
AMBLE: An Awareness Model for Balancing the
Load in collaborative grid Environments

Pilar Herrero&, Jose Luis Bosque 2, Manuel Salvadores#3, Maria S. Perez 4

4Facultad de Informactica. Universidad Poltecnica de Madrid
Campus de Montegancedo SIN. 28.660 Boadilla del Monte. Madrid. Spain

1pherrero@fi.upm.es
msa1vadores@zipi.fi.upm.es

1mperez@fi.upm.es

*Escuela Superior de Ciencias Experimentales y Tecnologia
C/ Tulipacn SIN. 28.933 M6stoles, Madrid. Spain

2j oseluis.bosque@urjc.es

Abstract- In this paper, we present a new extension and
reinterpretation of one of the most successful models of
awareness in Computer Supported Cooperative Work (CSCW),
called the Spatial Model of Interaction (SMI), which manage
awareness of interaction through a set of key concepts, to
manage task delivery in collaborative distributed systems. This
model also applies some theoretical principles and theories of
multi-agents systems to create a collaborative and cooperative
environment that can be able to provide an autonomous, efficient
and independent management of the amount of resources
available in a Grid environment. This model has been
implemented using web services and some experimental results
carried out over a real and heterogeneous grid are presented
with the end of emphasizing the performance speedup of the
system using the AMBLE model.

I. INTRODUCTION
Grid computing intends to share heterogeneous resources in

dynamic environments. The complexity of achieving this goal
is caused by several factors, being the existence of different
virtual organizations, the dynamism of the underlying
architecture and the heterogeneity of the involved resources
some of the most challenging aspects.

With the aim of providing better capabilities on a grid, it is
essential to use a resource manager, which will take the
suitable, and complex, decision about the allocation of
processes to the resources of the system. The resource
management includes other tasks, such as resources discovery,
resources registration and monitoring. As expected results, the
resource manager should achieve load balancing within the
grid. Equilibrating the amount of work assigned to each node
in a grid is a complex problem, even more than for other kinds
of parallel systems. Even though load balancing has received a
considerable amount of interest, it is still not definitely solved
[19, 22]. Nevertheless, this problem is central for minimizing
the applications' response time and optimizing the exploitation
of resources, avoiding overloading some processors while
others are idle. Grids present additional challenges, since they

can easily become heterogeneous, requiring load distributions
that take into consideration each node's computational features
as well as the services that each node offers to the grid. In
order to provide flexible and efficient load balancing
mechanisms, new technologies could be applied. This field
can take advantage of advances of other disciplines, which
have been satisfyingly applied to other domains.

This is the case of the multi-agent systems, an already
mature technology, which offers promising features to
resource managers. The reactivity, proactivity and autonomy,
as essential properties of agents, can help in the complex task
of managing resources in dynamic and changing environments.
Additionally, the cooperation among agents, which
interchange information and resources status, allows load
balancing mechanisms to be performed and efficiently
deployed on a grid.

In this paper, we present a new extension and
reinterpretation of the Spatial Model of Interaction (SMI), an
abstract awareness model designed to manage awareness of
interaction, in cooperative applications, through a set of key
concepts. The SMI is based on a set of key concepts which are
abstract and open enough as to be reinterpreted in many other
contexts with very different meanings [12]. Thus, this paper
presents a new reinterptetation of this model, and its key
concepts, in the context of an asynchronous collaboration in
grid environments.

This reinterpretation, open and flexible enough, merges all
the OGSA [7] features with theoretical principles and theories
of multi-agents systems, to create a collaborative and
cooperative grid environment. Following one of the main
OGSA characteristics, the use of open, standard and public
interfaces, we have implemented AMBLE as a web service
specification to manage awareness in collaborative grid
environments, WS-AMBLE. This specification provides an
open interface having the ability of managing different levels
of awareness, allowing different Virtual Organizations to
share computational resources based on open protocols and
interfaces. As far as we know, none of the last

1-4244-0344-8/06/$20.00 (© 2006 IEEE 246 Grid Computing Conference 2006

WS specifications offers functionalities useful enough as to
create awareness models and none of the last
WS specifications offers specific functionalities to manage
task balancing delivery in collaborative grid
environments.

II. RELATED WORK
Though the master-slave paradigm is hardly scalable and

not fails tolerance, it seems to be very useful in distributed
systems to achieve a good load balancing strategy. However,
in grids other alternatives should be taken into account. In fact,
the Global Grid Forum (GGF) [11] recommends, if needed,
the use of hierarchical master-slave.

In [10], authors apply reinforcement learning to adaptive
load balancing for allocating resources in a grid in an efficient
way. As result of this work, it is shown that the reinforcement
learning can improve the process of resource allocation in
large heterogeneous systems, and more specifically, in grids.
In [4], an agent-based grid management infrastructure together
with a task scheduler is performed for local grid load
balancing. In [5], a communication-based load balancing
algorithm, named Comet, is shown. The model is based on
two policies: the selection policy, that is, which agent or task
is migrated and the location policy, that is, to which
destination node the selected agent is migrated to.

The negotiation takes an important role in agent systems.
Four different negotiation models are studied in [18] for
agent-based load balancing and grid computing: contract net
protocol, auction model, game theory based model and
discrete optimal control model. The interaction between grids
and agents challenges has been clearly defined by Foster et al
in [8]. Among others, the most important lines of research
identified for the overlapping of both fields are: autonomous
services, dynamic and statefull services [9], negotiation and
Service Level Agreements (SLA) [13], Virtual Organization
Management. [15] and security. [17]. As example of the
successful combination of grid and agents, a real grid system
has been built by means of mobile agent technology,
SMAGrid, Strong-Mobile Agent-Based Grid [21] is composed
of multiple agents used for assigning resources to tasks.

III. THE SPATIAL MODEL OF INTERACTION (SMI)
The Spatial Model of Interaction, defined for application to

any Computer Supported Cooperative Work (CSCW) system
where a spatial metric can be identified, has been driven by a
number of objectives [3]:
* Scalability: It is based on the concept of aura. Each

object has an aura for each medium in which it can
interact, because the aura defines the volume of space
within which this interaction is possible.

* Interactions: The SMI assumes a space populated by
potentially communicating objects that may represent
anything. The SMI provides a framework for objects in
the environment to manage their interaction, and
communication between every pair of objects.

The model itself defines five linked concepts: medium,
focus, nimbus, aura and awareness.

Medium. A prerequisite for useful communication is that
two objects have a compatible medium in which both objects
can communicate.

Aura. In 1992, Fahlen and Bowers defined aura as the sub-
space which effectively bounds the presence of an object
within a given medium and which acts as an enabler of
potential interaction [6].

In each particular medium, it is possible to delimit the
observing object's interest. This idea was introduced by S.
Benford in 1993, and it was called Focus. In the same way, it
is possible to represent the observed object's projection in a
particular medium, called Nimbus.

Awareness. It quantifies the degree, nature or quality of
interaction between two objects. One object's awareness of
another object quantifies the subjective importance or
relevance of that object. Awareness between objects in a given
medium is manipulated via Focus and Nimbus, requiring a
negotiation process. Considering, for example, A's awareness
of B, the negotiation process combines the observer's (A's)
focus and the observed's (B's) nimbus. For a simple discrete
model of focus and nimbus, there are three possible
classifications of awareness values when two objects are
negotiating unidirectional awareness [12]:
* Full awareness. object B is inside A's focus and object

A is inside B's nimbus.
* Peripheral awareness. object B is outside A's focus but

object A is inside B's nimbus, or object B is inside A's
focus but object A is outside B's nimbus.

* No awareness. An object A has no awareness of object
B in a medium M when object B is outside A's focus
and object A is outside B's nimbus.

IV. AMBLE: REINTERPRETING THE KEY AWARENESS
CONCEPTS

Let's consider a system containing a set of nodes {ni} and a
task T that requires a set of processes to be solved in the
system. Each of these processes necessitates some specifics
requirements, being ri the set of requirements associated to the
process Pi, and therefore each of the processes will be
identified by the tuple (pi, ri) and T could be described as
T = {(pi,ri)}

i

The AMBLE model takes into account that one of the
major goals of grid computing is increase the collaboration
capabilities of the system to start by a simple, abstract and
preliminary interpretation of the SMI key concepts in the
context of an asynchronous collaboration. Thus the AMBLE
model, proposes an awareness infrastructure based on these
concepts capable of managing the load management of grid

247

environments. This model reinterprets the SMI key concepts
as follow:

Focus: It can is interpreted as the subset of the space on
which the user has focused his attention with the aim of
interacting with. It can be related to both tasks in grid
environments. and latency in cluster computing. Regarding
tasks, and given a node ni in the system requiring the
execution of a given task (T), the focus of this node would
contain, at least, the subset of nodes that are composing the
Virtual Organization (VO) in which this node is involved.

Focus: Node - System

ni X {n.}

The focus will be delimited by the Aura of the node in the
system.

Nimbus. It is defined as a tuple
(Nimbus=(NimbusState ,NimbusSpace)) containing
information about: (a) the load of the system in a given time
(NimbusState); (b) the subset of the space in which a given
node projects its presence (NimbusSpace).

As for the NimbusState, this concept will depend on the
processor characteristics as well as on the load of the system
in a given time. In this way, the NimbusState could have three
possible values: Null, Medium or Maximum. If the load of a
given node is not high, and this node could receive some
processes, its NimbusState will get the Maximum value. If a
given node ni can accept, at least, a process, then the
NimbusState of this node ni would be Medium. Finally, if the
node ni is overload its nimbus would be Null. The
NimbusSpace will determine those machines that could be
taking into account in the tasks assignment process. The
NimbusSpace will be delimited by the Aura of the node in the
system.

Awareness ofInteraction (AwareInt):
This concept will quantify the degree, nature or quality of

asynchronous interaction between distributed resources.
Following the awareness classification introduced by
Greenhalgh in [12], this awareness could be Full, Peripheral
or Null.

AwareInt(ni, n)= Full

nj E Focus({ni}) A ni E Nimbus(nj)
Peripheral aware of interaction if
AwareInt(ni, nj) = Peripheral

n . E Focus({ni}) A ni Nimbus(n.)

or

n.i Focus({ni}) A i cNimbus(nj)
The AMBLE model is more than a reinterpretation of the

SMI, it extends the SMI to introduce some new concepts such
us:

Interactive Pool.
This function returns the set of nodes { nj }interacting with

the ni node in a given moment. Given a System and given a
task T to be executed in the node ni

Task Resolution:
This function determines if there is a service (si) in the node

ni, being NimbusState(ni)/=Null, such that could be useful to
execute the task T (or at least one of its processes).

ni Z= {sj } Task Re solution. Node x Task-> Task

ni x T -> {(pi,s)}

Where s is the "score" to execute Pi in ni node, being its
value within the range [0, oc): 0 if the node ni fulfils the all the
minimum requirements to execute the process pi; the higher is
the surplus over these requirements, the higher will be the
value of this score.

Collaborative Organization.
This function will take into account the set of nodes
determined by the Interactive Pool function and will return
those nodes of the System in which it is more suitable to
execute the task T. This selection will be made by means of
the TaskResolution function.

IV. LOAD BALANCING ALGORITHM IN AMBLE)

Generally a dynamic load balancing algorithm consists of
four policies: a load measurement rule, an information
exchange rule, an initiation rule and a load balancing
operations [20]. In this section we will introduce the load
balancing algorithm as it has been introduced in the AMBLE
awareness model, and how it will be applied to our distributed
and collaborative multi-agent architecture in grid
environments. The main characteristics of this algorithm are
that it is dynamic, distributed, global and take into account the
system heterogeneity [1].

A. State Measurement Rule
This local rule will be in charge of getting information

about the computational capabilities of the node in the system.
This information, quantified by a load index, provides aware
of the NimbusState of the node. This dynamic index should be
periodically and frequently measured, and should be a good
estimation of a node computing capabilities. The choice of a
load index has a huge impact on load balancing efficiency
[14].

The load index calculation is performed by the benchmark
agent. In this paper the load index is evaluated based on two
parameters:

248

* Node computational power (P), which depends on
the node computational architecture, and takes into
account CPU, memory and I/0 features. It is a static
parameter.

* The CPU assignment which is defined as the
percentage of CPU time that would be available to a
newly created task, on a specific node. It will be
working as a dynamic parameter.

The benchmark agent will implement the load measurement
rule, measuring periodically the needed parameters and
evaluating the load-index of every node "ni", belonging to the
grid, based on the following formula:

load-indexi = Pi / (Pmax * npi)
where

pPi: represents ni's linpack
Pmax represents the linpack of the best node

* npi: represents the number of processes that are being
executing in the node "ni" at a given moment.

If NinbusCal function returns a value close to cero is
because the load of the node is very high (or its performance
is very low). The closer to 1 this value is, the lower is the load
of the node (or the higher is its performance). The
NimbusState of the node will be determined by the load index
and it will depend on the node capacity at a given time. This
state determines if the node could execute more (local or
remotes) tasks. Its possible values would be:
* Maximum: The load index is low and therefore this

infrautilized node will execute all the local tasks,
accepting all new remote execution requests coming from
other nodes.

* Medium: The load index has an intermediate value and
therefore the node will execute all the local tasks,
interfering in load balancing operations only if there are
not other nodes whose NimbuState would be Maximun in
the system.

* Null: The load index has a high value and therefore the
node is overload.

B. Information Exchange Rule
The knowledge of the global state of the system will be

determined by a policy on the information exchange. This
policy should keep the information coherence without
overloading the network with an excessive number of
unnecessary messages.
An optimum information exchange rule for the AMBLE

model should be based on events [2]. This rule only collects
information when a change in the Nilmbus (in the
NimbusState or in the NimbusSpace or in both) of the nodes is
made. If later, the node that has modified its nimbus will be in
charge of notifying this modification to the rest of the nodes in
the system, avoiding thus synchronisation points. The
information that every node has about the NimbusState of the
rest of the nodes is stored in a local data structure, which is
updated while the node receives information messages from
the others.

C. Initiation Rule
The initiation rule determines when to begin a new load

balancing operation. As the model implements a non user
interruption algorithm, the selection of the node must be made
just before sending the task execution. Once the execution of
the process starts in a specific node it would have to finish in
the same node.

D. Load Balancing Operation
Once the node has made the decision of starting a new load

balancing operation, this operation will be divided in another
three different rules, presented in the following sections.

Localization Rule: Given a task to be executed in the node
ni, the localization rule has to determine which nodes are
involved in the CollaborativeOrganization of the node ni. In
order to make it possible, firstly, the AMBLE model will need
to determine the awareness of interaction of this node with
those nodes inside its focus. Those nodes whose awareness of
interaction with ni was Full will be part of the Interactive Pool
of ni to solve the task T, and from that pre-selection the
TaskResolution method will determine those nodes that are
suitable to solve efficiently the task in the environment.

Selection and Distribution Rule. This algorithm joins
selection and distribution rules because it determines which
nodes will be in charge of executing each of the processes
making up the T task. The proposed algorithm takes into
account the NimbusState of each of the nodes as well as the
TaskResolution to solve any of the T's processes.

The goal of this algorithm is to find the more equilibrate
assignment of processes to computational nodes, based on a
set of heuristics. Firstly, a complete distribution is made
taking into account all the processes making up the T task as
well as all the computational nodes implicated in the
CollaborativeOrganization. If, in this first turn, it would be
possible to assign all the process the algorithm would have
finished. Otherwise, it would be necessary to calculate, again,
the NimbusState of the nodes belonging to the
CollaborativeOrganization, repeating the complete process
again. The sequence of steps that implements the assignment
heuristic is:
1. If any of the processes Pi E T could just be executed in

one of the nj nodes, this process would be automatically
assigned to this node.

2. Among all the remaining nodes, and for each and every
process, the node whose score was higher will be selected
to execute the corresponding process.

3. Once a T process had been assigned to every node inside
the pool, a message will be sent to each of these nodes
requiring the execution of the designated processes. If the
remote nodes accept the execution, the process would be
definitely assigned, and, they should evaluate again its
NimbusState returning its value to the origin node.
However, if the candidate node rejects the process
execution, the origin node should look for a new
candidate.

249

4. Repeat the previous steps until all the processes had been
assigned or until all the nodes in
CollaborativeOrganization will get NimbusState = Null.

Once all the nodes in CollaborativeOrganization had
achivied a NimbusState = Null or once it would be impossible
to find a candidate in the CollaborativeOrganization to
execute any of the T's process, the task will be waiting in ni
for a change in the state of any of the nodes.

V. AMBLE EVALUATION ARCHITECTURE

As it is possible to appreciate in the figure 1 the
middleware architecture of load balancing model has been
separated in three different parts:

OIbs $toat$eAent.
wa~~~~~~~~~~~~~~m opin4figuratibu

XML

Load BatancerEkAent .

>1 ExecuU
I Benchmark AaentFrameworkFir"k

* AMBLE-Service: Web service [23, 24] interface that
provides those methods necessaries to establish the
communication between nodes through SOAP [25]
messages.
* registerVisibility: When a node detects a new

resource inside its focus, it invokes this operation.
Moreover, if the observer node is also inside the
observed NimbusSpace, it would be included in the
awareness of interaction record with a value equal
to Full.

* nimbusChangeCallback: This operation receives
the changes that a specific node has on its
NimbusState.

* requestTask: This method is invoked by a client
requiring the execution of the T task composed by
n processes.

* taskResolution: This method is invoked by a node
requiring "offers/scores" for the processes
associated to a specific task.

* performTask: This method is invoked to order the
process execution once the process has been
assigned to a particular node.

* monitorExec: This operation is used to monitor the
state of execution of a process in an identifiable
node.

Fig. 1 The Load Balancing Model: Middleware Architecture

* SMI-Engine (Spatial Model of Interaction Engine):
This is the main core of the architecture and contains
those components that implement all the logic of the
SMI and the load balancing algorithms explained in
section IV. This engine is made up by the following
modules:
* Benchmark Agent: This agent based on the

Linpack benchmark [26], maintains a performance
measure of the node which could be evaluated
from the Load Balancer.

* Global State Agent: This agent compiles all the
information related to the two main concepts of the
AMBLE, providing information about those nodes
that are available in the system.

* Load Balancer Agent: This module implements the
logic for the load-balancing operation and makes
the final decision of which node will execute each
process.

* Execution framework: This interface contains the
modules dependent on the operating system (OS)
to access to the process management APIs.

* SO Native Process Management: It depends on the
OS and uses those functionalities that the APIs of
this OS offer to supply the to process execution.

* SO Native Monitoring Module: This module also
depends on the OS and uses those functionalities
that the APIs of this OS offer to monitor the state
of the computer.

VI. AMBLE EXPERIMENTAL RESULTS

This section represents a set of experiments with the
following objectives: corroborate if the AMBLE's tasks
delivery works in a real and heterogeneous grid environment;
detect the overload introduced by the AMBLE's model in a
real environment; and measure the AMBLE's speedup in
different scenarios.

A. The grid environment infrastructure
The tests presented in this manuscript have been evaluated

in a real and heterogeneous services oriented grid environment.
The system heterogeneity is reflected no just in the
architecture of the computational nodes, but also in the OS
utilized. The grid infrastructure was made up for 20 nodes
with the following characteristics: 8 of them were Intel
Centrino P4 1.5 GHZ with 0.5 GB of memory (in this paper
we will refer to them as "Type A"), 11 of them were Intel P4
3.0 GHz (B) with 1GB of memory (in this paper we will refer
to them as "Type B") and the last one was an Intel Xeon 3.6
GHz (C) with 4GB of memory (in this paper we will refer to it
as "Type C").

In order to carry out the model evaluation we have selected
a set of CPU-intensive tests based in iterations over the
Linpack benchmark [26].

The following subsection presents three different scenarios
raised to make this evaluation possible. In each of these
scenarios, there is a task T, composed of 20 processes, to be

250

executed and a node N that receives the T execution request.
Each of these scenarios also presents 4 different tests; each of
them differs to the others in the size of the processes to be
executed.

The table I presents the response times, in seconds, for each
of the tests executed in the different grid nodes.

The metric used to have a measure of the AMBLE
performance will be the response time achieved for each of
the tests in the proposed scenarios. These measures will allow
calculating the speedup as well as the communication
overhead introduced by the AMBLE algorithm in the system
[16].

TABLE I
RESPONSE TIME

Type A Type B Type C
Test 1 4,95 3,86 3,48
Test 2 24,02 19,20 17,80
Test 3 47,00 38,72 34,97
Test 4 232,93 192,30 175,03

B. Experimental Results

1) Scenario A
This scenario describes the ideal conditions for the model.

As it was mentioned above, the node N receives the T
execution request. The N node has full awareness of
interaction with the rest of the nodes making up the grid, and
therefore this node throws a load balancing operation to carry
out the task execution taking into account all the nodes
composing the grid. Table II presents the total response times
of the system using the AMBLE implementation as well as the
speedup (sequential time/parallel time) of the AMBLE model
related to each of the types of nodes involved in the grid

TABLE II
GLOBAL COMMUNICATION OVERHEAD AND SPEEDUP RELATED TO THE

TYPES NODES FOR SCENARIO A

Amble Communication Speed Speed Speed
overhead up vs A up vs B up vs C

5,9 5,65 0,84 0,65 0,59
6,964 5,76 3,45 2,76 2,56
8,233 5,88 5,71 4,70 4,25
17,69 5,92 13,17 10,87 9,89

its aura with a distance equal to 1 and the nine remaining in
another aura with a distance equal to 2. The table III presents
the speedup of the AMBLE model related to the local
execution on each of the types of nodes as well as the
communication overhead.

TABLE III
GLOBAL COMMUNICATION OVERHEAD AND SPEEDUP RELATED TO THE

TYPES NODES FOR SCENARIO B

Amble Communication Speed Speed Speed
overhead up vs A up vs B up vs C

6,54 6,29 0,76 0,59 0,53
7,45 6,25 3,22 2,58 2,39
9,906 7,56 4,74 3,91 3,53
19,28 7,51 12,08 9,97 9,07

3) Scenario C
This same scenario also raises the non ideal situation in

which all the nodes in the grid are infrautilised but they are
located in different auras. The grid client requests the
execution of one of the task in the node N. This node has 10
more nodes inside its aura with a distance equal to 1 (aural)
and the nine remaining in another aura with a distance equal
to 2 (aura2). However, in this situation half of the nodes that
are inside the aural reject the execution of the processes
assigned. Then, the load balancing algorithm increases the
aura2 and therefore the other 9 remaining nodes could accept
any of the processes that are looking for a location. The task
delivery process is done among the nodes located in the aura2.
While this distribution is been done, some of the nodes that
are located inside the aural change their NimbusState and
they could received new processes. The system will inform of
this change and those processes that were not assigned among
the nodes located in the aura2, will be assigned among all
those nodes changed its NimbusState in the aural. The table
IV shows the speedup and the communication overhead.

TABLE IV
GLOBAL COMMUNICATION OVERHEAD AND SPEEDUP RELATED TO THE

TYPES NODES FOR SCENARIO C

Amble Communication Speed Speed Speed
overhead up vs A up vs B up vs C

10,92 10,68 -7,44 0,45 0,35
12,08 10,88 5,72 1,99 1,59
14,13 11,78 20,84 3,33 2,74
24,29 12,52 150,74 9,59 7,92

2) Scenario B
This scenario raises the non ideal situation in which all the

nodes in the grid are been infrautilised, but they are located in
different auras. The grid client requests the execution of one
of the task in the node N. This node has 10 more nodes inside

C. Analysis ofresults
Generally speaking, it would be possible to conclude that

the experimental results obtained in the tests above described
are very successful and corroborate the usefulness of the
AMBLE model as to be applied to work-load balancing

251

operations in real heterogeneous grid environments. As for
some more specific details (see tables II, III and IV) the
performance improvements obtained by using this model are
excellent in all the scenarios and in, almost, all the tests. It is
worthy to highlight that the results achieved in the testl in
which the model get worse experimental results. These results
are consequence to the small size of the task to be executed,
which provokes a considerable communication overhead in
this delivery operation, increasing the response times and
making that these times were higher that the one associated to
the local execution. Due to this fact, the speedup of these
experiments are lower than 1. An important conclusion could
be taken out from these results: if the processes to be process
have a response time lower than the communication overhead),
it would be preferable to carry out the local execution of the
task instead of distributing the processes along the grid.

The results corresponding to the other tests show that the
speedup experiment an important improvement and, in general,
it would be possible to conclude that, the bigger is the size of
the problem to be solved the better are the results achieved.
The communication overhead is the factor limiting the
performance increase. This overhead is independent of the
problem size. In this way, when the problem size increases,
the parallelizable portion of the task also increases and
therefore the speedup experiment a considerable
improvement.As for the scenarios presented in this paper, the
scenario A gets the best speedup results, related to the local
execution. This is a consequence of the ideal conditions, for
the execution of the AMBLE model, in which this scenario
takes place. The scenario B presents an increment in the aura,
and in scenario C there are some modifications on the
NimbusState of some of the nodes. These situations imply that
the load balancing model will require a set of messages to
carry out the delivery operation and this communication
overhead is reflected in the speedup results. However, in spite
of this additional communication overhead the results are still
very successful.

VII. CONCLUSIONS

Equilibrating the amount of work assigned to each of the
nodes in a grid environment is a complex problem, even more
than for other kinds of parallel systems. This balance has to
take into account not just the computational capabilities of
each of nodes involved in the balancing operation but also the
users' confidence in the other nodes and users as well as its
collaborative and cooperative intentions. Context should
define a set of common information about the current status of
each of the nodes in the grid and its capability of collaborating
with peers, and this context could come from an awareness
model.

This paper presents an awareness model for balancing the
load in collaborative grid environments, AMBLE, in a
collaborative multi-agent system. This model extends and
reinterprets some of the key concepts of the most successful
models of awareness in Computer Supported Cooperative
Work (CSCW), called the Spatial Model of Interaction (SMI).

AMBLE manages the interaction in the environment allowing
the autonomous, efficient and independent task allocation in
the environment. The AMBLE implementation is based on the
Web Services specifications and follows one of the key
principles in the grid theory: the use of open, standard and
public interfaces.

This model has been evaluated in a real and heterogeneous
grid infrastructure. Different scenarios were designed for this
purpose. Each of these scenarios was also composed of a set
of different computational-intensive tests based in iterations
over the Linpack benchmark. These scenarios were designed
in such way that each of them introduced some additional
handicaps to the previous one. The most important
conclusions that could be extracted from the experimental
results presented in this paper are: Firstly, the AMBLE model
can contribute to the performance of heterogeneous systems
by distributing the work-load in an equilibrating way among
all the nodes composing the grid; Secondly, the
communication overhead in a grid environment is a factor to
be considered due to the remarkable limitations in the
performance improvements. This overhead doesn't depend on
the problem size, it mainly depends on the dynamism of the
grid system, in each and every moment, and therefore it can
not be predict beforehand. Finally, it is important to highlight
that the size of the processes, to be distributed in the grid, has
a fundamental impact in the global performance of the system.
Those processes whose response time is low, are not suitable
to be distributed in the grid because the communication
overhead could be bigger that the local response time,
entailing a worsening of the system.

ACKNOWLEDGMENT

This work has been partially founded by the Spanish
Ministry of Education and Science (grant TIC2003-08933-
C02) and Government of the Community of Madrid (grants
GR/SAL/0940/2004 and S-0505/DPI/0235).

REFERENCES
[1] M. Beltran, A. Guzman, J. L. Bosque. Dynamic tasks assignment for

real heterogeneous clusters. Parallel Processing and Applied
Mathematics: 5th International Conference, PPAM 2003. Lectures
Notes in Computer Science. Springer-Verlag. Vol: 3019 / 2004. pp 888
- 895. Abril 2004.

[2] M. Beltran, J. L. Bosque, A. Guzman. Resource Disseminatioin
policies on Grids. On the Move to Meaningful Internet Systems 2004:
OTM 2004. Lectures Notes in Computer Science. Springer-Verlag. pp
135 - 144. October 25-29, 2004

[3] Benford S.D., and Fahlen L.E. A Spatial Model of Interaction in Large
Virtual Environments. Published in Proceedings of the Third European
Conference on Computer Supported Cooperative Work (ECSCW'93).
Milano. Italy. Kluwer Academic Publishers, pp. 109-124, 1993.

[4] J. Cao et al., "Agent-Based Grid Load Balancing using Performance-
Driven Task Scheduling", Proc. of the International Parallel and
Distributed Processing Symposium 2003.

[5] K. Chow and Y. Kwok, "On Load Balancing for Distributed
Multiagent Computing", IEEE Transactions on Parallel and Distributed
Systems 13(8), 787-801, Aug. 2002.

[6] Fahlen, L. E. and Brown, C.G., The Use of a 3D Aura Metaphor for
Compter Based Conferencing and Teleworking, Published in
Proceedings of the 4th Multi-G Workshop, Stockholm-Kista, pp. 69-74,
1992.

252

[7] Foster and C. Kesselman and J. Nick and S. Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Globus Project, 2002.

[8] I. Foster, N. R. Jennings and C. Kesselman, "Brain Meets Brawn: Why
Grid and Agents Need Each Other", Proceedings 3rd Int. Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2004),
New York, USA, 2004.

[9] Foster et al., "Modeling Stateful Resources with Web Services",
Globus Alliance, 2004.

[10] A. Galstyan, K. Czajkowski and K. Lerman, "Resource Allocation in
the Grid using Reinforcement Learning", International Conference on
Autonomous Agents and Multiagent Systems, 2004.

[11] Global Grid Forum. http://www.gridforum.org/ Consulted 2006.
[12] Greenhalgh, C., Large Scale Collaborative Virtual Environments,

Doctoral Thesis. University of Nottingham. October 1997.
[13] R. Jennings et al., "Automated Negotiation: Prospects, Methods and

Challenges", International Journal of Group Decision and Negotiation
10(2), 199-213, 2001.

[14] T. Kunz, "The influence of different workload descriptions on a
heuristic load balancing scheme," IEEE Transactions on Software
Engineering, vol. 17, no. 7, pp. 725-730, July 1991.

[15] M. Luck, P. McBurney and C. Preist, "Agent Technology: Enabling
Next Generation Computing", AgentLink, 2003.

[16] L. Pastor y J. L. Bosque. An Efficiency and Scalability Model for
Heterogeneous Clusters. Proceedings of the 30 IEEE International

Conference on Cluster Computing. Editorial: IEEE Computer Society.
California. Octubre 2001. pp 427 - 434. ISBN: 0-7695-1116-3.

[17] S. D. Ramchurn, D. Huynh and N. R. Jennings, "Trust in Multiagent
Systems", The Knowledge Engineering Review, 2004.

[18] W. Shen et al., "Adaptive Negotiation for Agent-Based Grid
Computing", Journal of the American Statistical Association, 2002.

[19] L. Xiao, S. Chen, and X. Zhang. Dynamic cluster resource allocations
for jobs with known and unknown memory demands. IEEE Trans. on
Parallel and Distributed Systems, 13(3):223-240, March 2002.

[20] C. Xu and F. Lau, Load balancing in parallel computers: theory and
practice. Kluwer Academic Publishers, 1997.

[21] Z. Zhang and S. Luo, "Constructing Grid System with Mobile
Multiagent", Proc. of the Second Int. Conference on Machine Learning
and Cybernetics, Xi'an, Nov. 2003.

[22] Albert Y. Zomaya and Yee-Hwei Teh. Observations on using genetic
algorithms for dynamic load-balancing. IEEE Trans. on Parallel and
Distributed Systems, 12(9):899-911, 2001.

[23] http://www.w3.org/. Consulted in 2006.
[24] http://www.w3.org/2002/ws/. Consulted in 2006.
[25] http://www.w3.org/TR/soap/. Consulted in 2006
[26] http://www.netlib.org/benchmarkiperformance.pdf Performance

of Various Computers Using Standard Linear Equations Software.
Technical Report CS-89-85, University of Tennessee, 2006.

253

