Computer board and connections

	Set up
	Install a native programming environment
	Install the cross-compilation tools
	Install MATLAB™and Simulink™

	OBDH
	Software architecture
	Serial line connections.
	Host terminal application.
	Download the code and study the implementation.
	Compile and run.
	Make changes to the program.
	Perform a temporal analysis of the system.

	OBDH with ACS
	Model In the Loop (MIL) validation
	Code generation.
	Software architecture
	Compile and run with the debugger.
	Processor In the Loop (PIL) validation.
	Make changes to the simulation.

	Student assignment
	Temperature sensor

