
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(11), 981–999 (November 1994)

Techniques for File System Simulation

CHANDRAMOHAN A. THEKKATH

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195. U.S.A.
(thekkath@cs.washington.edu)

JOHN WILKES
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304. U.S.A.

(wilkes@hpl.hp.com)

AND

EDWARD D. LAZOWSKA
Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195. U.S.A.

(lazowska@cs.washington.edu)

SUMMARY

Careful simulation-based evaluation plays an important role in the design of file and disk systems. We
describe here a particular approach to such evaluations that combines techniques in workload synthesis, file
system modeling, and detailed disk behavior modeling. Together, these make feasible the detailed simulation
of I/O hardware and file system software. In particular, using the techniques described here is likely to make
comparative file system studies more accurate.

In addition to these specific contributions, the paper makes two broader points. First, it argues that
detailed models are appropriate and necessary in many cases. Second, it demonstrates that detailed models
need not be difficult or time consuming to construct or execute.

KEY WORDS Simulation File systems Performance

INTRODUCTION

Because file and disk systems are such critical components of modern computer systems,
understanding and improving their performance is of great importance. Several techniques
can be used to assess the performance of these systems, including abstract performance
models, functional simulations, and measurements of a complete implementation. All have
their place; we concentrate here on the use of simulations for detailed ‘What if?’ performance
studies.

The main advantage of using abstract models as opposed to detailed simulation is their ability
to provide adequate answers to many performance questions without the need to represent a
great deal of system detail. However, abstract models make simplifying assumptions about
aspects of the system that may be important, particularly in the later stages of a study when the
design space has been narrowed and subtle issues are being considered. The work we describe
here came about when we were doing some design studies of the interactions between current
file system designs and new disk systems. In this environment, direct measurement was of

CCC 0038–0644/94/110981–19 Received 1 October 1993
1994 by John Wiley & Sons, Ltd. Revised 22 June 1994

982 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

course not possible, and we felt that an analytic model would be inadequate for our needs, at
least partly because it would have difficulty representing the interactions between performance
non-linearities in the disk system and the file system layout and request-sequencing policies.

In this paper we argue that detailed simulation studies for file and disk systems are often
appropriate, and need not be difficult to perform. This paper describes a specific approach that
can be used for such detailed simulations. This approach simplifies their execution, broadens
their applicability, and increases the accuracy of their results.

The next section motivates the rest of the paper by describing a few earlier file system
studies to show why it might be appropriate to use some of our techniques. The section
following that briefly introduces the elements of our approach, which are elaborated upon in
subsequent sections. We then present an application of the approach to a particular problem
and summarize the key contributions of the paper.

MOTIVATION

As processors, memories, and networks continue to speed up relative to secondary storage, file
and disk systems have increasingly become the focus of attention. The Berkeley Log-structured
File System (LFS),1 Redundant Arrays of Independent Disks (RAID),2 and log-based fault
tolerant systems3,4 are some well-known examples of the newer innovative designs. Analysis
of these systems has exposed many subtleties that affect performance. Current technology
trends lead us to believe that file system and disk system design and analysis will continue to
be one of the key areas in computer system design.

Typical performance studies of file systems involve the control of three distinct but related
aspects: the disk, the file system, and the workload. In each of these areas, simple models
trade off accuracy for modeling ease or tractability. Although useful early results can come
from less detailed models with modest effort, these are no longer sufficient when more careful
comparisons are desired. Indeed, back-of-the-envelope calculations or simple modeling of the
software and/or the disk hardware can yield results that are contrary to real-life performance.
We cite below some cases in point, where lack of detail or accuracy in the models led to
predictions that turned out to be at variance with actual performance.

The selection of a rebuild policy for a RAID disk array is one example of the need for
detailed and complete disk models. Here, a simulation study5 using a detailed disk model that
included rotation timing effects produced results that were contrary to an earlier study6 that
did not.

Another analytic model of a RAID controller7 found that neglected factors such as contention
within the various elements in the array controller caused actual performance to be noticeably
worse than that predicted. Even simulations are not immune from over-simplification: a recent
study on disk caching behavior found that ignoring the effects of read-ahead and write-behind
in a disk model can produce results that are as much as a factor of two off from the actual
disk.8 Unfortunately, these and other real-life details are often omitted from models for the
sake of simplicity. In a later section, we describe our disk model and suggest that neither
accuracy nor modeling ease need be sacrificed.

The Log-structured File System is a file system whose performance characterization has
evolved as more detailed models and simulations have been developed. We use it here as an
example of how this process works. The earliest study9 predicted a ten-fold improvement in
performance based on a simple model that was based on micro-benchmarks. A subsequent
study10 using synthetic workloads provided improved accuracy, but over-estimated the cost of
the segment cleaner by comparison with later measurements using a more realistic workload.1

TECHNIQUES FOR FILE SYSTEM SIMULATION 983

Another group11 looked at the effects of long running writes on read performance, an effect
that had previously not been analyzed in detail. Finally, a more careful comparison of LFS and
an improved regular file system that took cleaner costs into consideration found areas where
each file system was superior to the other.12

The point here is not to criticize log-structured file systems or simple models, but to
demonstrate that increasing the level of detail in the models used to study a file/disk system
often reveals previously-hidden behaviors. This is normal, and to be expected; the purpose of
this paper is to present techniques that will speed this process along.

SIMULATOR OVERVIEW

This section introduces the components that comprise our simulation environment for file and
disk systems. Our approach is to derive workloads from I/O traces gathered from real systems,
and feed these into real file system code sitting on top of a detailed disk model that has been
calibrated against real disks. Additional software, which we refer to as scaffolding, holds all
this together. Figure 1 shows how these components interact.

We use the term ‘simulator’ in this paper to refer collectively to all the components shown
on the right side of Figure 1, while we use the term ‘file system simulator’ to refer to the
component that mimics just the behavior of the file system code.

Workload

File system

Operating system

WorkloadWorkloadWorkloads

File system

Simulator scaffolding

Disk
model

Real system Simulation system

Capture metadata
snapshot at start of
trace of real system

Metadata
snapshot

Capture trace of
file-system
events from a
real workload

Trace derivation
(bootstrapping)

Figure 1. Simulator framework

As Figure 1 suggests, we first gather traces from the real system running a real workload.
At beginning of the trace period, we take a snapshot of the file system metadata on the disk
or disks being studied. This is the information kept by the file system to map <file, offset>
pairs into disk block addresses. The trace is optionally used to derive a set of additional traces.
Trace requests are supplied to the simulator. Within the simulator, the scaffolding component

984 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

replays these to create a workload for the file system simulator. The file system simulator,
in turn, emits requests to the disk model, which usually just performs timing calculations.
In addition, if the request is a read to the metadata, the scaffolding intercepts the request
and satisfies it from the previously-recorded snapshot; a metadata write is used to update the
snapshot.

The remainder of this section provides an overview of each simulator component; they are
discussed in greater detail in the subsequent three sections.

Workload traces

The accuracy of any performance study depends on both the quality of the model and on
the quality of the workload representation that is used. The two usual sources for simulation
studies are traces and synthetic workload models.

Synthetic workloads are considered more flexible than traces, and do not require significant
storage because they are generated on the fly. However, in order to be realistic, synthetic
workload models tend to be elaborate, difficult to parameterize, and specific to a single
environment. One sample of a synthetic NFS-workload generator13 uses 24 parameters to
describe the workload—a wealth of detail that is not easy to gather.

Instead, our approach is to use trace-driven workloads, but to extend their utility through a
technique known as bootstrapping, which is described further in the next section. This allows
us to collect a single set of traces, and to generate additional sets while retaining certain
statistical guarantees with respect to the original.

For investigating file systems that do caching, the most useful results are obtained by tracing
requests at the system-call level: byte-aligned reads and writes, plus various control calls, such
as file open and close, change directory, and so on.

We did our work on the HP-UX operating system, a POSIX-compliant Unix∗ system that
runs on HP 9000 PA-RISC series 800 and series 700 systems.14 The HP-UX system has a
built-in measurement facility that can be used selectively to trace system events; several other
operating systems have similar facilities, or one can be added relatively easily given access to
the system’s source code.

For our case study, we asked the kernel measurement system to gather information about
all file-system related system calls, fork and exit system calls, and context switches. Together,
these allowed our simulation scaffold to replay essentially exactly the sequence of events that
took place in the original system.

There are a few important attributes of such trace-gathering systems for work of this
kind: the traces must be complete (no records must be missed), they must be accurate (not
contain invalid data), they must have precise timestamps (resolution of a few microseconds
is acceptable), and gathering them must not disturb the system under test very much. The
HP-UX trace facility met all these needs well: its timestamp resolution is 1 µsecond, and the
running time for the tests we conducted increased by less than 5%—at least partly because
we did trace compaction and analysis off-line.

The next section describes one of the contributions of this paper: a method called ‘boot-
strapping’ for on-the-fly generation of additional traces from a previously collected set of
traces. However, from the point of view of the simulator itself, each derived trace is handled
the same way, so we will defer further discussion of this aspect for now.
∗ Unix is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

TECHNIQUES FOR FILE SYSTEM SIMULATION 985

Metadata snapshot

Before tracing is begun, a snapshot is made of the metadata on each of the file systems
used by the workload being traced. This snapshot includes a copy of the file systems’ naming
hierarchy, i.e., the directories, overall size information, and a copy of the layout information.
In our case, the HP-UX file system uses a slightly modified version of the original 4.2BSD
Fast File System,15 so this data included inode and cylinder-group maps.

The metadata snapshot is a copy of the data needed by the file system itself. The snapshot
allows the scaffolding to provide the file system code under test the same data that it would
have had access to, had it been running on the real system. In particular, the file system reads
the directory data to do name lookups, and uses the layout information to turn user-level
reads and writes into disk operations. As the simulation progresses, the file system under
test modifies the metadata as a result of trace-driven user-level requests, and the scaffolding
faithfully performs the requested updates so that future requests to the metadata will return
the correct data.

Since the snapshot contains no data files, it is of modest size: a few percent of the total disk
space being simulated. This is possible because we do not simulate the contents of user-data
blocks, just their movement. Accesses to the metadata snapshot by the simulator scaffolding
go though the real file system of the machine used to run the simulation, and so are subject to
caching, which improves the elapsed simulation time.

Scaffolding

The scaffolding is the glue that binds together the entire simulation. It provides the following
facilities:

1. Lightweight threads, i.e., execution contexts, which are used to simulate processes
making file system calls and the concurrent execution of activities inside our disk
simulator.

2. Time-advance and other mechanisms needed for the discrete-event simulation being
performed.

3. Emulation of the kernel procedures that are accessed by the real file system. For example,
sleep and wakeup calls are mapped onto synchronization primitives derived from the
underlying lightweight thread library.

4. Software to access the metadata snapshot when requested by the file system code.
5. Software to manage the correct replay of an input trace.

At a high level, the working of the scaffolding is quite straightforward. The scaffolding
uses one lightweight thread to simulate each independent process encountered in the trace.
It then reads trace records that are fed to threads simulating user processes until the trace is
exhausted, or the simulation has reached a sufficiently stable state that the desired confidence
intervals have been achieved.

Each trace record is handed to the thread that is emulating the appropriate process. Most of
these requests are read or write operations, which turn into calls on the file system code, and
perhaps generate one or more simulated disk requests. Whenever the real process would have
spent real time—e.g., while waiting for a disk access to complete—the thread is blocked, and
waits for simulated time to advance to the appropriate point before it is allowed to proceed
again. Once the request has been completed the thread goes back to wait for the next request
for it to simulate.

986 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

If the operation being simulated is a fork, a new thread is created and associated with the
child process, which then proceeds to accept and process requests, while the parent continues.
Asynchronous disk requests do not cause the thread to delay.

Occasionally, the metadata snapshot needs to be consulted, and real data needs to be
transferred between the snapshot and the buffer cache used by the file system code being run
in the simulation. This is usually the result of a directory lookup or inode update. Note that
the file system only invokes this mechanism when the needed metadata is not already in the
simulated buffer cache. As a result, most reads and writes only do simulated data movement.

Disk simulator

Since we were interested in exploring the interaction between file systems and future disk
designs, we chose to construct a disk model that could easily be tuned to reflect design changes
extrapolated from current performance characteristics. We took some pains to calibrate this
model against current real disks, and in particular, to include the effects of caching in the disk
drive, which prior work had shown to be an important part of getting good agreement between
a model and reality.8,16 As a result, we were able to achieve differences between the real disk
and the modeled one, i.e., the model demerit figure, of only 5%.8

The first component of our disk model is a buffer cache, which is used to keep track of data
that has been read, read-ahead, or written. Appropriate replacement policies allow us to alter
the behavior of this cache for different experiments. In addition, we modeled the physical disk
mechanism—the rotating media and the moving disk head and arm—and the DMA engine
used to transfer data from the disk cache to and from the disk-to-host bus. By making each
of these lightweight tasks, we were able to model the overlap between disk accesses and data
transfers to and from the host system that occurs in real disks.

Our model uses replaceable modules for each of these components, so it is relatively easy
to make changes to explore different design choices. For example, enhancing the disk model
to predict the effects of making its buffer cache non-volatile, to be described in the case study,
took less than a day.

File system simulator

The other important component we were interested in modeling was the file system. One
approach to modeling a file system is to construct a simplified simulation of the file system
code. By making suitable assumptions, the resulting complexity and development time could
be kept within reasonable bounds. However, this is a process fraught with difficulties, as our
examination of the LFS development process suggests. Ensuring that the right simplifications
are made is difficult, doubly so because the expectations of the experimenter can often bias
the choices in favor of the set of assumptions made during the design of the file system that is
being investigated.

We believe that it is possible to do better. In fact, our approach is to use the real file system
code instead of an imperfect model of it, thereby eliminating any possibility of incorrect
assumptions. To do this, we bring the file system out of its normal execution environment,
which is the operating system kernel or a trusted address space. We do this by providing
a set of scaffolding that looks—as far as the file system is concerned—just like the kernel
environment in which it normally runs, down to and including the synchronization primitives
the code is written to invoke. The entire ensemble runs as a regular, untrusted, user-level
application.

TECHNIQUES FOR FILE SYSTEM SIMULATION 987

File system designers have used this technique before to run kernel-level code at user-level
to simplify debugging during program development,15 but not, to our knowledge, explicitly
for performance studies.

Our approach allows the file system implementation and an understanding of its performance
to develop together. For example, in addition to providing functionality stubs for incomplete
portions of the code, we can provide performance stubs as well. Running the new design in a
user-space scaffolding, as in our approach, combines the advantages of easier development,
faster turnaround time, and more flexible debugging with early access to performance data.

In the case study we conducted, we used the production HP-UX file system code as the file
system simulator.

Analysis: detail and complexity versus efficiency

We argue here for the use of detailed models for file system and disk system components.
Our contention is that such models lead to increased confidence and increased accuracy,
without an excessive increase in execution time or complexity.

Consider first the degree of detail that is desired in modeling the system. Obviously, if the
real system is available to test, it is usually best to measure that system, since this minimizes
the uncertainty. One of the strengths of our approach is the use of real file system code as the
file system simulator, which removes one major cause of uncertainty; another is the use of
real traces rather than synthetic ones; a third is the calibration of the disk system against real
disks.

Consider next the degree of detail that is required to model the system. Work in disk drive
modeling has shown that detailed models are a necessity there: ignoring caching effects, which
in turn depends on modeling rotation position in the disk, can result in mean simulated times
as much as a factor of two larger than they should be.8 So, sufficient detail is essential if useful
results are to be acquired.

Of course, it is not always possible to determine which features of the model will prove to
be the most important—indeed, these may change as a function of what is being modeled. For
example, a file system that did not make rotational-position layout optimizations or use the
disk’s aggressive write caching would be much less sensitive to caching effects in the disk.
Thus, we believe it prudent to err on the side of caution.

Finally, consider the cost of detailed models. We believe that the approach we advocate is
not particularly costly: our disk simulator is able to process about 2000 requests per second on
a 100 MHz PA-RISC processor; the file system code runs at full processor speed; and—just
as in real life—the metadata snapshot information is frequently cached by the underlying real
file system that the simulator is hosted on. The result is that the elapsed time for executing
the simulations is much less than that required to execute the real system executing the traced
workload. Furthermore, as processors speed up relative to I/O, this disparity in performance
is likely to increase.

A significant benefit of our approach is confidence in the results. In the final stages of
design, omitting a crucial detail may be potentially dangerous. Our approach makes it easy to
construct a detailed model that avoids this pitfall.

We feel the accuracy and confidence offered by our approach far outweigh the small
investment in time to build the scaffolding. This is a one-time cost that can be amortized over
many studies. In our experience, the code to implement a detailed disk model and the bootstrap
generator proved fairly straightforward. By simply dropping the real file system code into the
simulator, our development time for this portion of our model was zero.

988 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

On the other hand, a potential drawback to our scheme is that it assumes the availability of
the file system code. Sometimes this might not be case, e.g., when designing a new file system
from scratch. However, even in these cases, many aspects of the our system, e.g., the disk
model, workload characterization, and parts of the scaffolding, may be used independently.

CONSTRUCTING A WORKLOAD

As mentioned in the introductory section, traces and synthetic workloads each have advan-
tages and disadvantages. Traces are more realistic but tend to be very voluminous. Synthetic
workloads offer flexibility at the loss of verisimilitude. We use a technique that combines the
good elements from both approaches.

Our method is derived from a statistical technique called bootstrapping,17 which can be used
to increase the confidence and reliability of scientific inferences. The basic idea is as follows.
Given a sample of sizeN of some population with an unknown distribution, we generate some
number of new samples of size N by selecting elements at random from the original sample.
The elements are selected with replacement, which means that copies of the same element can
occur more than once in the new sample. Note that we can generate NN different samples of
size N .

For each sample, called a bootstrap, assume we calculate some sample statistic, say, the
average. The calculated statistic from each of the bootstraps constitutes a distribution, called
the ‘bootstrap distribution’. Bootstrap theory says that the bootstrap distribution can be treated
as if it were a distribution created from samples drawn from the real population. Thus, it can
be used to estimate the accuracy of the statistic, in this case the average, that was calculated
from the original sample.

A useful pragmatic aspect of bootstrapping is that a new sample of size N can be created
on-the-fly. This can be done by numbering the elements in the original sample sequentially
from 1 to N ; generating N random numbers in the range; and then selecting element i to be
in the bootstrap whenever the random number generator comes up with the number i.

Bootstrapping is a well-established technique in statistics that has not, to our knowledge,
been used in computer systems analysis. The technique can be applied to file system traces
in a straightforward way to generate many trace sets given a single trace. To a first order, we
use the individual processes that show up in our traces as the ‘elements’ for the bootstrapping
process. The truth is slightly more complicated, and elaborated on below. Selection of a
process element implies inclusion of all the I/Os it issued in the resulting bootstrap trace.

We generate bootstraps—as many as required for the experiment; the number available
is effectively unlimited for any realistic value of N—and run it against the simulator. With
high probability, the bootstrap distribution has statistical properties that are similar to the
real-life population. Thus the behavior of a system when run against the bootstraps is likely
to approximate its behavior in real life. Note that bootstrap theory does not imply that the
behavior of the simulator on individual bootstraps will be be the same as the original trace.
However, the average behavior of the simulation on a set of bootstraps approximates the
average behavior of the simulator if it were run on a set of real traces.

Independence of sample elements

In bootstrapping theory, the elements of a sample are assumed to be independent of each
other. Consequently, the degree of dependence between sample elements in a bootstrap will
affect the final results. This affects practical file system studies in two ways.

TECHNIQUES FOR FILE SYSTEM SIMULATION 989

There are two kinds of inter-dependence that matter: functional dependence, e.g., a file
system will not allow write operations on a file that has not been opened, and behavioral
dependence, e.g., if process P1 writes once to the file, process P2 will read six things from it.
We need to be concerned with both; bootstrapping theory is strictly only concerned with the
latter.

Functional dependence requires that the elements used in the bootstrap be large enough
to include the necessary system state. For example, an element that includes a read from a
file must also include the system call that opened that file. In practice, when a file-system
study of the type we conducted is being done, this means that elements are at least as large as
processes, and may sometimes have to be groups of processes forked by a common ancestor
if the ancestor performs file open operations that the child processes rely on.

If processes exhibit behavioral dependence, e.g., they communicate using pipes or synchro-
nize on a common file, it is necessary to aggregate these processes into larger units that are
then treated as independent sample elements.

Together, these adjustments can decrease the number of elements for the bootstrapping.
However, it is important to note that the quality of input to the simulator is not degraded. First,
even with a modest number of elements in a sample, there is no practical limit to the number
of bootstraps that can generated. For example, even if N is only 5, 3125 (= 55) possible
bootstraps can be generated. Second, since we are only aggregating the amount of file system
activity, and not discarding samples, each bootstrap continues to offer roughly the same load
to the file system as the original trace. This is true even if only a single bootstrap can be built
because all the input has to be aggregated into one element.

Implementation and validation

In our implementation, bootstrap generation is done as a three stage software pipeline. The
first stage rolls a die multiple times to choose a set of processes that are to be included in the
bootstrap. The second stage deletes the traces of the processes that are not part of the bootstrap.
The final stage duplicates the traces of processes as necessary; new process identifiers and
sequence numbers are created at this stage. Recall that creating a bootstrap involves selection
with replacement. This process allows the individual elements to execute independently of
one another.

Duplicated records have the same time-stamps as the original records they are derived from.
This could lead to increased contention for file and disk resources. In our experiments, this has
not been a significant issue for the average case behavior because of the filtering performed
by the user-level file cache in the file system simulation.

For a given trace, we generate multiple bootstraps and run the simulator on each bootstrap,
and then aggregate the performance data that results across these runs. Bootstrapping theory
tells us that bootstrap distribution of a particular statistic closely approximates the true, but not
directly measurable, distribution of the statistic in the real population. Thus on the average,
the performance of the simulator on the bootstraps will be similar to what would have been
seen if it had been run on real traces, i.e., samples from the real population.

The entire process of generating bootstraps can be done on-the-fly. It is also repeatable, if
the same pseudo-random number generator is used for the selection process. This means that
exactly the same bootstraps can be generated several times if so desired, e.g., for runs with
different simulation parameters.

The main value of using bootstrapping in simulation studies is to extend existing trace data
on-the-fly while retaining certain statistical guarantees. As long as the original trace data was

990 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

a representative sample of the original system, bootstrapping theory tells us that the aggregate
of the bootstraps will also be representative of the real system. That is, rather than collecting
and storing multiple traces, on-the-fly bootstrapping allows you to achieve the same effect as
if multiple traces were collected—but with much less effort.

MODELING THE DISK

Although there are some exceptions, much of the prior work on disk modeling has not
accurately reflected the considerable concurrency that occurs in modern disk drives, nor the
actual operational characteristics of the disk itself, including non-linear seek versus distance
times, bus transfer effects, and caching. We endeavored to address these issues in our model.
Its calibration has been described elsewhere;8 here, we concentrate on a description of the
elements that go to make up the model.

DMA engine
task

Disk mechanism
task

Buffer cache

SCSI bus

Disk controller
data structures
and code

Disk mechanism:
"get new work"

DMAengine:
"get new work"

Internally
queued requests

Disk model

Figure 2. Major components of the disk model

Figure 2 shows the components of our model. The major components are as follows; in our
implementation, each is a C++ object:

1. The disk controller is a data structure that binds together the other elements, and provides
a placeholder for them. It also provides the management code for the disk’s actions, and
a number of parameters used to control modeling of aspects like controller overhead.

2. The disk cache represents the on-board cache memory in the disk. It can be managed as
a simple speed-matching buffer, or segmented and used to cache data before or after it
is explicitly referred to by the host. Here are two examples of the caching policies that
our model supports. If the disk is idle, and the last request was a read, the controller
may choose to continue doing a speculative read-ahead into the cache in case the host is
making sequential transfers. If the last request is a write, the controller may allow data

TECHNIQUES FOR FILE SYSTEM SIMULATION 991

transfer across the bus into the disk in parallel with the execution of the last request;
this is known as immediate reporting, and allows efficient writes to consecutive disk
addresses.

3. The disk mechanism task models the rotating media and the disk heads attached to a
moving arm. In practice, most of the code is concerned with translating logical addresses
into physical ones, taking into account details of the disk drive geometry such as zoning,
which allows more sectors on the outer tracks than the inner ones spare sectors, and head-
and track-sector skew, which minimize rotation delays on head and track-switches.

4. The DMA engine task models the transfer of data across the interface between the disk
and the bus connecting it to the host system. The bus is acquired and released according
to policies determined by the design of the disk controller, parameters that can be set
by the host system, and the availability of data or space in the disk cache. This allows
contention between multiple disks on the same bus to be modeled correctly.

5. The request-scheduling policy determines, in combination with the cache-management
policies, which request will be executed next if the disk drive has been passed more than
one. For example, this allows the command queueing of SCSI-2 to be modeled.

We found it convenient to have each task call into the disk controller code to request work
for it to do, blocking if there was none. This allowed each task to be a simple get-work—
execute-it loop, and let us concentrate the complexities of handling the interactions between
the cache management and the request scheduling in one place.

While this model might appear complex, it is in fact quite easy to implement. Our scaf-
folding provides lightweight threads, synchronization objects such as semaphores, and queue
abstractions. The disk elements are implemented as independent threads that send messages to
each other through queues and synchronize as needed using semaphores. The model has been
parameterized for several different disks using a combination of manufacturer-supplied data
and direct measurements. The simulation is tuned to minimize error in the transfer size range,
typically 4–8 kbytes, commonly used by current file system designs. Calibration against real
disk performance under a range of workloads yields excellent agreement, within 5%. The total
code required to achieve this level of accuracy is modest—a little over 3000 lines of C++.

The particular disk model that we describe here has been extensively used in other studies.
A separate paper8 contains quantitative information of how different portions of the model
contribute to its accuracy and how it compares with typical simple models. Undoubtedly, an
accurate model like ours is more complicated than a simpler, less accurate, model. On the
other hand, we can quantify and bound its deviations from the behavior of real disks, and we
know that it does a good job of modeling components of disk behavior that are growing in
importance as file system designs attempt to adapt to, and take advantage, of exactly these
performance non-linearities.

MODELING THE FILE SYSTEM

Since we were particularly interested in exploring the effects of changing disk technology on
file system behavior and performance, we developed techniques that allowed us to use the
actual file system code rather than an imperfect abstract model of it. By comparison with an
abstract model, our approach increased our confidence in the results, and also ensured that
we did not have to continually adjust the parameters of the file system model as a result of
different workloads or disk behaviors.

We found it straightforward to adapt the file system code running in the kernel to run as an

992 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

untrusted user application within the simulator. The infrastructure requirements of a file system
are typically straightforward: some multitasking, simple memory management, and access to
physical devices and user memory space—usually through a very stylized, well-controlled
interface. The multitasking support usually has to include some form of threads and a set of
synchronization primitives. All these are relatively easy to emulate in a user-space scaffolding.
For example, the device-driver routines can easily be provided by a set of procedures that
invoke the interface provided by the disk simulator. Processes in the original system can be
treated as independent threads each with per address space structures imitating those of the
original system. Though we happened to use the HP-UX file system as a base for our case
study, these techniques are applicable in exporting code from other systems to run at user
level.

As a specific example, for the case study to be described later, the entire HP-UX file
system,14 which is derived from the 4.2BSD Fast File System,15 was run at user level without
modification. In this case study, almost all the code in the file system simulator was taken from
a copy of the HP-UX product source code. Additional code that was needed to make it execute
correctly at user level was quite minimal—about 3000 lines of C. This represents code that
is implemented once; the actual code for the various file systems under test runs unchanged.
This represents a huge saving in work, because typical file system implementations are quite
large. Most of the code we added is required to provide the right kernel-level abstractions and
the correct device interface at user level and can be reused without any change to simulate
other file systems.

To validate our file system simulator implementation against a real kernel, we compared
the block requests issued by the real file system running inside the operating system kernel
and the simulator. There were no significant differences between the two systems on a set of
several different programs. This is not too surprising: we were executing the same code in
both cases, but we found that it inspired our confidence in our results.

SCAFFOLDING

The scaffolding is perhaps the most important piece of the simulator framework. Apart from
providing the basic framework for a discrete-event simulator, it binds together the various
pieces of the simulator and provides interfaces that are appropriate to each. The preceding
sections have touched upon the facilities provided by the scaffolding to the file system
simulator and the disk simulator. This section expands on those, and describes some of the
details related to the discrete-event simulation.

Threads

The central element of the scaffolding is its coroutine or threads package. We happened
to pick one built upon the base provided by a standard, off-the-shelf library from AT&T,18

modified slightly to support time calculations using double-precision floating point instead of
integer arithmetic. Our choice of the thread library was dictated by what was most conveniently
available to us. Other packages such as PRESTO19 could probably also be used with minimal
modifications.Such coroutine packages typically provide a set of objects including lightweight
threads, synchronization objects, and communication channels such as queues. They need not
implement preemptive multitasking, but should at least support the notion of simulated time,
in which a thread can delay for a while to represent passage of real time, and then be resumed
once simulated time has advanced sufficiently.

TECHNIQUES FOR FILE SYSTEM SIMULATION 993

Trace replay

The trace records we used contained file system calls made by programs, in addition to
records for process creation and deletion. Each trace record contained the process identifier
of the caller, parameters to the system call, and two time-stamps—one indicating when the
system call was initiated, and the other when it completed.

For trace records that indicate a process creation, the scaffolding creates a new thread,
complete with whatever kernel level state that the original process had. For instance, in the
Unix model, open file descriptors and the current working directory have to be inherited from
the parent process.

After each system call is performed, the thread goes back to waiting for more work. When a
process deletion record is encountered, the thread emits some statistics, and is then terminated.

For trace records that denote normal file system events, the scaffolding hands off the request
to the previously-created thread associated with the process that issued the request. The thread
then delays for a while to represent application compute- or think-time. This period is the
interval between completion of the last real request and this one, as recorded in the trace. A
faster CPU can be conveniently modeled by decreasing the duration of this pause. Notice that
the simulated time at which the new request is issued may not be the same as the real time
recorded in the trace: the file system and disk subsystem models may execute the request in
more or less simulated time as a result of many factors, including design changes.

After the delay has expired, the thread executes the system call described in the trace
record—typically by calling into the file system, which executes its code exactly as if it had
been invoked by a process executing in the kernel.

When the file system call returns, it is necessary to advance the simulation time by the
amount of real time it would have taken to execute the file system code. A convenient way
to do this is to measure the time taken to execute the file system simulation code, which is,
after all, the real code, and then reduce this, if necessary, by a constant factor representing the
difference in CPU speeds of the processor being modeled and the one on which the simulation
is running.

As part of executing the file system code, disk requests that might be made are also charged
against the thread. Notice that other requests can enter the file system code, subject only to
the synchronization constraints imposed by the scaffolding, which is in turn a faithful model
of the real system’s rules. This usually allows concurrent outstanding requests from different
processes to be executing inside the file system. If the scaffolding failed to support this, it
would underestimate the effect of contention in the file and disk system and could lead to
erroneous results.

As a practical matter, maintaining the appropriate level of concurrency in the simulation was
one of the thorniest issues that we had to deal with. We got it wrong several times, eventually
settling on the following scheme.

Each thread has a private input queue of requests, i.e., trace records, that it is expected to
process, sorted by their start time. When a thread finishes its current request, it attempts to
get the next record to execute from this input queue. If there is something there, it executes it.
If not, and the thread has not yet been terminated, the scaffolding reads down the trace input
until it finds the next request for this thread. Since the input trace is sorted by completion time
of the original system calls, not by process number, it is quite likely to read several records
before it finds one for this thread. These records are appended to the ends of the work queues
for the relevant threads.

This scheme could potentially require reading ahead arbitrary amounts of trace input:

994 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

consider a thread that does a ‘sleep forever’. Thus, the degree of read-ahead has to be controlled
in each simulation. This limit is set high enough, typically a few thousand requests, so that
the amount of lost concurrency is very small, and the performance effects negligible.

Correct sequencing of process creation and deletion is achieved by having the threads
themselves perform the fork and exit calls that alter the scaffolding state.

File system support

Our scaffolding provides the necessary support environment for the kernel-level file system
used in HP-UX to run in user mode. It supports the notion of the UNIX system’s per-process
u-area, provides support for sleep and wakeup synchronization calls, and emulates the kernel
trap/return mechanism.

Some aspects of the original kernel implementation are simplified in the simulator. For
instance, the kernel-level routines used to transfer data safely between user and kernel spaces,
as well as the memory allocator, have been simplified without affecting their interfaces.
We were also able to simplify interrupt handling by eliminating the kernel mechanism for
vectoring and dispatching the interrupt to the device driver.

The file system code is presented with the same disk interface that it would see in the kernel.
However, when a call is made to read or write a disk, the scaffolding intercepts it, and passes
it on to a disk simulator read/write routine. The disk simulator routines neither produce nor
consume any real data. Data from the calling process is usually discarded unless it is metadata
that might be needed later. In this case, it is added to the snapshot data by invoking real system
calls. Similarly, data given back to a process is usually meaningless, unless it is metadata or
directory information that has to be used by the file system. In such cases, the snapshot is
consulted for the data.

In our implementation, we did this check by comparing the block number issued by the file
system against a lookup table hashed by metadata block numbers. This structure also provided
a pointer to where in the metadata snapshot the block was stored. Simulated time was not
advanced while the snapshot is consulted: as far as the file system could tell, the request took
just as long as the disk timing model said it should.

CASE STUDY

The previous sections have described a collection of techniques for file system simulation. In
this section we describe a case study that employs these techniques. Through our case study,
we wish to demonstrate that:

1. Our disk model is detailed enough to study the effect of important and practical changes
that would be difficult or impossible to study otherwise.

2. Bootstrapping is an efficient and useful technique and can be used instead of extensive
trace generation or synthetic workload models.

3. Our scaffolding mechanism is powerful and robust enough to handle code from a real
file system.

We demonstrate the first two of these goals directly through quantitative experiments. We
demonstrate the last goal indirectly by running the production-quality HP-UX file system
within the scaffolding.

We do not present detailed comparative measurements of file systems, e.g., FFS and LFS,
because our goal is to demonstrate that the methodology works and is ‘real’, rather than

TECHNIQUES FOR FILE SYSTEM SIMULATION 995

to conduct an extensive and definitive performance analysis. Instead, we have chosen to
present a simple study that underscores the use of the separate techniques rather than a large,
complicated case study where it might be difficult to isolate the advantages of using each of
our techniques.

Modification analysis

The baseline system we measured consists of the standard Fast File System from HP-UX
version 8.0 running a multiprogramming benchmark designed to be typical of a program
development environment. The benchmark is quite I/O intensive and includes program editing,
compilation, and miscellaneous directory and file operations. The multiprogramming level was
set to 20 users, to approximate the situation when 20 programmers are working. The files used
by the benchmark were stored on a disk that is essentially identical to the model shown in
Figure 2.

The modification analysis that we undertook is related to disk system design. We studied the
performance changes in the original system when the track buffer was made non-volatile. This
has the effect of speeding up writes, which now complete as soon as the data is in the buffer
without waiting for the disk mechanism. Synchronous writes, which slow the performance of
many file systems, are no longer on the critical path with this design. The write back policy
used to clear the buffer to disk is similar to C-SCAN,20,21 modified so that read requests
take precedence over write requests so as not to introduce delay to user-level requests. We
expected that introducing a non-volatile RAM into the disk would improve throughput and
would allow the disk to keep pace with increased CPU speeds up to a point. This type
of modification analysis is very useful in disk system design and allows cost/performance
comparisons between hardware-based and software-based logging solutions to the problem
of synchronous writes.

The significance of using our detailed disk model lies primarily in being able to undertake
the modification analysis. Accounting for the effect of the track buffer and the writeback
policy would be quite difficult with a more abstract model. In addition, the quantitative result
of the analysis also has a high degree of confidence because of the fidelity of the disk model.
Accuracy tends to be a significant factor as cost-performance margins narrow in the later
stages of design.

Figure 3 graphs the peak throughput of the baseline system and the modified system,
executing traces from the original sample.

Throughput is measured as the rate of data transfer between the file system and the disk.
The X axis shows relative CPU speed, i.e., it models the performance effects of increased
CPU speeds without any change in the disk speed. Predictably, the throughput levels off as
CPU speed increases, because the bottleneck becomes the disk service time. The graph shows
that saturation occurs when the CPU speed increases by about 100% over the baseline value.

The new organization has roughly 50% better overall throughput and saturates at about
50% higher CPU speed than the original. Thus, this approach would indeed be a feasible
improvement for existing file systems if the hardware costs were reasonable.

Effectiveness of bootstrapping

Here we demonstrate the behavior of bootstraps compared to the original trace data. As
mentioned earlier, the theory behind bootstraps guarantees certain statistical properties on the
resulting data set. In particular, the distribution of a particular statistic got by running multiple

996 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

� Baseline System (trace)
� Modified System (trace)

|
1.0

|
2.0

|
3.0

|
4.0

|
5.0

|
6.0

|150

|175

|200

|225

|250

|275

|300

|325

|350

|375

 Relative CPU Speed

 T
hr

ou
gh

pu
t (

K
by

te
s/

se
co

nd
)

�

�

�

�

� � � �

�

�

�

�

� �
�

�

Figure 3. Comparison of the baseline disk system with one that adds an asynchronous write-back cache, using the
original trace

bootstraps is as good as that generated by running different traces, i.e., samples, from the real
population.

Each element in our sample is a process generated on behalf of a synthetic user in our
20-user benchmark run. Each of these processes is represented by several, possibly many,
trace records; in turn, each synthetic user is represented by many processes generated on their
behalf.

A complication that applies to this simple labeling of processes as elements is that some
processes depend on the work done by others: for example, consider the situation where
process P1 creates a directory, P2 reads files from the directory, and finally P3 deletes the
directory. If a particular bootstrap included processes P2 and P3 but not P1, its execution
would fail because it would not contain the ‘create directory’ trace record. Similar problems
would arise if we took individual trace records as the element for the bootstrap.

We solved this problem by exploiting our knowledge of the benchmark. We identified
interdependent processes, like P1, P2, and P3 above, and aggregated them into a single sample
element. Because we understood the benchmark, we were able to do this manually; it would
be straightforward to generate a tool that determined these interdependencies from the input
trace, since it contains all the information needed.

As mentioned previously, aggregation does not affect our ability to generate large number
of bootstraps or the number of requests placed on the simulator. Based on our experience with
our benchmark, this aggregation has not been a serious problem. Further, if the elements of the
trace were individual disk block accesses, such aggregation would not be required because we
could treat the requests as independent from the viewpoint of the disk system being studied.

We performed a first-order evaluation of how well the bootstrapping technique generated
workloads by comparing the simulated performance of the original baseline case from Figure 3
against several different bootstraps generated from it. The results are shown graphically in
Figure 4 and in tabular form in Table I. In this case, the results are in good agreement to that
produced from the real trace. Even if they happened not to be, recall that bootstrapping theory
says that the average behavior on a large number of bootstraps is a good indicator of behavior
on a large trace.

The exercise here was one that was designed to explore the use of bootstraps in practical
simulations. In reality, the point of using bootstraps is not to repeat a given experiment but to

TECHNIQUES FOR FILE SYSTEM SIMULATION 997
� Baseline System (bootstrap 1)
� Baseline System (bootstrap 2)

 Baseline System (bootstrap 3)
� Baseline System (trace)

|
1.0

|
2.0

|
3.0

|
4.0

|
5.0

|
6.0

|150

|175

|200

|225

|250

|275

 Relative CPU Speed

 T
hr

ou
gh

pu
t (

K
by

te
s/

se
co

nd
)

�

�

�

�

� �
� �

�

�

�

�

�
�

� �

�

�

�

�

� � �
�

Figure 4. Simulation performance resulting from several sample bootstraps

extend the trace data. That is, rather than generate and store multiple traces, bootstrapping is
used to extend the trace, and the results from these are used as indicators of the behavior of
the system on a set of real traces.

CONCLUSIONS AND CONTRIBUTIONS

Technology trends suggest that the design of file and disk systems will continue to be a very
important area. To this end, this paper has described a set of techniques that can be used to
improve file and disk system performance studies by increasing both the accuracy and the
efficiency of careful simulation studies.

The techniques presented in the paper fall into three areas: workload generation, file system
modeling, and disk modeling. In each of these areas, the paper makes novel contributions,
some of which are enumerated below:

1. The use of bootstrapping in creating traces with known statistical properties appears to
be novel in the computer science community, even though it is a well-known approach
in the statistics community.

2. The file system model and scaffolding demonstrate that by employing simple primitives
and a modest amount of programming effort, it is possible to generate a faithful file
system model that incorporates the detail and subtlety of the actual system under test.
As a basis for comparison, we spent roughly 2–3 person weeks implementing this portion
of the code.

Table I. Variations of the sample bootstraps from the original trace

Percentage variation in
throughput with CPU speedup

Sample 1.0 2.0 3.0 4.0 5.0 6.0 Mean Std. Dev.
Original - - - - - - - -

Bootstrap 1 0.0 0.0 0.9 1.3 -0.9 -1.2 0.0 1.0
Bootstrap 2 0.0 0.0 2.2 0.0 2.2 1.7 1.0 1.1
Bootstrap 3 0.0 0.1 2.2 0.2 0.0 1.7 0.7 1.0

998 C. A. THEKKATH, J. WILKES AND E. D. LAZOWSKA

3. Our use of the scaffolding for the file system code in a way that emphasizes obtain-
ing performance information is an extension to prior work, which emphasizes code
debugging.

4. Our detailed disk model shows that it is possible to capture the nuances of behavior of
complex modern disk drives, while retaining good execution speed for the simulator.

Notice that each of the techniques we describe can be used independently of the others.
For instance, bootstrapping can be used to generate workloads without using the file system
scaffolding or the disk simulator.

We believe that detailed simulations and simple analytic models both have an important
place in understanding the behavior of complex systems. The simple models are crucial in
narrowing the design space to manageable proportions, at which stage additional detail is
required for realistic evaluations. The approach and techniques we present here allow this
detailed simulation step to be applied more readily, across a greater set of workloads, and with
greater confidence in the results than would otherwise be the case.

ACKNOWLEDGEMENTS

Chris Ruemmler wrote the first versions of the disk simulator that this work was built on.
Thanks are due to Radhika Thekkath for her patient readings of the paper and suggestions for
improving it. We also wish to thank the anonymous referees for several helpful comments.

This work was supported in part by the National Science Foundation (Grants No. CCR-
8907666, CDA-9123308, and CCR-9200832), the Washington Technology Center, Digital
Equipment Corporation, Boeing Computer Services, Intel Corporation, Hewlett-Packard
Company, and Apple Computer. C. Thekkath was supported in part by a fellowship from Intel
Corporation.

REFERENCES

1 Mendel Rosenblum and John K. Ousterhout, ‘The design and implementation of a log-structured file system’,
ACM Transactions on Computer Systems, 10, (1), 26–52, (February 1992).

2 David Patterson, Garth Gibson, and Randy Katz, ‘A case for redundant arrays of inexpensive disks (RAID)’,
ACM SIGMOD 88, 109–116, (June 1988).

3 David J. DeWitt, Randy H. Katz, Frank Olken, L.D. Shapiro, Mike R. Stonebraker, and David Wood,
‘Implementation techniques for main memory database systems’, Proceedings of SIGMOD 1984, June 1984,
pp. 1–8.

4 Robert B. Hagmann, ‘A crash recovery scheme for a memory-resident database system’, IEEE Transactions
on Computers, 35, (9), 839–843, (September 1986).

5 Mark Holland and Garth A. Gibson, ‘Parity declustering for continuous operation in redundant disk arrays’,
Proceedings of the 5th International Conference on Architectural Support for Programming Languages and
Operating Systems, October 1992, pp. 23–35.

6 Richard R. Muntz and John C.S. Lui, ‘Performance analysis of disk arrays under failure’, Proceedings of the
16th Conference on Very Large Databases, 1990, pp. 162–173.

7 Ann L. Chervenak and Randy H. Katz, ‘Performance of a disk array prototype’, Proceedingsof the 1991 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, May 1991, pp. 188–197.

8 Chris Ruemmler and John Wilkes, ‘An introduction to disk drive modeling’, IEEE Computer, 27, (3), 17–28,
(March 1994).

9 John K. Ousterhout and Fred Douglis, ‘Beating the I/O bottleneck: A case for log-structured file systems’,
Operating System Review, 23, (1), 11–27, (January 1989).

10 Mendel Rosenblum and John K. Ousterhout, ‘The LFS storage manager’, Proceedings of the Summer 1990
USENIX Conference, June 1990, pp. 315–324.

TECHNIQUES FOR FILE SYSTEM SIMULATION 999

11 Scott Carson and Sanjeev Setia, ‘Optimal write batch size in log-structured file systems’, Proceedings of the
USENIX Workshop on File Systems, May 1992, pp. 79–91.

12 Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin, ‘An implementation of a log-
structured file system for UNIX’, Proceedings of Winter 1993 USENIX, January 1993, pp. 307–326.

13 Roberta A. Bodnarchuk and Richard B. Bunt, ‘A synthetic workload model for a distributed system file server’,
Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
May 1991, pp. 50–59.

14 Frederick W. Clegg, Gary Shiu-Fan Ho, Steven R. Kusmer, and John R. Sontag, ‘The HP-UX operating system
on HP Precision Architecture computers’, Hewlett-Packard Journal, 37, (12), 4–22, (December 1986).

15 Marshal Kirk McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry, ‘A fast file system for
UNIX’, ACM Transactions on Computer Systems, 2, (3), 181–197, (August 1984).

16 Chris Ruemmler and John Wilkes, ‘Unix disk access patterns’, Proceedings of the Winter 1993 USENIX
Conference, January 1993, pp. 405–420.

17 Persi Diaconis and Bradley Efron, ‘Computer-intensive methods in statistics’, Scientific American, 248, (5),
116–130, (May 1983).

18 AT&T, Unix System V AT&T C++ language system release 2.0. Selected readings, 1989.
19 Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy, ‘PRESTO: A system for object-oriented parallel

programming’, Software – Practice and Experience, 18, (8), 713–732, (August 1988).
20 P. H. Seaman, R. A. Lind, and T. L. Wilson, ‘On teleprocessing system design: Part IV: An analysis of

auxiliary-storage activity’, IBM Systems Journal, 5, (3), 158–170, (1966).
21 Robert Geist and Stephen Daniel, ‘A continuum of disk scheduling algorithms’, ACM Transactions on

Computer Systems, 5, (1), 77–92, (February 1987).

	INTRODUCTION
	MOTIVATION
	SIMULATOR OVERVIEW
	Workload traces
	Metadata snapshot
	Scaffolding
	Disk simulator
	File system simulator
	Analysis: detail and complexity versus efficiency

	CONSTRUCTING A WORKLOAD
	Independence of sample elements
	Implementation and validation

	MODELING THE DISK
	MODELING THE FILE SYSTEM
	SCAFFOLDING
	Threads
	Trace replay
	File system support

	CASE STUDY
	Modification analysis
	Effectiveness of bootstrapping

	CONCLUSIONS AND CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES

